
ar
X

iv
:1

50
3.

06
46

8v
1

 [c
s.

LG
]

22
 M

ar
 2

01
5

1

Machine Learning Methods for Attack Detection in
the Smart Grid

Mete Ozay, Member, IEEE,Iñaki Esnaola, Member, IEEE,Fatos T. Yarman Vural, Senior Member, IEEE,
Sanjeev R. Kulkarni, Fellow, IEEE,and H. Vincent Poor, Fellow, IEEE

Abstract—Attack detection problems in the smart grid are
posed as statistical learning problems for different attack sce-
narios in which the measurements are observed in batch or
online settings. In this approach, machine learning algorithms
are used to classify measurements as being either secure or
attacked. An attack detection framework is provided to exploit
any available prior knowledge about the system and surmount
constraints arising from the sparse structure of the problem in
the proposed approach. Well-known batch and online learning
algorithms (supervised and semi-supervised) are employedwith
decision and feature level fusion to model the attack detection
problem. The relationships between statistical and geometric
properties of attack vectors employed in the attack scenarios and
learning algorithms are analyzed to detectunobservable attacks
using statistical learning methods. The proposed algorithms are
examined on various IEEE test systems. Experimental analyses
show that machine learning algorithms can detect attacks with
performances higher than the attack detection algorithms which
employ state vector estimation methods in the proposed attack
detection framework.

Index Terms—Smart grid security, sparse optimization, classi-
fication, attack detection, phase transition.

I. I NTRODUCTION

Machine learning methods have been widely proposed
in the smart grid literature for monitoring and control of
power systems [1], [2], [3], [4]. Rudin et al. [1] suggest an
intelligent framework for system design in which machine
learning algorithms are employed to predict the failures of
system components. Anderson et al. [2] employ machine
learning algorithms for the energy management of loads and
sources in smart grid networks. Malicious activity prediction
and intrusion detection problems have been analyzed using
machine learning techniques at the network layer of smart
grid communication systems [3], [4].

In this paper, we focus on the false data injection attack
detection problem in the smart grid at the physical layer.
We use the Distributed Sparse Attacks model proposed by
Ozay et al. [5], where the attacks are directed by injecting
false data into the local measurements observed by either
local network operators or smart Phasor Measurement Units

M. Ozay is with the School of Computer Science, University ofBirm-
ingham, B15 2TT, UK (e-mail: m.ozay@cs.bham.ac.uk). I. Esnaola, S. R.
Kulkarni and H. V. Poor are with the Department of ElectricalEngineering,
Princeton University, Princeton, NJ 08544, USA (e-mail:{jesnaola, kulkarni,
poor}@princeton.edu). I. Esnaola is also with the Department of Automatic
Control and Systems Engineering, University of Sheffield, S1 3JD, UK. F. T.
Yarman Vural is with the Department of Computer Engineering, Middle East
Technical University, Ankara, Turkey (e-mail: vural@ceng.metu.edu.tr).

This research was supported in part by the U. S. National Science
Foundation under Grant CMMI-1435778.

(PMUs) in a network with a hierarchical structure, i.e. the
measurements are grouped into clusters. In addition, network
operators who employ statistical learning algorithms for attack
detection know the topology of the network, measurements
observed in the clusters and the measurement matrix [5].

In attack detection methods that employ state vector es-
timation, first the state of the system is estimated from
the observed measurements. Then, the residual between the
observed and the estimated measurements is computed. If the
residual is greater than a given threshold, a data injection
attack is declared [5], [6], [7], [8]. However, exact recovery of
state vectors is a challenge for state vector estimation based
methods in sparse networks [5], [9], [10], where the Jacobian
measurement matrix is sparse. Sparse reconstruction methods
can be employed to solve the problem, but the performance
of this approach is limited by the sparsity of the state vectors
[5], [11], [12]. In addition, if false data injected vectorsreside
in the column space of the Jacobian measurement matrix and
satisfy some sparsity conditions (e.g., the number of nonzero
elements is at mostκ∗, which is bounded by the size of
the Jacobian matrix), then false data injection attacks, called
unobservableattacks, cannot be detected [7], [8].

The contributions of this paper are as follows:
1) We conduct a detailed analysis of the techniques pro-

posed by Ozay et al. [13] who employ supervised learn-
ing algorithms to predict false data injection attacks.
In addition, we discuss the validity of the fundamental
assumptions of statistical learning theory in the smart
grid. Then, we propose semi-supervised, online learning,
decision and feature level fusion algorithms in a generic
attack construction framework, which can be employed
in hierarchical and topological networks for different
attack scenarios.

2) We analyze the geometric structure of the measurement
space defined by measurement vectors, and the effect
of false data injection attacks on the distance function
of the vectors. This leads to algorithms forlearning
the distance functions,detectingunobservable attacks,
estimating the attack strategies andpredicting future
attacks using a set of observations.

3) We empirically show that the statistical learning algo-
rithms are capable of detecting both observable and
unobservable attacks with performance better than the
attack detection algorithms that employ state vector
estimation methods. In addition, phase transitions can be
observed in the performance of Support Vector Machines
(SVM) at a value ofκ∗ [14].

http://arxiv.org/abs/1503.06468v1

2

In the next section, the attack detection problem is formu-
lated as a statistical classification problem in a network accord-
ing to the model proposed by Ozay et al. [5]. In Section II, we
establish the relationship between statistical learning methods
and attack detection problems in the smart grid. Supervised,
semi-supervised, decision and feature level fusion, and online
learning algorithms are used to solve the classification problem
in Section III. In Section IV, our approach is numerically
evaluated on IEEE test systems. A summary of the results
and discussion on future work are given in Section V.

II. PROBLEM FORMULATION

In this section, the attack detection problem is formalized
as a machine learning problem.

A. False Data Injection Attacks

False Data Injection Attacks are defined in the following
model:

z =Hx + n, (1)

wherex ∈ RD contains the voltage phase angles at the buses,
z ∈ R

N is the vector of measurements,H ∈ R
N×D is the

measurement Jacobian matrix andn ∈ RN is the measurement
noise, which is assumed to have independent components [7].
The attack detection problem is defined as that of deciding
whether or not there is an attack on the measurements. If
the noise is distributed normally with zero mean, then a
State Vector Estimation (SVE) method can be employed by
computing

x̂ = (HT
ΛH)−1HT

Λz, (2)

where Λ is a diagonal matrix whose diagonal elements
are given byΛii = ν−2i , and ν2i is the variance ofni,
∀i = 1,2, . . . ,N [7], [13]. The goal of the attacker is to inject a
false data vectora ∈ RN into the measurements without being
detected by the operator. The resulting observation model is

z̃ =Hx + a + n. (3)

The false data injection vector,a, is a nonzero vector, such
that ai ≠ 0, ∀i ∈ A, where A is the set of indices of
the measurement variables that will be attacked. The secure
variables satisfy the constraintai = 0, ∀i ∈ Ā, whereĀ is the
set complement ofA [13].

In order to detect an attack, themeasurement residual[7],
[13] is examined inℓ2-norm ρ = ∥z̃ −Hx̂∥22, wherex̂ ∈ RD

is the state vector estimate. Ifρ > τ , where τ ∈ R is an
arbitrary threshold which determines the trade-off between
the detection and false alarm probabilities, then the network
operator declares that the measurements are attacked.

One of the challenging problems of this approach is that
the Jacobian measurement matrices of power systems in the
smart grid are sparse under the DC power flow model [13],
[15]. Therefore, the sparsity of the systems determines the
performance of sparse state vector estimation methods [11],
[12]. In addition, unobservable attacks can be constructedeven
if the network operator can estimate the state vector correctly.
For instance, ifa =Hc, wherec ∈ RD is an attack vector, then
the attack isunobservableby using the measurement residual

ρ [7], [8]. In this work, we show that statistical learning
methods can be used to detect the unobservable attacks with
performance higher than the attack detection algorithms that
employ a state vector estimation approach. Following the
motivation mentioned above, a new approach is proposed
using statistical learning methods.

B. Attack Detection using Statistical Learning Methods

Given a set of samplesS = {si}Mi=1 and a set of labels
Y = {yi}

M
i=1, where (si, yi) ∈ S × Y are independent and

identically distributed (i.i.d.) with joint distributionP , the
statistical learning problem can be defined as constructinga
hypothesis functionf ∶ S → Y, that captures the relationship
between the samples and labels [16]. Then, the attack detection
problem is defined as a binary classification problem, where

yi =
⎧⎪⎪
⎨
⎪⎪⎩

1, if ai ≠ 0

−1, if ai = 0
. (4)

In other words,yi = 1, if the i-th measurement is attacked,
andyi = −1 when there is no attack.

In this paper, the model proposed by Ozay et al. [5] is
employed for attack construction where the measurements are
observed in clusters in the network. Measurement matrices,
and observation and attack vectors are partitioned intoG

blocks, denoted byGg with ∣Gg ∣ = Ng for g = 1,2, . . . ,G.
Therefore, the observation model is defined as

⎡
⎢⎢
⎢
⎢⎢
⎣

z̃1

⋮
z̃G

⎤
⎥⎥
⎥
⎥⎥
⎦

=

⎡
⎢⎢
⎢
⎢⎢
⎣

H1

⋮
HG

⎤
⎥⎥
⎥
⎥⎥
⎦

x +

⎡
⎢⎢
⎢
⎢⎢
⎣

a1

⋮
aG

⎤
⎥⎥
⎥
⎥⎥
⎦

+

⎡
⎢⎢
⎢
⎢⎢
⎣

n1

⋮
nG

⎤
⎥⎥
⎥
⎥⎥
⎦

, (5)

where z̃g ∈ R
Ng is the measurement observed in theg-th

cluster of nodes through measurement matrixHg ∈ RNg×D

and noiseng ∈ R
Ng , and which is under attackag ∈ R

Ng

with g = 1,2, . . . ,G [5]. Within this framework, each observed
measurement vector is considered as a sample, i.e.,si ≜ z̃g,
wherez̃g ∈ RNg1. Taking this into account, the measurements
are classified in two groups,secureandattacked, by computing
f(si),∀i = 1,2, . . . ,M .

The crucial part of the traditional attack detection algorithm,
which we call State Vector Estimation (SVE), is the estimation
of x̂. If the attack vectors,a, are constructed in the column
space ofH, then they are annihilated in the computation of
the residual [7]. Therefore, SVE cannot detect the attacks and
these attacks are calledunobservable. On the other hand, we
observe that the distance between the attacked and the secure
measurement vectors is defined by the attack vector inS. If
the attacks are unobservable, i.e.ai = Hci and aj = Hcj ,
whereci ∈ RD and cj ∈ RD are the attack vectors, then the
distance betweeñzi = zi + ai and z̃j = zj + aj is computed as

∥z̃i − z̃j∥2 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∥zi − zj∥2 + ∥ai − aj∥2, if i, j ∈ A

∥zi − zj∥2 + ∥ai∥2, if i ∈ A, j ∈ Ā

∥zi − zj∥2, if i, j ∈ Ā

,

(6)

1For simplicity of notation, we usei as the index of measurementsz̃i, zi,
and attack vectorsai, ∀i = 1,2, . . . ,M .

3

where z̃i ∈ S and z̃j ∈ S. In (6), we can extract information
on the attack vectors by observing the measurements. Since
the distances between secure and attacked measurements are
discriminated by the attack vectors, the attacks can be recog-
nized by the learning algorithms which use the information of
these distances, even if the attacks areunobservable.

Two main assumptions from statistical learning theory need
to be taken into account to classify measurements which
satisfy (6):

1) We assume that(si, yi) ∈ S×Y are distributed according
to a joint distributionP [17]. In a smart grid setting, this
distribution assumptionis satisfied for the attack models
in which the measurements̃z are functions ofa, and we
can extract statistical information about both the attacked
and secure measurements from the observations.

2) We assume that(si, yi), ∀i, are sampled fromP ,
independently and identically. This assumption is also
satisfied in the smart grid if the entries ofn anda are
i.i.d. random variables [16].

In order to explain the significance of the above assumptions
in the smart grid, we consider the following example. Assume
that measurements1,2 ∈ A and 3,4 ∈ Ā, are given such that
y1, y2 = 1 andy3, y4 = −1. Furthermore, assume thatz1 = 3 ⋅I,
z2 = 5 ⋅ I, z3 = 2 ⋅ I and z4 = 4 ⋅ I, whereI = (1,1)T . If the
attack vectors areidenticalbut not independent, then the attack
vectors can be constructed asa1 = a2 = −1 ⋅ I. As a result, we
observe that̃z1 = z̃3 = 2 ⋅ I and z̃2 = z̃4 = 4 ⋅ I. Therefore,
our assumption about the existence of a joint distributionP

is not satisfied and we cannot classify the measurements with
the aforementioned approach.

III. A TTACK DETECTION USINGMACHINE LEARNING

METHODS

In this section, the attack detection problem is modeled
by statistical classification of measurements using machine
learning methods.

A. Supervised Learning Methods

In the following, the classification functionf is computed in
a supervised learningframework by a network operator using
a set of training dataTr = {(si, yi)}M

Tr

i=1 . The class label,y′i,
of a new observation,s′i, is predicted usingy′i = f(s′i). We
employ four learning algorithms for attack detection.

1) Perceptron:Given a samplesi, a perceptron predictsyi
using the classification functionf(si) = sign(w ⋅ si), where
w ∈ RNi is a weight vector andsign(w ⋅ si) is defined as [17]

sign(w ⋅ si) =
⎧⎪⎪
⎨
⎪⎪⎩

−1, if w ⋅ si < 0
1, otherwise.

(7)

In the training phase, the weights are adjusted at each
iteration t = 1,2, . . . , T of the algorithm for each training
sample using

w(t + 1) ∶=w(t) +∆w, (8)

where∆w = γ(yi − f(si))si andγ is the learning rate. The
algorithm is iterated until a stopping criterion, such as the
number of algorithm steps, or an error threshold, is achieved.

In the testing phase, the label of a new test sample is predicted
by f(s′i) = sign(w(T) ⋅ s′i).

Despite its success in various machine learning applications,
the convergence of the algorithm is assured only when the
samples are linearly separable [17]. For that reason, the
perceptron can be successfully used for the detection of the
attacks only if the measurements can be separated by a
hyperplane. In the following sections, we give examples of
classification algorithms which overcome this limitation by
employing non-linear classification rules or feature extraction
methods.

2) k-Nearest Neighbor (k-NN): This algorithm labels an
unlabeled samples′i according to the labels of itsk-nearest
neighborhood in the feature space [17]. Specifically, the ob-
served measurementssi ∈ S, ∀i = 1,2, . . . ,M , are taken
as feature vectors. The set ofk-nearest neighbors ofs′i,
ℵ(s′i) = {si(1), si(2), . . . , si(k)}, is constructed by computing
the Euclidean distances between the samples [18], where
i(1), i(2), . . . , i(M) are defined as

∥s′i − si(1)∥2 ≤ ∥s
′
i − si(2)∥2 ≤ . . . ≤ ∥s

′
i − si(M)∥2. (9)

Then, the most frequently observed class label is computed
using majority voting among the class labels of the samples
in the neighborhood, and assigned as the class label ofs

′
i [19].

One of the challenges ofk-NN is thecurse of dimensionality,
which is the difficulty of the learning problem when the
sample size is small compared to the dimension of the feature
vector [17], [19], [20]. In attack detection, this problem can
be handled using the following approaches:

● Feature selection algorithms can be used to reduce the
dimension of the feature vectors [19], [20]. Development
of feature selection algorithms may be a promising di-
rection for smart grid security, and is an interesting topic
for future work.

● Kernel machines, such as SVMs, can be used to map the
feature vectors inS to Hilbert spaces, where the feature
vectors are processed implicitly in the mappings and the
computation of the learning models. We give the details of
the kernel machines and SVMs in the following sections.

● The samples can be processed in small sizes, e.g. by
selecting a single measurement vector as a sample,
which leads to one-dimensional samples. We employ
this approach in Section IV. If the sample size is large,
distributed learning and optimization methods can be used
[5], [15].

3) Support Vector Machines:We seek a hyperplane that
linearly separates attacked and secure measurements into two
half spaces using hyperplanes in aD′ dimensional feature
space,F , which is constructed by a non-linear mapping
Ψ ∶ S → F [13], [21]. A hyperplane is represented by a weight
vectorwΨ ∈ R

D′ and a bias variableb ∈ R, which results in

wΨ ⋅Ψ(s)+ b = 0, (10)

whereΨ(s) is the feature vector of the sample that lies on the
hyperplane inF as shown in Fig. 1. We choose the hyperplane
that is at the largest distance from the closest positive and

4

Class of attacked

measurements

Class of secure

measurements

ked

Class of secure

measurements

(a) Attack detection using the linearly separable dataset.

Class of attacked

measurements

Class of secure

measurements

Class of attacked

Class of secure

measurements

(b) Attack detection using the linearly non-separable dataset.

Fig. 1: Classification using SVM. Positive and negative sam-
ples which belong to the class of attacked and secure mea-
surements are depicted by disk and star markers, respectively.
Support vectors and misclassified samples are depicted by
dashed circles and hexagonal markers, respectively.

negative samples. This constraint can be formulated as

yi(wΨ ⋅Ψ(s)+ b) − 1 ≥ 0, ∀i = 1,2, . . . ,MTr. (11)

Since d+ = d− =
1

∥wΨ∥2
, whered+ and d− are the shortest

distances from the hyperplane to the closest positive and
negative samples respectively, a maximum margin hyperplane
can be computed by minimizing∥wΨ∥2.

If the training examples in the transformed space are not
linearly separable (see Fig. 1.b), then the optimization prob-
lem can be modified by introducing slack variablesξi ≥ 0,
∀i = 1,2, . . . ,MTr, in (11) which yields

yi(wΨ ⋅Ψ(si) + b) − 1 + ξi ≥ 0 ,∀i = 1,2, . . . ,MTr. (12)

The hyperplanewΨ is computed by solving the following
optimization problem in primal or dual form [21], [22], [23]

minimize ∥wΨ∥
2

2
+C

MTr

∑
i=1

ξi

subject to yi(wΨ ⋅Ψ(si) + b) − 1 + ξi ≥ 0
ξi ≥ 0, ∀i = 1,2, . . . ,MTr

(13)

whereC is a constant that penalizes (an upper bound on) the
training error of the soft margin SVM.

4) Sparse Logistic Regression:In utilizing this approach for
attack detection, we solve the classification problem usingthe
Alternating Direction Method of Multipliers (ADMM) [24]
considering the sparse state vector estimation approach of
Ozay et al. [5]. Note that, the hyperplanes defined in (10) can
be computed by employing the generalized logistic regression
models presented in [19], which provide the distributions

P (yi∣si) =
1

1 + exp(−yi(w ⋅ si + b))
, (14)

P (yi∣Ψ(si)) =
1

1 + exp(−yi(wΨ ⋅Ψ(si) + b))
, (15)

in S andF , respectively. For this purpose, we minimize the
logistic lossfunctions

L(si, yi) = log (1 + exp (−yi(w ⋅ si + b))) , (16)

L(Ψ(si), yi) = log (1 + exp(−yi(wΨ ⋅Ψ(si) + b))) . (17)

Defining a feature matrixS = (sT1 , s
T
2 , . . . , s

T
Mtr
)T and a label

vector Y = (y1, y2, . . . , yMtr
)T , the ADMM optimization

problem [24] is constructed as

minimize L(S,Y) + µ(r)
subject to w − r = 0 (18)

where w is a weight vector,r is a vector of optimization
variables,µ(r) = λ∥r∥1 is a regularization function, andλ is
a regularization parameter which is introduced to control the
sparsity of the solution [24].

B. Semi-supervised Learning Methods

In semi-supervised learning methods, the information ob-
tained from the unlabeled test samples is used during the
computation of the learning models [25].

In this section, a semi-supervised Support Vector Machine
algorithm, called Semi-supervised SVM (S3VM) [26], [27]
is employed to establish the analytical relationship between
supervised and semi-supervised learning algorithms. In this
setting, the unlabeled samples are incorporated into cost func-
tion of the optimization problem (13) as

minimize ∥w∥22 +C1

MTr

∑
i=1

LTr(si, yi) +C2

MTe

∑
i=1

LTe(s′i), (19)

whereC1 andC2 are confidence parameters, andLTr(si, yi) =
max(0,1−yi(wsi+ b)) andLTe(s′i) =max(0,1−∥s′i∥1) are
the loss functions of the training and test samples, respectively.

The main assumption of the S3VM is that the samples in
the same cluster have the same labels and the number of sub-
clusters is not large [27]. In other words, attacked and secure
measurement vectors should be clustered in distinct regions
in the feature spaces. Moreover, the difference between the
number of attacked and secure measurements should not be
large in order to avoid the formation of sub-clusters.

This requirement can be validated by analyzing the feature
space. Following (6), if∥zi−zj∥2+∥ai−aj∥2 ≤ ∥ai∥2+∥aj∥2,
and∥zk − zl∥2 ≤ ∥ai∥2 + ∥aj∥2, ∀i, j ∈ A and∀k, l ∈ Ā, then

5

the samples belonging to different classes are well-separated
in different classes. Moreover, this requirement is satisfied in
(19) by adjustingC2 [27]. A survey of the methods which are
used to provideoptimalC2 and solve (19) is given in [27].

C. Decision and Feature Level Fusion Methods

One of the challenges of statistical learning theory is to find
a classification rule that performs better than a set of rulesof
individual classifiers, or to find a feature set that represents the
samples better than a set of individual features. One approach
to solve this problem is to combine a collection of classifiers
or a set of features to boost the performance of the individual
classifiers. The former approach is called decision level fusion
or ensemble learning, and the latter approach is called feature
level fusion. In this section, we consider Adaboost [28] and
Multiple Kernel Learning (MKL) [29] for ensemble learning
and feature level fusion.

1) Ensemble Learning for Decision Level Fusion:Various
methods such as bagging, boosting and stacking have been
developed to combine classifiers in ensemble learning situa-
tions [17], [30]. In the following, Adaboost is explained as
an ensemble learning approach, in which a collection ofweak
classifiers are generated and combined using a combination
rule to construct astronger classifier which performs better
than theweakclassifiers [17], [28], [31].

At each iterationt = 1,2, . . . , T of the algorithm, a decision
or hypothesisft(⋅) of the weak classifier is computed with
respect to the distribution on the training samplesDt(⋅) at t by

minimizing the weighted errorǫt =
MTr

∑
i=1

Dt(i)I(ft(si) ≠ yi),

where I(⋅) is the indicator function. The distribution is ini-
tialized uniformlyD1(i) =

1

MTr at t = 1, and is updated by a
parameterαt =

1

2
log(1−ǫt

ǫt
) as follows [31]

Dt+1(i) =
Dt(i) exp−αtyift(si)

Zt

, (20)

whereZt is a normalization parameter, called thepartition
function. At the output of the algorithm, a strong classi-
fier H(⋅) is constructed for a samples′ using H(s′) =

sign(
T

∑
t=1

αtft(s
′)).

2) Multiple Kernel Learning for Feature Level Fusion:Fea-
ture level fusion methods combine the feature spaces instead
of the decisions of the classifiers. One of the feature level
fusion methods is MKL in which different feature mappings
are represented by kernels that are combined to produce a
new kernel which represents the samples better than the other
kernels [29]. Therefore, MKL provides an approach to solve
the feature mapping selection problem of SVM. In order to
see this relationship, we first give the dual form of (13)

maximize
MTr

∑
i=1

βi − 1

2

MTr

∑
i=1

MTr

∑
j=1

βiβjyiyjk(si, sj)

subject to
MTr

∑
i=1

βiyi = 0

0 ≤ βi ≤ C, ∀i = 1,2, . . . ,MTr,

(21)

whereβi is the dual variable andk(si, sj) = Ψ(si) ⋅Ψ(sj) is
the kernel function. Therefore, (21) is a single kernel learning

algorithm which employs a single kernel matrixK ∈ RM
Tr×MTr

with elementsK(i, j) = k(si, sj). If we define the weighted

combination ofU kernels asK =
U

∑
u=1

duKu, wheredu ≥ 0 are

the normalized weights such that
U

∑
u=1

du = 1, then we obtain

the following optimization problem of the MKL [32]:

maximize
MTr

∑
i=1

βi − 1

2

MTr

∑
i=1

MTr

∑
j=1

βiβjyiyj
U

∑
u=1

duKu(si, sj)

subject to
MTr

∑
i=1

βiyi = 0

0 ≤ βi ≤ C, ∀i = 1,2, . . . ,MTr.

(22)

In (22), the kernels withdu = 0 are eliminated, and therefore
MKL can be considered as a kernel selection method. In the
experiments, SVM algorithms are implemented with different
kernels and these kernels are combined under MKL.

D. Online Learning Methods for Real-time Attack Detection

In the smart grid, the measurements are observed in real-
time where the samples are collected sequentially in time.
In this scenario, we relax the distribution assumption of
Section II.B, since the samples are observed in an arbitrary
sequence [33]. Moreover,smartPMUs which employ learning
algorithms, may be required to detect the attacks when the
measurements are observed without processing the whole set
of training samples. In order to solve these challenging prob-
lems, we may use online versions of the learning algorithms
given in the previous sections.

In a general online learning setting, a sequence of training
samples (or a single sample) is given to the learning algorithm
at each observation or algorithm processing time. Then, the
algorithm computes the learning model using only the given
samples and predicts the labels. The learning model is updated
with respect to the error of the algorithm which is computed
using a loss function on the given samples. Therefore, the
perceptron and Adaboost are convenient for online learningin
this setting. For instance, an online perceptron is implemented
by predicting the labelyi of a single samplesi at each
time t, and updating the weight vectorw using∆w for the
misclassified samples withyi ≠ sign(f(si)) [34]. This simple
approach is applied for the development of online MKL [34]
and regression algorithms [35].

E. Performance Analysis

In smart grid networks, the major concern is not just the
detection of attacked variables, but also that of the secure
variables with high performance. In other words, we require
the algorithms to predict the samples with high precision and
recall performance in order to avoid false alarms. Therefore,
we measure the true positives (tp), the true negatives (tn), the
false positives (fp), and the false negatives (fn), which are
defined in Table I.

In addition, the learning abilities and memorization proper-
ties of the algorithms are measured by Precision (Prec), Recall
(Rec) and Accuracy (Acc) values which are defined as [13]

Prec = tp

tp+fp
, Rec = tp

tp+fn
, Acc = tp+tn

tp+tn+fp+fn
. (23)

6

TABLE I: Definitions of performance measures

Attacked Secure
Classified as Attacked tp fp

Classified as Secure fn tn

Precision values give information about the prediction per-
formance of the algorithms. On the other hand, Recall values
measure the degree ofattack retrieval. Finally, the total
classification performance of the algorithms is measured by
Accuracy. For instance, ifPrec = 1, then none of the secure
measurements is misclassified as attacked. IfRec = 1, then
none of the attacked measurements is misclassified as secure.
If Acc = 1, then each measurement classified as attacked is
actually exposed to an attack, and each measurement classified
as secure is actually a secure measurement.

IV. EXPERIMENTS

The classification algorithms are analyzed in IEEE 9-bus,
57-bus and 118-bus test systems in the experiments. The
measurement matricesH of the systems are obtained from
the MATPOWER toolbox [36]. The operating points of the test
systems provided in the MATPOWER case files are used in
generatingz. Training and test data are generated by repeating
this process50 times for each simulated point and dataset.
In the experiments, we assume that the attacker has access
to κ measurements which are randomly chosen to generate
a κ-sparse attack vectora with Gaussian distributed nonzero
elements with the same mean and variance as the entries ofz

[5], [13], [15]. We assume that concept drift [37] and dataset
shift [38] do not occur. Therefore, we useG = N in the
simulations following the results of Ozay et al. [5].

We analyze the behavior of each algorithm on each system
for both observable and unobservable attacks by generating
attack vectors with different values ofκ

N
∈ [0,1]. More

precisely, if κ ≥N −D + 1, then attack vectors that are not
observable by SVE, i.e.unobservableattacks, are generated
[5]. Otherwise, the generated attacks areobservable.

The LIBSVM [39] implementation is used for the SVM,
and the ADMM [24] implementation is used for Sparse
Logistic Regression (SLR).k values of thek-NN algorithm
are optimized by searchingk ∈ {1,2, . . . ,

√
MTr} using leave-

one-out cross-validation, whereMTr is the number of training
samples. Both the linear and Gaussian kernels are used for the
implementation of SVM. A grid search method [39], [40], [41]
is employed to search the parameters of the SVM in an interval
I = [Imin,Imax], where Imin and Imax are user defined
values. In order to follow linear paths in the search space,log
values of parameters are considered in the grid search method
[41]. Keerthi and Lin [41] analyzed the asymptotic properties
of the SVM forI = [0,∞). In the experiments,Imin = −10 is
chosen to compute a lower limit2−10 of the parameter values
following the theoretical results given in [39] and [41]. Since
the classification performance of the SVM does not change
for parameter values that are greater than a threshold [41],we
usedImax = 10 as employed in the experimental analyses in
[41]. Therefore, the kernel width parameterσ of a Gaussian

kernel is searched in the intervallog(σ) ∈ [−10,10] and the
cost penalization parameterC of the SVM is searched in the
interval log(C) ∈ [−10,10]. The regularization parameter of
the SLR is computed as

λ = Ωλmax, (24)

whereλmax = ∥Hz̃∥∞ determines the critical value ofλ above
which the solution of the ADMM problem is0 and Ω is
searched for in the intervalΩ ∈ [10−3,1] [5], [24], [42]. An
optimal λ̂ is computed by analyzing the solution (or regu-
larization) path of the LASSO type optimization algorithms
using a given training dataset. As the sparsity of the systems
that generate datasets increases, lower values are calculated for
Ω [5], [24], [42]. The absolute and relative tolerances, which
determine values of upper bounds on the Euclidean norms
of primal and dual residuals, are chosen as10−4 and 10−2,
respectively [24]. The penalty parameter is initially selected as
1 and dynamically updated at each iteration of the algorithm
[24]. The maximum number of iterations is chosen as104 [5],
[24].

In the experiments, we observe that the selection of toler-
ance parameters does not affect the convergence rates if their
relative values do not change. In addition, selection of the
initial value of the penalty parameter also does not affect the
convergence rate if relative values of tolerance parameters are
fixed [24]. For instance, similar convergence rates are observed
when we chose10−4 and10−2, or 10−6 and10−4, as tolerance
parameters.∥z̃ −Hx̂b∥ ≤ τ is computed in order to decide
whether there is an attack using the SVE and assuming a chi-
square test with95% confidence in the computation ofτ [6],
[13].

A. Results for Supervised Learning Algorithms

The performance of different algorithms is compared for
the IEEE 57-bus system in Fig. 2. Accuracy values of the
SVE and perceptron increase asκ

N
increases in Fig. 2.a and

Fig. 2.b. Additionally, Recall values of the SVE increase
linearly as κ

N
increases. Precision values of the perceptron are

high and do not decrease, and Accuracy and Recall values
increase, sincefn values decrease andtn values increase.
In Fig. 2.c, a phase transition aroundκ∗ = N − D + 1, is
observed for the performance of the SVM. Since the distance
between measurement vectors of attacked and secure variables
increases asκ

N
increases following (6), we observe that the

Accuracy, Precision and Recall values of thek-NN increase
in Fig. 2.d. Accuracy and Recall values of thek-NN and SLR
are above0.9 and do not change asκ

N
increases in Fig. 2.e.

The class-based performance values of the algorithms are
measured using class-wise performance indices, where Class-1
and Class-2 denotes the class of attacked and secure variables,
respectively. The class-wise performance indices are defined
as follows:

Class − 1 ∶ Prec − 1 = tp

tp+fp
, Rec − 1 =

tp

tp + fn
, (25)

Class − 2 ∶ Prec − 2 = tn
tn+fn

, Rec − 2 =
tn

fp + tn
. (26)

7

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

SVE

Accuracy
Precision
Recall

(a) SVE.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N
P

e
rf

o
rm

a
n

ce

Perceptron

Accuracy
Precision
Recall

(b) Perceptron.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM

Accuracy
Precision
Recall

(c) SVM with linear kernel.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

k-NN

Accuracy
Precision
Recall

(d) k-NN.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

SLR

Accuracy
Precision
Recall

(e) SLR.

Fig. 2: Results for the IEEE 57-bus system. Accuracy values of
the SVE and perceptron increase while Precision values of the
k-NN and SLR increase asκ

N
increases. Both Accuracy and

Precision values of the SVM increase and phase transitions
occur.

In Fig. 3.a, we observe that the Precision, Recall and
Accuracy values of the SVE increase asκ

N
increases for Class-

1. Note that the first value of Acc-1 is observed at0.008.
In Fig. 3.b, Precision values for Class-2 decrease with the
percentage of attacked variables, i.e. the number of secure
variables that are incorrectly classified by the SVE increases as
the number of attacked variables increases. Although the SVE
may correctly detect the attacked variables asκ

N
increases, the

secure variables are incorrectly labelled as attacked variables,
and therefore, the SVE gives more false alarms than the other
algorithms.

Performance values for the perceptron are given in Fig.
4. We observe that Precision values for Class-1 increase and
Recall values do not change drastically for both of the classes
as κ

N
increases. Moreover, we do not observe any performance

increase for the Recall values of the secure class in the
perceptron.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Prec−1
Rec−1
Acc−1

(a) Performance values for Class-1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Prec−2
Rec−2
Acc−2

(b) Performance values for Class-2.

Fig. 3: Experiments using the SVE for the IEEE 57-bus test
system. Note thatfp values increase asκ

N
increases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Perceptron

Prec−1
Prec−2

(a) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Perceptron

Rec−1
Rec−2

(b) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Perceptron

Prec−1
Prec−2

(c) Results for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Perceptron

Rec−1
Rec−2

(d) Results for the IEEE 118-bus.

Fig. 4: Performance analysis of the perceptron.

In Fig. 5, the results fork-NN are shown. We observe
that performance values for Class-1 increase and the values
for Class-2 decrease asκ

N
increases sincek-NN is sensitive

to class-balance and sparsity of the data [43]. In addition,
classification hypotheses are computed by forming neigh-
borhoods in Euclidean spaces, and theℓ2 norm of vectors
of attacked measurements increases asκ

N
increases in (6);

therefore, decision boundaries of the hypotheses are biased
towards Class-1.

Fig. 6 depicts the results for the SLR, where the per-
formance values for Class-2 (secure variables) increase as
the system size increases. Moreover, we observe that the
performance values for Class-2 do not decrease rapidly as
κ
N

increases, compared to the other supervised algorithms. In
addition, the performance values for Class-1 are higher than
the values of the other algorithms, especially for lowerκ

N

values. The reason is that the SLR can handle the variety in the
sparsity of the data asκ

N
changes. This task is accomplished

8

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

κ / N

P
er

fo
rm

an
ce

k-NN

Prec−1
Prec−2

(a) Prec. values for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

κ / N
P

er
fo

rm
an

ce

k-NN

Rec−1
Rec−2

(b) Rec. values for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

κ / N

P
er

fo
rm

an
ce

k-NN

Prec−1
Prec−2

(c) Prec. values for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

κ / N

P
er

fo
rm

an
ce

k-NN

Rec−1
Rec−2

(d) Rec. values for the IEEE 118-bus.

Fig. 5: Since thek-NN is sensitive to class-balance and
sparsity of the data, performance values for Class-1 increase
and the values for Class-2 decrease asκ

N
increases. Note that

the performance curves intersect at the critical valuesκ∗.

by controlling and learning the sparsity of the solution in (18)
using the training data in order to learn the sparse structure of
the measurements defined in the observation model (5).

The results of the experiments for the SVM are shown in
Fig. 7, where a phase transition for the performance values is
observed. It is worth noting that the values ofκ at which the
phase transition occurs correspond to the minimum number
of measurement variables,κ∗, that the attacker needs to
compromise in order to construct unobservable attacks [7].κ∗

is depicted as a vertical dotted line in Fig. 7. For instance,
κ∗ = 10 and κ∗

N
= 0.56 for the IEEE 9-bus test system.

The transitions are observed before the critical points when
the linear kernel SVM is employed in the experiments for
IEEE 57-bus and 118-bus systems. In addition, the phase
transitions of performance values occur at the critical points
when Gaussian kernels are used.

B. Results for Semi-supervised Learning Algorithms

We use the S3VM with default parameters as suggested
in [44]. The results of the semi-supervised SVM are shown
in Fig. 8. We do not observe sharp phase transitions in the
semi-supervised SVM unlike the supervised SVM, since the
information obtained from unlabeled data contributes to the
performance values in the computation of the learning models.
For instance, Precision values of Class-2 decrease sharply
near the critical point for the supervised SVM in Fig. 7.
However, the semi-supervised SVM employs the unlabeled
samples during the computation of the learning model in (19),
and partially solves this problem.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Prec−1
Prec−2

(a) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Rec−1
Rec−2

(b) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Prec−1
Prec−2

(c) Results for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Rec−1
Rec−2

(d) Results for the IEEE 118-bus.

Fig. 6: Experiments using the SLR. Note that the SLR can
handle the variety in the sparsity of the data asκ

N
changes.

C. Results for Decision and Feature Level Fusion Algorithms

In this section, we analyze Adaboost and MKL.Decision
stumpsare used as weak classifiers in Adaboost [31]. Each
decision stump is a single-level two-leaf binary decision tree
which is used to construct a set of dichotomies consisting
of binary labelings of samples [31]. The number of weak
classifiers is selected using leave-one-out cross-validation in
the training set. We use MKL with a linear and a Gaussian
kernel with the default parameters suggested in the Simple
MKL implementation [32]. The results given in Fig. 9 show
that Recall values of MKL for Class-1 are less than the
values of Adaboost. In addition, Precision values of MKL
decrease faster than the values of Adaboost asκ

N
increases

for Class-2. Therefore, thefn values of MKL are greater than
the values of Adaboost, or in other words, the number of
attacked measurements misclassified as secure by MKL is
greater than that of Adaboost. This phenomenon is observed in
the results for semi-supervised and supervised SVM given in
the previous sections. However, there are no phase transitions
of the performance values of MKL compared to the supervised
SVM.

D. Results for Online Learning Algorithms

We consider four online learning algorithms, namely Online
Perceptron (OP), Online Perceptron with Weighted Models
(OPWM), Online SVM and Online SLR. Note that these algo-
rithms are the online versions of the batch learning algorithms
given in Section III-A and developed considering the online
algorithm design approach given in Section III-D. The details
of the implementations of the OP, OPWM, Online SVM and
SLR are given in [34], [35] and [45].

9

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 9−bus

Prec−1
Prec−2
Critical Point

(a) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 9−bus

Rec−1 and Rec−2
Critical Point

(b) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 9−bus

Prec−1
Prec−2
Critical Point

(c) Gaussian SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 9−bus

Rec−1 and Rec−2
Critical Point

(d) Gaussian SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 57−bus

Prec−1
Prec−2
Critical Point

(e) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 57−bus

Rec−1 and Rec−2
Critical Point

(f) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 57−bus

Prec−1
Prec−2
Critical Point

(g) Gaussian SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 57−bus

Rec−1 and Rec−2
Critical Point

(h) Gaussian SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 118−bus

Prec−1
Prec−2
Critical Point

(i) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Linear SVM for the IEEE 118−bus

Rec−1 and Rec−2
Critical Point

(j) Linear SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 118−bus

Prec−1
Prec−2
Critical Point

(k) Gaussian SVM.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Gaussian SVM for the IEEE 118−bus

Rec−1 and Rec−2
Critical Point

(l) Gaussian SVM.

Fig. 7: Experiments using the SVM with linear and Gaussian kernels. Phase transitions of performance values occur at the
critical pointκ∗. See the text for more detailed explanation.

When the OP is used, only the modelw(t) computed using
the last observed measurement at timet is considered for the
classification of the test samples. On the other hand, we con-

sider an average of the modelswave(t) = 1

T

T

∑
t=1

w(t) which is

computed by minimizing margin errors in the OPWM. Results
are given for the OP in Fig. 10. In the weighted models, we
observe phase transitions of the performance values for Class-
2 in Fig. 10.e-Fig. 10.h. However, the phase transitions occur
before the critical values, and the values of the phase transition
points decrease as the system size increases. Additionally, we
do not observe sharp phase transitions in the OP.

In the OP, if the label of a measurements is not correctly
labeled, then the measurement vector is added to a set of sup-
porting measurementsS that are used to update the hypotheses
in the training process. However, the hypotheses are updated
in the OPWM if a measurements′ is not correctly labeled, and
the vectors ofs′ ands ∈ S are linearly independent. Since the
smallest number of linearly dependent measurements increases
as κ

N
increases [5], [46], the size ofS decreases and the bias

is decreased towards Class-1. Therefore, false negative (fn)
values decrease and false positive (fp) values increase [47]. As

a result, we observe that Recall values of the OP are less than
that of the OPWM for Class-1. The results of the Online SVM
and Online SLR are provided in Fig. 10 for different IEEE test
systems. We observe phase transitions of performance values
in the Online SVM similar to the batch supervised SVM.

Learning curves of online learning algorithms are given in
Fig. 11 for both observable attacks generated withκ

N
= 0.33

and unobservable attacks generated withκ
N
= 0.66. Since the

cost function of each online learning algorithm is different,
the learning performance is measured and depicted using
accuracy (Acc) defined in (23). In the results, performance
values of the Online SVM and OPWM increase as the number
of samples increases, since the algorithms employ margin
learning approaches which provide better learning rates asthe
number of training samples increases [34], [45].

Briefly, we suggest using Online SLR for the scenarios in
which the precision of the classification of secure variables
is important to avoid false alarms. On the other hand, if the
classification of attacked variables with high Precision and
Recall values is an important task, we suggest using the Online
Perceptron.

10

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Linear Kernel

Prec−1
Prec−2

(a) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N
P

e
rf

o
rm

a
n

ce

Semi−supervised SVM with Linear Kernel

Rec−1
Rec−2

(b) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Linear Kernel

Prec−1
Prec−2

(c) Results for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Linear Kernel

Rec−1
Rec−2

(d) Results for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Gaussian Kernel

Prec−1
Prec−2

(e) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Gaussian Kernel

Rec−1
Rec−2

(f) Results for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Gaussian Kernel

Prec−1
Prec−2

(g) Results for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Semi−supervised SVM with Gaussian Kernel

Rec−1
Rec−2

(h) Results for the IEEE 118-bus.

Fig. 8: Sharp phase transitions are not observed in the semi-supervised SVM unlike the supervised SVM, since the information
obtained from unlabeled data contributes to the performance values in the computation of the learning models.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Adaboost

Prec−1
Prec−2

(a) Adaboost for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Adaboost

Rec−1
Rec−2

(b) Adaboost for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Adaboost

Prec−1
Prec−2

(c) Adaboost for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Adaboost

Rec−1
Rec−2

(d) Adaboost for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

MKL

Prec−1
Prec−2

(e) MKL for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

MKL

Rec−1
Rec−2

(f) MKL for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

MKL

Prec−1
Prec−2

(g) MKL for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

MKL

Rec−1
Rec−2

(h) MKL for the IEEE 118-bus.

Fig. 9: Experiments using Adaboost and MKL. Note that thefn values of MKL are greater than the values of Adaboost, and
there are no phase transitions of the performance values of MKL compared to the supervised SVM.

11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Perceptron

Prec−1
Prec−2

(a) OP for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Perceptron

Rec−1
Rec−2

(b) OP for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Perceptron

Prec−1
Prec−2

(c) OP for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Perceptron

Rec−1
Rec−2

(d) OP for the IEEE 118-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online Perceptron with Weighted Models

Prec−1
Prec−2

(e) OPWM for the IEEE 57-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online Perceptron with Weighted Models

Rec−1
Rec−2

(f) OPWM for the IEEE 57-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online Perceptron with Weighted Models

Prec−1
Prec−2

(g) OPWM for the IEEE 118-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online Perceptron with Weighted Models

Rec−1
Rec−2

(h) OPWM for the IEEE 118-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online SVM

Prec−1
Prec−2

(i) Online SVM for the IEEE 57-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online SVM

Rec−1
Rec−2

(j) Online SVM for the IEEE 57-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
e

rf
o

rm
a

n
ce

Online SVM

Prec−1
Prec−2

(k) Online SVM for the IEEE 118-bus.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

κ / N
P

e
rf

o
rm

a
n

ce

Online SVM

Rec−1
Rec−2

(l) Online SVM for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Sparse Logistic Regression

Prec−1
Prec−2

(m) Online SLR for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Sparse Logistic Regression

Rec−1
Rec−2

(n) Online SLR for the IEEE 57-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Sparse Logistic Regression

Prec−1
Prec−2

(o) Online SLR for the IEEE 118-bus.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κ / N

P
er

fo
rm

an
ce

Online Sparse Logistic Regression

Rec−1
Rec−2

(p) Online SLR for the IEEE 118-bus.

Fig. 10: Experiments using the Online Perceptron (OP), Online Perceptron with Weighted Models (OPWM), Online SVM and
SLR. Recall values of the OP are less than that of the OPWM for Class-1. Multiple phase transitions of performance values
of the Online SVM are observed in the IEEE 118-bus system.

V. SUMMARY AND CONCLUSION

The attack detection problem has been reformulated as a
machine learning problem and the performance of supervised,
semi-supervised, classifier and feature space fusion and online
learning algorithms have been analyzed for different attack
scenarios.

In a supervised binary classification problem, the attacked
and secure measurements are labeled in two separate classes.

In the experiments, we have observed that state of the art
machine learning algorithms perform better than the well-
known attack detection algorithms which employ a state vector
estimation approach for the detection of both observable and
unobservable attacks.

We have observed that the perceptron is less sensitive and
the k-NN is more sensitive to the system size than the other
algorithms. In addition, the imbalanced data problem affects

12

0 1000 2000 3000 4000 5000 6000
0.5

0.6

0.7

0.8

0.9

1

Number of Samples

P
e

rf
o

rm
a

n
ce

Attacks generated with κ

N
=0.32895

Online Perceptron
OPWM
Online SLR
Online SVM

(a) Observable attacks.

0 1000 2000 3000 4000 5000 6000
0.5

0.6

0.7

0.8

0.9

1

Number of Samples
P

e
rf

o
rm

a
n

ce

Attacks generated with κ

N
=0.65789

Online Perceptron
OPWM
Online SLR
Online SVM

(b) Unobservable attacks.

Fig. 11: Learning curves of online learning algorithms.

the performance of thek-NN. Therefore,k-NN may perform
better in small sized systems and worse in large sized systems
when compared to other algorithms. The SVM performs
better than the other algorithms in large-scale systems. Inthe
performance tests of the SVM, we observe a phase transition
atκ∗, which is the minimum number of measurements that are
required to be accessible by the attackers in order to construct
unobservable attacks. Moreover, a large value ofκ does not
necessary imply high impact of data injection attacks. For
example, if the attack vectora has small values in all elements,
then the impact ofa may still be limited. More important, if
a is a vector with small values compared to the noise, then
even machine learning-based approaches may fail.

We observe two challenges of SVMs in their application to
attack detection problems in smart grid. First, the performance
of the SVM is affected by the selection of kernel types. For
instance, we observe that the linear and Gaussian kernel SVM
perform similarly in the IEEE 9-bus system. However, for the
IEEE 57-bus system the Gaussian kernel SVM outperforms
its linear counterparts. Moreover, the values of the phase
transition points of the performance of the Gaussian kernel
SVM coincide with the theoretically computedκ∗ values. This
implies that the feature vectors inF , which are computed
using Gaussian kernels, are linearly separable for higher values
of κ. Interestingly, the transition points missκ∗ in the IEEE
118-bus system, which means that alternative kernels are
needed for this system. Second, the SVM is sensitive to
the sparsity of the systems. In order to solve this problem,
sparse SVM [48] and kernel machines [49] can be employed.
In this paper, we approached this problem using the SLR.
However, obtaining anoptimal regularization parameter,̂λ, is
computationally challenging [24].

In order to use information extracted from test data in the
computation of the learning models, semi-supervised methods
have been employed in the proposed approach. In semi-
supervised learning algorithms, we have used test data to-
gether with training data in an optimization algorithm used
to compute the learning model. The numerical results show
that the semi-supervised learning methods are more robust to
the degree of sparsity of the data than the supervised learning
methods.

We have employed Adaboost and MKL as decision and
feature level fusion algorithms. Experimental results show that

fusion methods provide learning models that are more robust
to changes in the system size and data sparsity than the other
methods. On the other hand, computational complexities of
most of the classifier and feature fusion methods are higher
than that of the single classifier and feature extraction methods.

Finally, we have analyzed online learning methods for real-
time attack detection problems. Since a sequence of training
samples or just a single sample is processed at each time, the
computational complexity of most of the online algorithms is
less than the batch learning algorithms. In the experiments, we
have observed that classification performance of online learn-
ing algorithms are comparable to that of the batch algorithms.

In future work, we plan to first apply the proposed approach
and the methods to an attack classification problem for decid-
ing which of several possible attack types have occurred given
that an attack have been detected. Then, we plan to consider
the relationship between measurement noise and bias-variance
properties of learning models for the development of attack
detection and classification algorithms. Additionally, weplan
to expand our analyses for varying number of clustersG and
cluster sizesNg, ∀g = 1,2, . . . ,G, by relaxing the assumptions
made in this work for attack detection in smart grid systems,
e.g. when the samples are not independent and identically
distributed and obtained from non-stationary distributions, in
other words, concept drift [37] and dataset shift [38] occur.

REFERENCES

[1] C. Rudin, D. Waltz, R. Anderson, A. Boulanger, A. Salleb-Aouissi,
M. Chow, H. Dutta, P. Gross, B. Huang, and S. Ierome, “Machine
learning for the New York City power grid,”IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, pp. 328–345, Feb. 2012.

[2] R. N. Anderson, A. Boulanger, W. B. Powell, and W. Scott, “Adaptive
stochastic control for the smart grid,”Proc. IEEE, vol. 99, pp. 1098–
1115, Jun. 2011.

[3] Z. Fadlullah, M. Fouda, N. Kato, X. Shen, and Y. Nozaki, “An early
warning system against malicious activities for smart gridcommunica-
tions,” IEEE Netw., vol. 25, pp. 50–55, Sep. 2011.

[4] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam, “Distributed
intrusion detection system in a multi-layer network architecture of smart
grids,” IEEE Trans. Smart Grid, vol. 2, pp. 796–808, Dec. 2011.

[5] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V.
Poor, “Sparse attack construction and state estimation in the smart
grid: Centralized and distributed models,”IEEE J. Sel. Areas Commun.,
vol. 31, pp. 1306–1318, Jul. 2013.

[6] A. Abur and A. Expósito,Power System State Estimation: Theory and
Implementation. New York: Marcel Dekker, 2004.

[7] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” inProc. 16th ACM Conf.
Computer and Communications Security, Chicago, Illinois, Nov. 2009,
pp. 21–32.

[8] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks
on the smart grid,”IEEE Trans. Smart Grid, vol. 2, pp. 645–658, Dec.
2011.

[9] E. Cotilla-Sanchez, P. Hines, C. Barrows, and S. Blumsack, “Comparing
the topological and electrical structure of the North American electric
power infrastructure,”IEEE Syst. J., vol. 6, pp. 616–626, Dec. 2012.

[10] T. T. Kim and H. V. Poor, “Strategic protection against data injection
attacks on power grids,”IEEE Trans. Smart Grid, vol. 2, no. 2, pp.
326–333, Jun. 2011.

[11] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theor., vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[12] D. L. Donoho, “Compressed sensing,”IEEE Trans. Inf. Theor., vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[13] M. Ozay, I. Esnaola, F. Yarman Vural, S. R. Kulkarni, andH. V. Poor,
“Smarter security in the smart grid,” inProc. 3rd IEEE Int. Conf. Smart
Grid Communications, Tainan City, Nov. 2012, pp. 312–317.

[14] L. Saitta, A. Giordana, and A. Cornujols,Phase Transitions in Machine
Learning. New York: Cambridge University Press, 2011.

13

[15] M. Ozay, I. Esnaola, F. Yarman Vural, S. R. Kulkarni, andH. V.
Poor, “Distributed models for sparse attack construction and state vector
estimation in the smart grid,” inProc. 3rd IEEE Int. Conf. Smart Grid
Communications, Tainan City, Nov. 2012, pp. 306–311.

[16] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statistical
learning theory,” inAdvanced Lectures on Machine Learning, O. Bous-
quet, U. von Luxburg, and G. Rtsch, Eds. Berlin: Springer, 2004.

[17] S. Kulkarni and G. Harman,An Elementary Introduction to Statistical
Learning Theory. Hoboken, NJ: Wiley Publishing, 2011.

[18] Q. Wang, S. R. Kulkarni, and S. Verdú, “Divergence estimation for mul-
tidimensional densities via k-nearest-neighbor distances,” IEEE Trans.
Inf. Theor., vol. 55, pp. 2392–2405, May 2009.

[19] S. Theodoridis and K. Koutroumbas,Pattern Recognition. Orlando,
FL: Academic Press, 2006.

[20] R. Duda, P. Hart, and D. Stork,Pattern Classification. New York:
Wiley Publishing, 2001.

[21] I. Steinwart and A. Christmann,Support Vector Machines. New York:
Springer Publishing Company, Incorporated, 2008.

[22] S. Kulkarni and G. Harman, “Statistical learning theory: A tutorial,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 3, no. 6,
pp. 543–556, 2011.

[23] O. Chapelle, “Training a support vector machine in the primal,” Neural
Comput., vol. 19, no. 5, pp. 1155–1178, 2007.

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternatingdirection method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[25] O. Chapelle, B. Schölkopf, and A. Zien, Eds.,Semi-Supervised Learning.
Cambridge, MA: The MIT Press, 2006.

[26] T. Joachims, “Transductive inference for text classification using support
vector machines,” inProc. 16th Int. Conf. Mach. Learn., Bled, Jun. 1999,
pp. 200–209.

[27] O. Chapelle, V. Sindhwani, and S. S. Keerthi, “Optimization techniques
for semi-supervised support vector machines,”J. Mach. Learn. Res.,
vol. 9, no. 6, pp. 203–233, 2008.

[28] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,”J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, 1997.

[29] F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the SMO algorithm,” inProc. 21st Int. Conf.
Mach. Learn., Banff, AB, Jul. 2004, pp. 6–13.

[30] L. I. Kuncheva,Combining Pattern Classifiers: Methods and Algorithms.
Hoboken, NJ: Wiley-Interscience, 2004.

[31] R. E. Schapire and Y. Freund,Boosting: Foundations and Algorithms.
Cambridge, MA: The MIT Press, 2012.

[32] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, “SimpleMKL,”
J. Mach. Learn. Res., vol. 9, pp. 2491–2521, 2008.

[33] S. Kakade and A. Kalai, “From batch to transductive online learning,”
in Advances in Neural Information Processing Systems, Y. Weiss,
B. Schölkopf, and J. Platt, Eds. Cambridge, MA: The MIT Press,
2005, pp. 611–618.

[34] F. Orabona, J. Keshet, and B. Caputo, “Bounded kernel-based online
learning,” J. Mach. Learn. Res., vol. 10, pp. 2643–2666, 2009.

[35] P. Carbonetto, M. Schmidt, and N. D. Freitas, “An interior-point stochas-
tic approximation method and an l1-regularized delta rule,” in Advances
in Neural Information Processing Systems, D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, Eds. Red Hook, NY: Curran Associates,
Inc., 2008, pp. 233–240.

[36] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MAT-
POWER: Steady-state perations, planning, and analysis tools for power
systems research and education,”IEEE Trans. Power Syst., vol. 26, pp.
12–19, Feb. 2011.

[37] P. L. Bartlett, S. Ben-David, and S. R. Kulkarni, “Learning changing
concepts by exploiting the structure of change,”Mach. Learn., vol. 41,
no. 2, pp. 153–174, 2000.

[38] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Eds.,Dataset Shift in Machine Learning. Cambridge, MA:
The MIT Press, 2009.

[39] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,”ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
2011.

[40] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“Liblinear: A library for large linear classification,”J. Mach. Learn.
Res., vol. 9, pp. 1871–1874, 2008.

[41] S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with Gaussian kernel,”Neural Comput., vol. 15, no. 7, pp.
1667–1689, 2003.

[42] K. Koh, S.-J. Kim, and S. Boyd, “An interior-point method for large-
scale l1-regularized logistic regression,”J. Mach. Learn. Res., vol. 8,
pp. 1519–1555, 2007.

[43] L. Devroye, L. Györfi, and G. Lugosi,A Probabilistic Theory of Pattern
Recognition. New York: Springer-Verlag, 1996.

[44] T. Joachims, “Making large-scale support vector machine learning
practical,” inAdvances in Kernel Methods, B. Schölkopf, C. J. C. Burges,
and A. J. Smola, Eds. Cambridge, MA: The MIT Press, 1999, pp. 169–
184.

[45] F. Orabona, “DOGMA: A MATLAB toolbox for online learning,”
2009. [Online]. Available: http://dogma.sourceforge.net

[46] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization,”Proc. Nat. Acad. Sci.,
vol. 100, no. 5, pp. 2197–2202, 2003.

[47] K. P. Murphy,Machine Learning: A Probabilistic Perspective. Cam-
bridge, MA: The MIT Press, 2012.

[48] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, “Dimen-
sionality reduction via sparse support vector machines,”J. Mach. Learn.
Res., vol. 3, pp. 1229–1243, 2003.

[49] M. Wu, B. Scholkopf, and G. Bakir, “A direct method for building sparse
kernel learning algorithms,”J. Mach. Learn. Res., vol. 7, pp. 603–624,
2006.

http://dogma.sourceforge.net

	I Introduction
	II Problem Formulation
	II-A False Data Injection Attacks
	II-B Attack Detection using Statistical Learning Methods

	III Attack Detection using Machine Learning Methods
	III-A Supervised Learning Methods
	III-A1 Perceptron
	III-A2 k-Nearest Neighbor (k-NN)
	III-A3 Support Vector Machines
	III-A4 Sparse Logistic Regression

	III-B Semi-supervised Learning Methods
	III-C Decision and Feature Level Fusion Methods
	III-C1 Ensemble Learning for Decision Level Fusion
	III-C2 Multiple Kernel Learning for Feature Level Fusion

	III-D Online Learning Methods for Real-time Attack Detection
	III-E Performance Analysis

	IV Experiments
	IV-A Results for Supervised Learning Algorithms
	IV-B Results for Semi-supervised Learning Algorithms
	IV-C Results for Decision and Feature Level Fusion Algorithms
	IV-D Results for Online Learning Algorithms

	V Summary and Conclusion
	References

