707,587 research outputs found

    Online Causal Structure Learning in the Presence of Latent Variables

    Full text link
    We present two online causal structure learning algorithms which can track changes in a causal structure and process data in a dynamic real-time manner. Standard causal structure learning algorithms assume that causal structure does not change during the data collection process, but in real-world scenarios, it does often change. Therefore, it is inappropriate to handle such changes with existing batch-learning approaches, and instead, a structure should be learned in an online manner. The online causal structure learning algorithms we present here can revise correlation values without reprocessing the entire dataset and use an existing model to avoid relearning the causal links in the prior model, which still fit data. Proposed algorithms are tested on synthetic and real-world datasets, the latter being a seasonally adjusted commodity price index dataset for the U.S. The online causal structure learning algorithms outperformed standard FCI by a large margin in learning the changed causal structure correctly and efficiently when latent variables were present.Comment: 16 pages, 9 figures, 2 table

    The Practice of Telecommuting: A Fresh Perspective

    Get PDF
    Telecommuting has been a popular practice for an increasing number of firms and governmental bodies over the past decade or more. This research paper reviews antecedents, implementation considerations, known consequences, barriers, and recommendations that need to be determined prior to the adoption of telecommuting practices. The paper demonstrates that the phenomenon of telecommuting is the result of historical, sociological, and technological shifts and advancements. While firms have successfully implemented various elements of telecommuting practices, challenges along the way have yielded insights and lessons that merit further examination and discussion. This paper asserts that with selected individuals, proper structure, and sufficient feedback mechanisms in place, the adoption of telecommuting has the capacity to strengthen a firm’s bottom line and provide tangible benefit for its employees. As a case in point, online learning, developed in parallel with the growth of telecommuting, yields substantial benefits for employees and the companies in which they serve. For employees, online learning is convenient, accommodates multiple learning styles, and is an engaging learning mechanism. For corporations, online learning encourages cost-effectiveness, uniformity in quality and flexibility, and enhanced cross-cultural and cross-disciplinary communications, all necessary to meet the challenges of the ever-changing global marketplace.telecommuting; technology; online learning; social media; innovation; institutional learning; cross-cultural communications.

    Machine Learning Methods for Attack Detection in the Smart Grid

    Get PDF
    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semi-supervised) are employed with decision and feature level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than the attack detection algorithms which employ state vector estimation methods in the proposed attack detection framework.Comment: 14 pages, 11 Figure

    Online Adaptive Mahalanobis Distance Estimation

    Full text link
    Mahalanobis metrics are widely used in machine learning in conjunction with methods like kk-nearest neighbors, kk-means clustering, and kk-medians clustering. Despite their importance, there has not been any prior work on applying sketching techniques to speed up algorithms for Mahalanobis metrics. In this paper, we initiate the study of dimension reduction for Mahalanobis metrics. In particular, we provide efficient data structures for solving the Approximate Distance Estimation (ADE) problem for Mahalanobis distances. We first provide a randomized Monte Carlo data structure. Then, we show how we can adapt it to provide our main data structure which can handle sequences of \textit{adaptive} queries and also online updates to both the Mahalanobis metric matrix and the data points, making it amenable to be used in conjunction with prior algorithms for online learning of Mahalanobis metrics

    The Fast and the Flexible: training neural networks to learn to follow instructions from small data

    Get PDF
    Learning to follow human instructions is a long-pursued goal in artificial intelligence. The task becomes particularly challenging if no prior knowledge of the employed language is assumed while relying only on a handful of examples to learn from. Work in the past has relied on hand-coded components or manually engineered features to provide strong inductive biases that make learning in such situations possible. In contrast, here we seek to establish whether this knowledge can be acquired automatically by a neural network system through a two phase training procedure: A (slow) offline learning stage where the network learns about the general structure of the task and a (fast) online adaptation phase where the network learns the language of a new given speaker. Controlled experiments show that when the network is exposed to familiar instructions but containing novel words, the model adapts very efficiently to the new vocabulary. Moreover, even for human speakers whose language usage can depart significantly from our artificial training language, our network can still make use of its automatically acquired inductive bias to learn to follow instructions more effectively

    Prior knowledge and preferential structures in gradient descent learning algorithms

    No full text
    A family of gradient descent algorithms for learning linear functions in an online setting is considered. The family includes the classical LMS algorithm as well as new variants such as the Exponentiated Gradient (EG) algorithm due to Kivinen and Warmuth. The algorithms are based on prior distributions defined on the weight space. Techniques from differential geometry are used to develop the algorithms as gradient descent iterations with respect to the natural gradient in the Riemannian structure induced by the prior distribution. The proposed framework subsumes the notion of "link-functions"

    Optimal Goal-Reaching Reinforcement Learning via Quasimetric Learning

    Full text link
    In goal-reaching reinforcement learning (RL), the optimal value function has a particular geometry, called quasimetric structure. This paper introduces Quasimetric Reinforcement Learning (QRL), a new RL method that utilizes quasimetric models to learn optimal value functions. Distinct from prior approaches, the QRL objective is specifically designed for quasimetrics, and provides strong theoretical recovery guarantees. Empirically, we conduct thorough analyses on a discretized MountainCar environment, identifying properties of QRL and its advantages over alternatives. On offline and online goal-reaching benchmarks, QRL also demonstrates improved sample efficiency and performance, across both state-based and image-based observations.Comment: Project Page: https://www.tongzhouwang.info/quasimetric_rl
    • …
    corecore