6 research outputs found

    Review on Image Inpainting using Intelligence Mining Techniques

    Get PDF
    Objective Inpainting is a technique for fixing or removing undesired areas of an image. Methods In present scenario, image plays a vital role in every aspect such as business images, satellite images, and medical images and so on. Results and Conclusion This paper presents a comprehensive review of past traditional image inpainting methods and the present state-of-the-art deep learning methods and also detailed the strengths and weaknesses of each to provide new insights in the field

    Deep image prior inpainting of ancient frescoes in the Mediterranean Alpine arc

    Full text link
    The unprecedented success of image reconstruction approaches based on deep neural networks has revolutionised both the processing and the analysis paradigms in several applied disciplines. In the field of digital humanities, the task of digital reconstruction of ancient frescoes is particularly challenging due to the scarce amount of available training data caused by ageing, wear, tear and retouching over time. To overcome these difficulties, we consider the Deep Image Prior (DIP) inpainting approach which computes appropriate reconstructions by relying on the progressive updating of an untrained convolutional neural network so as to match the reliable piece of information in the image at hand while promoting regularisation elsewhere. In comparison with state-of-the-art approaches (based on variational/PDEs and patch-based methods), DIP-based inpainting reduces artefacts and better adapts to contextual/non-local information, thus providing a valuable and effective tool for art historians. As a case study, we apply such approach to reconstruct missing image contents in a dataset of highly damaged digital images of medieval paintings located into several chapels in the Mediterranean Alpine Arc and provide a detailed description on how visible and invisible (e.g., infrared) information can be integrated for identifying and reconstructing damaged image regions.Comment: 26 page

    Deep Image Prior Amplitude SAR Image Anonymization

    Get PDF
    This paper presents an extensive evaluation of the Deep Image Prior (DIP) technique for image inpainting on Synthetic Aperture Radar (SAR) images. SAR images are gaining popularity in various applications, but there may be a need to conceal certain regions of them. Image inpainting provides a solution for this. However, not all inpainting techniques are designed to work on SAR images. Some are intended for use on photographs, while others have to be specifically trained on top of a huge set of images. In this work, we evaluate the performance of the DIP technique that is capable of addressing these challenges: it can adapt to the image under analysis including SAR imagery; it does not require any training. Our results demonstrate that the DIP method achieves great performance in terms of objective and semantic metrics. This indicates that the DIP method is a promising approach for inpainting SAR images, and can provide high-quality results that meet the requirements of various applications

    Lightweight Modules for Efficient Deep Learning based Image Restoration

    Full text link
    Low level image restoration is an integral component of modern artificial intelligence (AI) driven camera pipelines. Most of these frameworks are based on deep neural networks which present a massive computational overhead on resource constrained platform like a mobile phone. In this paper, we propose several lightweight low-level modules which can be used to create a computationally low cost variant of a given baseline model. Recent works for efficient neural networks design have mainly focused on classification. However, low-level image processing falls under the image-to-image' translation genre which requires some additional computational modules not present in classification. This paper seeks to bridge this gap by designing generic efficient modules which can replace essential components used in contemporary deep learning based image restoration networks. We also present and analyse our results highlighting the drawbacks of applying depthwise separable convolutional kernel (a popular method for efficient classification network) for sub-pixel convolution based upsampling (a popular upsampling strategy for low-level vision applications). This shows that concepts from domain of classification cannot always be seamlessly integrated into image-to-image translation tasks. We extensively validate our findings on three popular tasks of image inpainting, denoising and super-resolution. Our results show that proposed networks consistently output visually similar reconstructions compared to full capacity baselines with significant reduction of parameters, memory footprint and execution speeds on contemporary mobile devices.Comment: Accepted at: IEEE Transactions on Circuits and Systems for Video Technology (Early Access Print) | |Codes Available at: https://github.com/avisekiit/TCSVT-LightWeight-CNNs | Supplementary Document at: https://drive.google.com/file/d/1BQhkh33Sen-d0qOrjq5h8ahw2VCUIVLg/view?usp=sharin
    corecore