55,607 research outputs found

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Perception of Risks and Usefulness of Smart Video Surveillance Systems

    Get PDF
    The number of video cameras in public places increases due to different reasons such as detecting dangers (e.g., thefts, robberies, terrorist attacks) and security breaches in crowds. The application of video surveillance systems is sometimes evaluated ambivalently; therefore, the presented study focuses on factors influencing the acceptance of a privacy-friendly, smart video surveillance system. Overall, 216 persons aged between 18 and 81 years participated in an online survey. In terms of the perceived usefulness, there are significant interactions of public spaces × gender and public spaces × time of day. In addition, the assessment of different privacy levels of a video surveillance system differ significantly in terms of perceived risk. Interestingly, men rate the risk concerning their own privacy significantly higher than women do. Participants rate the presented system as fairly useful and slightly risky for their own privacy. The findings of the presented exploratory study provide insight into how people perceive smart video surveillance. These findings have the potential to support the conditions of the use of smart video surveillance systems and to address the possibly affected individuals

    Being private in the surveillance society : the concept of privacy in the age of terror, CCTV and electronic surveillance

    Get PDF
    Abstract: Defending the right to privacy is a growing concern in modern society as surveillance, as a formidable weapon in the “war on terror”, becomes more intrusive with every passing year. In order to effectively defend the right to privacy one must know what privacy actually is. Privacy does not have one universal definition, but is a concept that has evolved though varied socio-cultural and historical circumstances, and is constantly being re-contextualised. This paper aims to discuss and compare various conceptions of privacy, and the right to privacy, with a focus on challenges brought about by technological developments and surveillance. In addition it aims to analyse the implications of surveillance on the right to privacy, with a particular emphasis on video surveillance. In order to reach these goals the paper compares and discusses various academic conceptualisations of privacy, and analyses the discourse surrounding two examples of video surveillance, CCTV coverage of London and the use of covert video surveillance against Arne Treholt, a former bureau chief of the Norwegian Ministry of Foreign Affairs. Many varied aspects of privacy are considered, with emphasis placed onto two distinct conceptions of privacy; an inherent-value based conception which views privacy as a goal in itself, which is necessary for full human development, and an exchange based conception which views privacy in terms of an exchange, where personal data is disclosed in return for societal goods and benefits. Privacy is conceived as the control of one’s own personal data at the most basic level, while surveillance is the process of recording private data; they are antagonistic contradictions. Using the examples, the paper attempts to reconcile surveillance with privacy; an exchange conception of privacy can accept derogations to the right to privacy in return for more security, although only if based upon a fair exchange, something the video surveillance regimes in the example likely do not provide. The paper concludes with some policy recommendations regarding increased regulation and transparency of surveillance

    A Novel approach for Privacy Preserving in Video using Extended Euclidean algorithm Based on Chinese remainder theorem

    Get PDF
    The development in the modern technology paved a path in the utilization of surveillance cameras in streets, offices and other areas but this significantly leads a threat to the privacy of visitors, passengers or employees, leakage of information etc.. To overcome this threat, privacy and security needs to be incorporated in the practical surveillance system. It secures the video information which is resided in various video file types. In this process we used an efficient framework to preserve the privacy while distributing secret among ‘N’ number of parties. In this paper we analyzed various techniques of Chinese Remainder Theorem

    Video Forensics in Cloud Computing: The Challenges & Recommendations

    Get PDF
    Forensic analysis of large video surveillance datasets requires computationally demanding processing and significant storage space. The current standalone and often dedicated computing infrastructure used for the purpose is rather limited due to practical limits of hardware scalability and the associated cost. Recently Cloud Computing has emerged as a viable solution to computing resource limitations, taking full advantage of virtualisation capabilities and distributed computing technologies. Consequently the opportunities provided by cloud computing service to support the requirements of forensic video surveillance systems have been recently studied in literature. However such studies have been limited to very simple video analytic tasks carried out within a cloud based architecture. The requirements of a larger scale video forensic system are significantly more and demand an in-depth study. Especially there is a need to balance the benefits of cloud computing with the potential risks of security and privacy breaches of the video data. Understanding different legal issues involved in deploying video surveillance in cloud computing will help making the proposed security architecture affective against potential threats and hence lawful. In this work we conduct a literature review to understand the current regulations and guidelines behind establishing a trustworthy, cloud based video surveillance system. In particular we discuss the requirements of a legally acceptable video forensic system, study the current security and privacy challenges of cloud based computing systems and make recommendations for the design of a cloud based video forensic system

    Video forensics in cloud computing: the challenges & recommendations

    Get PDF
    Forensic analysis of large video surveillance datasets requires computationally demanding processing and significant storage space. The current standalone and often dedicated computing infrastructure used for the purpose is rather limited due to practical limits of hardware scalability and the associated cost. Recently Cloud Computing has emerged as a viable solution to computing resource limitations, taking full advantage of virtualisation capabilities and distributed computing technologies. Consequently the opportunities provided by cloud computing service to support the requirements of forensic video surveillance systems have been recently studied in literature. However such studies have been limited to very simple video analytic tasks carried out within a cloud based architecture. The requirements of a larger scale video forensic system are significantly more and demand an in-depth study. Especially there is a need to balance the benefits of cloud computing with the potential risks of security and privacy breaches of the video data. Understanding different legal issues involved in deploying video surveillance in cloud computing will help making the proposed security architecture affective against potential threats and hence lawful. In this work we conduct a literature review to understand the current regulations and guidelines behind establishing a trustworthy, cloud based video surveillance system. In particular we discuss the requirements of a legally acceptable video forensic system, study the current security and privacy challenges of cloud based computing systems and make recommendations for the design of a cloud based video forensic system

    MuLViS: Multi-Level Encryption Based Security System for Surveillance Videos

    Get PDF
    Video Surveillance (VS) systems are commonly deployed for real-time abnormal event detection and autonomous video analytics. Video captured by surveillance cameras in real-time often contains identifiable personal information, which must be privacy protected, sometimes along with the locations of the surveillance and other sensitive information. Within the Surveillance System, these videos are processed and stored on a variety of devices. The processing and storage heterogeneity of those devices, together with their network requirements, make real-time surveillance systems complex and challenging. This paper proposes a surveillance system, named as Multi-Level Video Security (MuLViS) for privacy-protected cameras. Firstly, a Smart Surveillance Security Ontology (SSSO) is integrated within the MuLViS, with the aim of autonomously selecting the privacy level matching the operating device's hardware specifications and network capabilities. Overall, along with its device-specific security, the system leads to relatively fast indexing and retrieval of surveillance video. Secondly, information within the videos are protected at the times of capturing, streaming, and storage by means of differing encryption levels. An extensive evaluation of the system, through visual inspection and statistical analysis of experimental video results, such as by the Encryption Space Ratio (ESR), has demonstrated the aptness of the security level assignments. The system is suitable for surveillance footage protection, which can be made General Data Protection Regulation (GDPR) compliant, ensuring that lawful data access respects individuals' privacy rights

    CamDec: Advancing axis P1435-LE video camera security using honeypot-based deception

    Get PDF
    The explosion of online video streaming in recent years resulted in advanced services both in terms of efficiency and convenience. However, Internet-connected video cameras are prone to exploitation, leading to information security issues and data privacy concerns. The proliferation of video-capable Internet of Things devices and cloud-managed surveillance systems further extend these security issues and concerns. In this paper, a novel approach is proposed for video camera deception via honeypots, offering increased security measures compared to what is available on conventional Internet-enabled video cameras
    corecore