38,010 research outputs found

    Support vector machines for interval discriminant analysis

    Get PDF
    The use of data represented by intervals can be caused by imprecision in the input information, incompleteness in patterns, discretization procedures, prior knowledge insertion or speed-up learning. All the existing support vector machine (SVM) approaches working on interval data use local kernels based on a certain distance between intervals, either by combining the interval distance with a kernel or by explicitly defining an interval kernel. This article introduces a new procedure for the linearly separable case, derived from convex optimization theory, inserting information directly into the standard SVM in the form of intervals, without taking any particular distance into consideration.Ministerio de Educación y Ciencia DPI2006-15630- C02-0

    Designing Semantic Kernels as Implicit Superconcept Expansions

    Get PDF
    Recently, there has been an increased interest in the exploitation of background knowledge in the context of text mining tasks, especially text classification. At the same time, kernel-based learning algorithms like Support Vector Machines have become a dominant paradigm in the text mining community. Amongst other reasons, this is also due to their capability to achieve more accurate learning results by replacing standard linear kernel (bag-of-words) with customized kernel functions which incorporate additional apriori knowledge. In this paper we propose a new approach to the design of ‘semantic smoothing kernels’ by means of an implicit superconcept expansion using well-known measures of term similarity. The experimental evaluation on two different datasets indicates that our approach consistently improves performance in situations where (i) training data is scarce or (ii) the bag-ofwords representation is too sparse to build stable models when using the linear kernel

    Hybrid Wavelet-Support Vector Classifiers

    Full text link
    The Support Vector Machine (SVM) represents a new and very promising technique for machine learning tasks involving classification, regression or novelty detection. Improvements of its generalization ability can be achieved by incorporating prior knowledge of the task at hand. We propose a new hybrid algorithm consisting of signal-adapted wavelet decompositions and SVMs for waveform classification. The adaptation of the wavelet decompositions is tailormade for SVMs with radial basis functions as kernels. It allows the optimization Of the representation of the data before training the SVM and does not suffer from computationally expensive validation techniques. We assess the performance of our algorithm against the background of current concerns in medical diagnostics, namely the classification of endocardial electrograms and the detection of otoacoustic emissions. Here the performance of SVMs can significantly be improved by our adapted preprocessing step

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,⋅),x∈X}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure

    Efficient Regularized Least-Squares Algorithms for Conditional Ranking on Relational Data

    Full text link
    In domains like bioinformatics, information retrieval and social network analysis, one can find learning tasks where the goal consists of inferring a ranking of objects, conditioned on a particular target object. We present a general kernel framework for learning conditional rankings from various types of relational data, where rankings can be conditioned on unseen data objects. We propose efficient algorithms for conditional ranking by optimizing squared regression and ranking loss functions. We show theoretically, that learning with the ranking loss is likely to generalize better than with the regression loss. Further, we prove that symmetry or reciprocity properties of relations can be efficiently enforced in the learned models. Experiments on synthetic and real-world data illustrate that the proposed methods deliver state-of-the-art performance in terms of predictive power and computational efficiency. Moreover, we also show empirically that incorporating symmetry or reciprocity properties can improve the generalization performance
    • …
    corecore