1,169 research outputs found

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

    Full text link
    Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. However, with the recent popularity of cloud computing, users now have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this paper, we focus on solving the classification problem over encrypted data. In particular, we propose a secure k-NN classifier over encrypted data in the cloud. The proposed k-NN protocol protects the confidentiality of the data, user's input query, and data access patterns. To the best of our knowledge, our work is the first to develop a secure k-NN classifier over encrypted data under the semi-honest model. Also, we empirically analyze the efficiency of our solution through various experiments.Comment: 29 pages, 2 figures, 3 tables arXiv admin note: substantial text overlap with arXiv:1307.482

    Shared and Searchable Encrypted Data for Untrusted Servers

    Get PDF
    Current security mechanisms pose a risk for organisations that outsource their data management to untrusted servers. Encrypting and decrypting sensitive data at the client side is the normal approach in this situation but has high communication and computation overheads if only a subset of the data is required, for example, selecting records in a database table based on a keyword search. New cryptographic schemes have been proposed that support encrypted queries over encrypted data but all depend on a single set of secret keys, which implies single user access or sharing keys among multiple users, with key revocation requiring costly data re-encryption. In this paper, we propose an encryption scheme where each authorised user in the system has his own keys to encrypt and decrypt data. The scheme supports keyword search which enables the server to return only the encrypted data that satisfies an encrypted query without decrypting it. We provide two constructions of the scheme giving formal proofs of their security. We also report on the results of a prototype implementation. This research was supported by the UK’s EPSRC research grant EP/C537181/1. The authors would like to thank the members of the Policy Research Group at Imperial College for their support

    The Secure Link Prediction Problem

    Get PDF
    Link Prediction is an important and well-studied problem for social networks. Given a snapshot of a graph, the link prediction problem predicts which new interactions between members are most likely to occur in the near future. As networks grow in size, data owners are forced to store the data in remote cloud servers which reveals sensitive information about the network. The graphs are therefore stored in encrypted form. We study the link prediction problem on encrypted graphs. To the best of our knowledge, this secure link prediction problem has not been studied before. We use the number of common neighbors for prediction. We present three algorithms for the secure link prediction problem. We design prototypes of the schemes and formally prove their security. We execute our algorithms in real-life datasets.Comment: This has been accepted for publication in Advances in Mathematics of Communications (AMC) journa

    Privacy-preserving query processing over encrypted data in cloud

    Get PDF
    The query processing of relational data has been studied extensively throughout the past decade. A number of theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, data owners now have the opportunity to outsource not only their data but also data processing functionalities to the cloud. Because of data security and personal privacy concerns, sensitive data (e.g., medical records) should be encrypted before being outsourced to a cloud, and the cloud should perform query processing tasks on the encrypted data only. These tasks are termed as Privacy-Preserving Query Processing (PPQP) over encrypted data. Based on the concept of Secure Multiparty Computation (SMC), SMC-based distributed protocols were developed to allow the cloud to perform queries directly over encrypted data. These protocols protect the confidentiality of the stored data, user queries, and data access patterns from cloud service providers and other unauthorized users. Several queries were considered in an attempt to create a well-defined scope. These queries included the k-Nearest Neighbor (kNN) query, advanced analytical query, and correlated range query. The proposed protocols utilize an additive homomorphic cryptosystem and/or a garbled circuit technique at different stages of query processing to achieve the best performance. In addition, by adopting a multi-cloud computing paradigm, all computations can be done on the encrypted data without using very expensive fully homomorphic encryptions. The proposed protocols\u27 security was analyzed theoretically, and its practicality was evaluated through extensive empirical results --Abstract, page iii

    Equivalence-based Security for Querying Encrypted Databases: Theory and Application to Privacy Policy Audits

    Full text link
    Motivated by the problem of simultaneously preserving confidentiality and usability of data outsourced to third-party clouds, we present two different database encryption schemes that largely hide data but reveal enough information to support a wide-range of relational queries. We provide a security definition for database encryption that captures confidentiality based on a notion of equivalence of databases from the adversary's perspective. As a specific application, we adapt an existing algorithm for finding violations of privacy policies to run on logs encrypted under our schemes and observe low to moderate overheads.Comment: CCS 2015 paper technical report, in progres

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table
    corecore