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Abstract: This paper presents an extensive evaluation of the Deep Image Prior (DIP) technique for
image inpainting on Synthetic Aperture Radar (SAR) images. SAR images are gaining popularity in
various applications, but there may be a need to conceal certain regions of them. Image inpainting
provides a solution for this. However, not all inpainting techniques are designed to work on SAR
images. Some are intended for use on photographs, while others have to be specifically trained on
top of a huge set of images. In this work, we evaluate the performance of the DIP technique that
is capable of addressing these challenges: it can adapt to the image under analysis including SAR
imagery; it does not require any training. Our results demonstrate that the DIP method achieves
great performance in terms of objective and semantic metrics. This indicates that the DIP method is a
promising approach for inpainting SAR images, and can provide high-quality results that meet the
requirements of various applications.

Keywords: SAR; anonymization; deep image prior; inpainting

1. Introduction

Synthetic Aperture Radar (SAR) images are a powerful tool for studying the Earth’s
surface [1]. They are radar signals generated by an imaging system mounted on a platform
such as an aircraft or satellite. As the platform moves, the system emits sequentially high-
power electromagnetic waves through its antenna. The waves are then reflected by the
Earth’s surface, re-captured by the antenna, and finally processed to create detailed images
of the terrain below.

SAR images are employed in a wide variety of applications [2,3]. Indeed, as the waves
hit different objects, their phase and amplitude are modified according to the objects’ charac-
teristics (e.g., permittivity, roughness, geometry, etc.). The collected signal provides highly
detailed information about the shape and elevation of the Earth’s surface. SAR images are
also used for monitoring natural disasters, such as earthquakes, floods, and landslides,
as well as for detecting changes in land-use patterns, such as urbanization and deforesta-
tion. Due to their nature of providing detailed imagery regardless of daylight and weather
conditions, SAR images are also a precious asset in military applications [3]. As a matter of
fact, SAR images can be used to detect sensible military targets like aircrafts [4], airports [5],
ships [6], tanks or other vehicles [7].

In recent years, SAR images have become more widely available than ever before.
Many portals now offer SAR images for free, making them accessible to researchers,
students, and the general public alike [8–10]. This has led to a surge in research using SAR
imagery and increased deployment of this technology in commercial products and services.

The research community is concerned about the potential misuse of SAR images,
which play a critical role in many applications, particularly military ones. The widespread
availability of SAR images means that almost anyone can extract sensitive information
from them, such as the location of troops or civilians during a conflict [11]. As a result,
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some providers have begun to conceal features and information in their geospatial services,
such as hiding traffic from maps that could reveal the location of refugees [12].

All these elements make it clear that techniques that anonymize or conceal target
areas from remote sensing raster data are necessary. With this goal in mind, in this paper,
we tackle the problem of removing sensitive objects from amplitude SAR images while
preserving most of their content from a semantic point of view, i.e., most of their land-
cover content.

We accomplish this task by relying on Deep Learning (DL) techniques for analyzing
and processing SAR images. As a matter of fact, in recent years the SAR research community
has gained a particular interest in DL tools like Convolutional Neural Networks (CNNs)
due to their ability to learn complex features directly from data without manual processes
involved. Recently, DL has been exploited for SAR image de-speckling [13], land-cover
classification, oil spills detection [14,15], change detection of land use patterns [16–18],
and so forth.

Also, the generation of SAR images using CNNs has found some compelling applica-
tions. Guo et al. [19] relied on Generative Adversarial Networks (GANs) for generating
fully synthetic SAR images of military vehicles starting from simple observation parameters
like platform azimuth and target depression angles. Baier et al. [20] generated both SAR and
RGB satellite images by providing as inputs land-cover maps and digital elevation models
to a conditional GAN. Moreover, there have been several other contributions exploiting
RGB data to synthesize SAR images and vice versa [21–23], as well as methods exploiting
SAR images to improve the quality of Electro-Optical (EO) images [24–26].

All these DL-based solutions typically need a training phase for the CNN to “learn”
how to properly process the data for the task at hand. Training involves the collection of
a corpus of data to optimize the parameters of the networks. This data collection must
contain a considerable amount of samples to be representative of the data distribution
in the real world, and to allow for the creation of training, validation, and test splits to
avoid overfitting. Depending on the dimensions of the datasets, the complexity of the
architecture, and the training process involved, the optimization of these methods can
prove extremely computationally expensive and may require considerable manual effort.

In our work, we leverage a DL-based solution for deleting traces of sensitive targets
from amplitude SAR images that does not require a training phase. We formulate the
problem as an image inpainting task, in which, given an image with some missing content
(i.e., the sensitive area to hide), we aim at estimating a new image in which the missing
pixels have been reconstructed by exploiting the information of the known pixels outside the
missing area. In particular, given a target area containing some sensitive objects, we exploit
a CNN to generate a fully synthetic SAR image with the same semantic characteristics of
the original one, but with the target area filled in with non-sensitive targets. As an example,
Figure 1 reports a graphical illustration of the outcome of our anonymization process.

(a) (b) (c) (d)

Figure 1. Example of Vertical-Vertical (VV) amplitude SAR image anonymization with the proposed
method. The urban agglomerate highlighted in red in the picture has been removed and substituted
(i.e., inpainted) with content similar to the surrounding area. (a) target image to anonymize; (b) final
anonymized image; (c) target image close-up; (d) final image close-up.
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To face this task, we rely on the Deep Image Prior (DIP) [27], a state-of-the-art image
restoration technique developed for standard digital pictures, like photographs or medical
imaging. Differently from the previously cited DL solutions, DIP does not imply a training
phase, therefore it does not require a collection of much data for training and a strong
computational effort. The inpainting process with the DIP can be interpreted as a simple
optimization procedure on the single image, i.e., the whole process is performed “at test
time”, without the need of training the DIP in any way beforehand.

The choice of investigating the use of DIP rather than other techniques is well moti-
vated by the following two main reasons. First, DIP does not need any training and can
process the images under analysis straightforwardly. Second, DIP learns to inpaint the
region to be made anonymous by leveraging the rest of the image under analysis, i.e., the
filled-in region is extremely coherent with the rest of the scene rather than being inspired
by a possible training set. These two characteristics carry considerable advantages in the
SAR scenario because: (i) most of the available pre-trained models are not built for SAR
data, but rather for natural photographs, therefore requiring necessarily to be trained from
scratch; (ii) retrieving a large dataset of well-curated SAR images sharing the same format
and processing ready to use for training might not be affordable.

The processing of amplitude SAR imagery using deep learning tools trained on natural
images is not straightforward. Indeed, SAR imagery and standard digital pictures represent
very different information. Natural photographs, despite the diffusion of different file
formats, usually describe the scene’s luminance captured by the camera as 8 bits integers
tensors. SAR images record how the Earth’s surface reflects radar waves and are delivered
in various products. Each product is processed with different operations to obtain addi-
tional information from the raw echo signal, e.g., detected magnitude, interferograms, etc.
These products can have different bit depths, such as 8, 12, 16, or 32 bits, and data types,
such as integer, float, or complex numbers. On top of that, multiple providers deliver SAR
data relying on different platforms and file formats. Some of the most well-known SAR
sensors are Sentinel-1 (C-band) [8], ALOS-2 (L-band) [28], and NISAR (L- and S-band) [29].
Each sensor has its characteristics, such as wavelength, polarization, resolution, and cov-
erage. The data formats can also vary depending on the provider and the product. Some
of the most common formats are CEOS (Committee on Earth Observation Satellites) [30],
GeoTIFF (Georeferenced Tagged Image File Format) [31], and HDF5 (Hierarchical Data
Format) [32].

Considering all these elements, if we wanted to use DALL·E [33] or Stable-Diffusion [34]
to inpaint SAR imagery, we would have to: (i) completely retrain the entire system, which
may prove unfeasible given that the original training dataset for DALL·E counts up to
250 million image-text pairs while Stable-Diffusion’s 170 million, or; (ii) be happy with a
sub-par result in which the target region is inpainted relying on the statistics learned from
natural photographs. Figure 2 shows some results of inpainting by using the currently
available version of DALL·E (trained on natural photographs) on different land cover
content. As we can inspect, most of the results are not visually credible, with various
artifacts related to the training procedure on natural images (e.g., a sign-like object in
Figure 2d, some “blobs” artifacts in Figure 2h). Moreover, all the resulting images present
the 8 bits dynamic range typical of natural photographs, thus differing from the usual
dynamics of the original SAR amplitude images.

In light of this, we conduct an extensive experimental campaign on the DIP, evaluating
its applicability to the anonymization of SAR amplitude images. Without modifying the
DIP method, we explore its hyperparameters to find a setup that can work on amplitude
SAR imagery of different land-cover content. With this setup, we then create a dataset of
anonymized SAR images and assess the quality of the generated samples using several
metrics belonging to various fields. We analyze classic signal processing metrics based on
image pixels but also SAR quality-oriented metrics and semantically oriented ones.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Example of amplitude SAR image anonymization with DALL·E [33] on different land-cover
content (barren, croplands and forest, in first, second and third row, respectively). The text prompt
provided is “fill the target area with SAR content”. (a), (e), (i): target image to anonymize; (b), (f), (j):
final anonymized image; (c), (g), (k): target image close-up; (d), (h), (l): final image close-up. Artifacts
related to training the method on natural photographs are visible in both Figure 2b,f. We also report
a realistic inpainting result in Figure 2j. However, even in case of high inpainting quality, notice
that the input SAR samples must be converted to 8 bits integers to be processed by DALL·E, thus
modifying the original dynamics.

Our experiments show that the DIP can realistically inpaint areas of different land-
cover content, proving to be an effective tool for anonymizing amplitude SAR data. To the
best of our knowledge, this is the first application of inpainting tools to tackle this task.
Indeed, the configuration found works seamlessly on different terrain types with credible
results for all the metrics considered.

To summarize, the main contributions of our paper are the following:

• we tackle the anonymization of amplitude SAR images by inpainting them with the
DIP technique, a CNN-based solution which does not need a training stage, thus
enabling fast reconstructions and not requiring a huge amount of training data;

• we test different combinations of DIP hyperparameters to find the one working best
to inpaint multiple different land-cover contents;

• we inpaint a dataset of SAR images of different land-cover contents and evaluate
the goodness of the final inpainted results in terms of data fidelity using signal
processing metrics, data compatibility using SAR-quality metrics, and data usability
using semantic metrics.

The rest of the paper is organized as follows. In Section 2, we provide some background
on the inpainting problem and on the DIP methodology. In Section 3, we illustrate in detail
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the tackled problem and the proposed experimental campaign. In Section 4, we report the
main findings of our experiments. Finally, in Section 5 we draw our conclusions.

2. Background and Problem Statement
2.1. Image Restoration and Inpainting

With image restoration, we usually refer to the recovery of details starting from an
image corrupted by degradation phenomena. These phenomena include the presence of
additive or multiplicative noise, blurring, artifacts due to image compression, and others.
The remote sensing field gained a great interest in these techniques since satellite imagery
can be affected by similar degradation [35]. As an example, atmospheric perturbations
such as absorption, scattering and reflection of solar radiation impact the quality of images
captured by passive sensors, while other artifacts may be introduced by the imaging system
itself, like the speckle noise in SAR data.

Following the modeling described in [35], a degraded image I ∈ RH×W×C, with H ×W
spatial resolution and C bands, can be described as

I = I0 × D + S + N, (1)

where I0 represents the ideal uncorrupted image, D denotes a generic multiplicative degra-
dation (e.g., multiplicative noise, blurring kernel, etc.), S a signal-independent additive
sparse noise, and N an additive noise which may or may not be signal-dependent.

A common framework for the resolution of image restoration problems consists of
reformulating the restoration task as the minimization of a cost function defined as

J(Ī) = E(Ī; I) + λR(Ī), (2)

where Ī is a generic investigated image, E(Ī; I) represents a data-fidelity term, R(Ī) is a
regularization function, and λ a tuning parameter balancing the regularization effect. The
data-fidelity is dictated by the task at hand, like denoising or inpainting, and measures
the closeness of Ī to the observed data, while the regularization term captures some prior
knowledge related to the nature of the problem or of the data to be optimized. Finally,
the restored image can be found as

Î = arg min
Ī

J(Ī). (3)

In this paper, we deal with the problem of image inpainting, in which the task is
recovering some missing pixels in the corrupted image I. The missing pixels’ location is
assumed to be known and defined by a binary mask M ∈ {0, 1}H×W , where the 0 values
correspond to unknown pixels. To model the corrupted image, we can rewrite (1) as

I = I0 ⊙ M, (4)

where ⊙ represents the Hadamard product.
We can formulate the inpainting problem as a minimization problem too. As a matter

of fact, (2) can be restated as

J(Ī) = E(Ī ⊙ M; I ⊙ M) + λR(Ī) (5)

where the Hadamard products with M in the data-fidelity term avoid trivial solutions
(i.e., solutions where the unknown pixels’ values are kept equal to 0). In this scenario,
the data-fidelity term can take different forms, like the Mean Squared Error (MSE) or the
Structural Similarity Index Measure (SSIM) [36]. The regularization term can assume a
number of formulations as well, such as the L2 norm [37], the L1 norm [38], the Total
Variation (TV) norm [39], and so forth.

In the literature, the inpainting task has been approached in several ways [40]. The au-
thors of the first paper on image inpainting [41] proposed an algorithm inspired by the
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approach that art conservators use to manually inpaint real works of art. Other histori-
cal contributions relied on texture synthesis [42] or on the combinations of texture and
isophotes, i.e., linear structures, propagation [43]. The literature on sparse signal represen-
tation also proposed several techniques for solving the inpainting problem [38]. Moreover,
deep learning tools like GANs [44–48] and similia [49] also started to provide state-of-
the-art results for the task. Examples of application fields vary from standard natural
images, covering restoration and forensics tasks [50,51], text images [52], scanning electron
microscope images [53], to RGB overhead images [54].

2.2. Deep Image Prior

The Deep Image Prior (DIP) [27] is a deep learning technique introduced in 2018 by
Ulyanov et al. as an alternative to regularization when facing image restoration tasks. Their
work builds upon the literature on Neural Network (NN) data generation, like variational
autoencoders [55] or GANs [56].

In general, a NN generator can be described as a function x = fθ(z) of parameters θ
mapping a code vector z to a generic data structure x, for instance, an image. Approaches
like GANs interpret this generator process as a translation of the complex distribution p(x)
over the data x into a simpler distribution over the code vectors z [56], with the parameters
θ that must be learned from a corpus of data to perform efficiently.

Ulyanov et al. instead interpret the NN generator as a direct parameterization between
the code vector and the data. In their formulation, they consider the code z as a random
noise realization Z ∈ RH′×W ′×C′

. Then, they express the data x as an image Ī ∈ RH×W×C,
being Ī = fθ̄(Z), i.e., the network output for a specific parameter configuration θ̄. The
authors exploit this formulation to tackle several image degradation problems. As a matter
of fact, to solve these problems, the authors recast the minimization framework of (2)
as follows

θ̂ = arg min
θ̄

E( fθ̄(Z); I), Î = fθ̂(Z). (6)

The final reconstructed image Î depends on the random noise realization Z and on the
network parameters θ̂. As we can inspect, there are two elements of novelty with respect
to (2):

• the regularization term is omitted;
• the final solution is optimized over the network parameters θ.

Moreover, with respect to standard NN generators, the proposed formulation op-
timizes the network parameters over the single image I, i.e., no aspect of the network
is learned from a set of training data [27]. This avoids problems related to training the
network on a corpora of data, enabling to solve the reconstruction task even in challenging
scenarios, like in data-scarcity conditions.

To validate this formulation, Ulyanov et al. experimented with minimizing (6) in nu-
merous image reconstruction tasks, like image denoising, inpainting and super-resolution.
They discovered that the generation of “naturally looking” samples (i.e., images exhibiting
some spatial correlation among pixels) was fast and effective, while trying to produce
random noise or pixel-scrambled images required far more iterations and presented worst
reconstruction results. The insight of these experiments is that the resulting prior imposed
by the network (i.e., the so called Deep Image Prior (DIP)) can be considered as a projection
into a reduced set of images, i.e., those which are producible by the specific random realiza-
tion Z with a set of network parameters θ. From this perspective, (6) can be thought as a
“classic” regularizer R(I) = 0 for all images that can be generated by the network, and as a
regularizer R(I) = +∞ for all those images that are not producible by θ.

The authors showed that optimization procedures using the DIP achieve state-of-
the-art performances in many image restoration problems [27]. However, in the last
few years, the DIP has been successfully exploited for different tasks in various research
fields, from multimedia forensics [57], to biomedical imaging [58], seismic imaging [59,60],
acoustic sound field reconstruction [61], and finally also SAR de-speckling [62].
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3. Proposed DIP Anonymization Analysis

In this work, we face the problem of SAR acquisition inpainting. Inpainting in the SAR
imagery field has been studied for several applications, including phase unwrapping [63]
and phase retrieval in interferometric SAR [64]. In our work, we focus on amplitude SAR
imagery to replace a target area S with content created through the DIP. The overall goal is
to remove sensitive information from the image under analysis, while making the image
credible enough to not arouse suspicions.

More formally, let us define the coordinates of a pixel inside a H × W resolution SAR
image I as (h, w), where h ∈ [1, . . . , H] and w ∈ [1, . . . , W]. H and W are the number of
pixels per row and column, respectively. After identifying a target area S , we define an
inpainting mask M as

M(h, w) =

{
0, if (h, w) ∈ S
1, otherwise

. (7)

We use the mask M to remove S from an amplitude SAR image following the inpainting
degradation model of (4). We obtain the inpainted SAR image by relying on the DIP and
recasting (6) as an inpainting task. In other words, the iterative optimization problem we
tackle is

θ̂ = arg min
θ̄

E( fθ̄(Z)⊙ M; I ⊙ M), Î = fθ̂(Z). (8)

The final generated SAR image Î should resemble the input data in the already known
pixels, i.e., those outside S , and should represent a reasonable and realistic estimation of the
missing content. Figure 3 provides a graphical representation of the optimization procedure
of (8), while Figure 4 shows the output of the CNN fθ̄(Z) as the optimization progresses.

Generated
image

DIP CNN

Mask 
multiplication

Loss

Target
image

𝐙 𝑓!" �̅�

𝐈

𝐌

�̅�

Figure 3. DIP optimization procedure for the proposed image anonymization task.
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(a) (b) (c) (d)

Figure 4. Output of the DIP at various steps of the optimization process for an amplitude SAR image
(VV polarization). (a) DIP output iteration 0; (b) DIP output iteration 500; (c) DIP iteration 1500; (d)
DIP output iteration 3000. At 1500 iterations, most of the image content is already reproduced.

Ulyanov et al. showed that the specific structure of the network generator enables
to condition the problem on the corrupted natural image at hand, so that the only prior
information lies in the structure of the network itself [27]. Their proposed methodology
allows to avoid training the NN model over a conspicuous set of data for solving the
inpainting task. Indeed, the final reconstructed natural image depends only on the network
parameters optimized over the input corrupted image. We want to verify if the same
considerations hold for amplitude SAR data.

To this end, we conduct an extensive experimental campaign by inpainting amplitude
SAR images of different land-cover content. We evaluate numerous combinations of net-
work hyperparameters relative to the DIP, verifying if a configuration working seamlessly
on various types of terrain exists. Then, we create a dataset of inpainted SAR images
and evaluate the quality of the inpainting process using several metrics. In doing so, we
investigate different “perspectives”, by evaluating results in terms of metrics related to the
signal processing field, the SAR image processing field, and the deep learning one. Our
experimental campaign enables us to capture a global and detailed picture of the generation
possibilities offered by the DIP applied to SAR amplitude imagery.

Before diving into the main findings of each of these studies, we briefly illustrate the
experimental setup including the dataset used for our experiments.

Experimental Setup

Dataset. Our experimental campaign aims to evaluate the inpainting capabilities of DIP
in a forensic scenario. This translates into verifying if the DIP can create reasonable SAR
images in a variety of conditions, e.g., in the presence of different land-cover content.

To this end, in our experiments, we worked with the SEN12MS [65] dataset. SEN12MS
is a large-scale dataset of satellite images designed to train deep learning algorithms for
land-cover applications like land-cover classification and segmentation. It consists of more
than 180,000 samples, each being a triplet of different raster data: (i) Vertical-Vertical (VV)
and Vertical-Horizontal (VH) SAR acquisitions from the Sentinel-1 [8] mission; (ii) RGB data
from Sentinel-2 [66]; (iii) land-cover maps derived from MODIS [67]. To represent different
land-cover classes, the samples span locations all around the globe and were captured
throughout all seasons of the year 2017. All data are provided as a 256 × 256 pixels raster.
Figure 5 reports an example of a triplet composed of a SAR image, an RGB image, and a
MODIS land-cover map.

More specifically, SAR images are derived from Sentinel-1 Ground Range Detected
(GRD) products [68] acquired in Interferometric Wide Swath (IW) mode [69]. The resolution
is 5 m in azimuth and 20 m in range, and each image has been further ortho-rectified com-
bining the orbit information with the 30 m Shuttle Radar Topography Mission (SRTM) [70]
or the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [71]
Digital Elevation Models (DEMs). The pixels in each image provide the σ0 backscatter
coefficients in dB scale, but besides this normalization no further processing has been
executed, meaning that some degradation phenomena like speckle are still present.
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Regarding the land-cover maps, the MODIS-derived data provide land-cover infor-
mation following the International Geosphere-Biosphere Program (IGBP) and Land Cover
Classification Scheme (LCCS). We referred to the IGBP, comprehending originally 17 land-
cover classes, however modifying it according to the indication of the IEEE GRSS Data
Fusion Contest 2020 (DFC2020). Using the DFC2020 scheme, some less populated and
semantically similar classes are grouped, e.g., Evergreen Needleleaf Forest, Evergreen
Broadleaf Forest, Deciduous Needleleaf Forest, Deciduous Broadleaf Forest, and Mixed
Forest, are all fused in a single Forest class. For clarity’s sake, Figure 5 reports an example
taken from the dataset with a modified IGBP land cover mask. Notice that the original
Ground Sampling Distance (GSD) of the maps of 500 m has been upsampled to match the
10 m resolution of the Sentinel-1 and Sentinel-2 data. Figure 6 shows the distributions of
the numbers of pixels associated with the different land-cover categories.

Finally, RGB samples provide full multi-spectral image cubes from Sentinel-2 products
and have a GSD of 10 m. All images are ortho-rectified and have been further processed to
remove clouds and cloud shadows. The RGB images are also co-registered with the SAR
images in the dataset. We never utilize this modality of imagery in our experiments.

(a) VV polarization. (b) RGB. (c) IGBP map.

Figure 5. Example reported taken from the SEN12MS.
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Figure 6. Distribution (number of pixels) of the land-cover classes captured by the SEN12MS samples.

Setup and data preprocessing. We select 400 samples from 7 land-cover classes of the
DFC2020 scheme, namely Barren, Croplands, Forest, Grasslands, Shrublands, Urban/Built-
up, and Water. The samples are chosen to ensure that 90% or more of the pixels belong
to a single class, e.g., samples of class Urban/Built-up have 90% of their pixels of class
Urban/Built-up, and so on.

We work using both the available VV and VH polarizations, therefore the input and
output of the DIP are tensors of size 256 × 256 × 2. As a preprocessing step, we follow
the normalization procedure implemented by the dataset authors in [65], keeping the
data in logarithmic scale but normalizing their range approximately between −1 and
1. The inpainting mask has the same dimensions, with a target area of approximately
64 × 64 pixels. We choose this value to balance between testing the DIP’s ability to inpaint
large pixel regions and preserving the land-cover type of the image under analysis, i.e., not
changing the main land-cover category of the sample.
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Given the different backscattering characteristics of land-cover classes, our objective
is to evaluate the ability of DIP in recreating the permittivity and physical properties of
each type of terrain. Following this reasoning, we intentionally avoid the classes Savanna,
Snow/Ice, and Wetlands. Indeed, as indicated by Schmitt et al. [72], the class Savanna can
be considered as a systematic label noise characteristic of the IGBP classification scheme.
We exclude the classes Snow/Ice and Wetlands instead due to their underrepresentation
in the dataset, meaning that we could not find enough samples satisfying the 90% surface
coverage condition specified above.

Evaluation metrics. Throughout the paper, we rely on different metrics to evaluate the
quality of the inpainted SAR imagery. Here we provide a brief definition for all of them:

• Structural Similarity Index Measure (SSIM)[73] is a method for evaluating the similar-
ity between two images I1 and I2. This measure is performed at a patch level, i.e., the
two images are divided into patches, and for each patch X and Y of size N × N pixels,
the following measure is computed

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ
2
X + σ2

Y + c2)
, (9)

being µX, µY the sample pixels’ means of the X, Y patches, e.g., µX = 1
N2 ∑N

i,j=1 X(i, j);
σ2

X, σ2
Y their pixels’ variances, e.g., σ2

X = 1
N2 ∑N

i,j=1(X(i, j)− µX)
2, and σXY their covari-

ance, i.e., σXY = 1
N2 ∑N

i,j=1(X(i, j)− µX)(Y(i, j)− µY); finally, c1, c2 are two constants
to stabilize the division denominator. The final SSIM value is then computed as the
mean of the SSIM from all patches. Its values range from 0 to 1, with 1 indicating
perfect similarity;

• Multi-Scale Structural Similarity Index Measure (MS-SSIM)[74] is an extension of
the SSIM, consisting in computing the SSIM of different downsampled images of
the two samples I1 and I2, with each downsampling operation being defined as a
“scale”. The final MS-SSIM value is the average of the SSIM computed at the different
scales, i.e.,

MS-SSIM =
1
S

S

∑
s=1

SSIM(Is
1, Is

2), (10)

with Is
1 indicating a “scale” of the original image, and S the total number of scales

considered.
As for the SSIM, its values range from 0 to 1;

• Equivalent Number of Looks (ENL)[75] is a statistical measure to quantify the level of
speckle noise in a SAR image. Given a sample I, it is defined as

ENL(I) =
µ2

I
σ2

I
, (11)

where µI is the pixel mean of I and σ2
I its pixel variance. The higher the ENL value,

the less the level of speckle affecting the SAR image;
• Edge Preservation Index (EPI) is a measure of image quality used in the SAR field

to quantify how many edges a denoising algorithm preserves when processing a
sample [76]. Given a noisy, single polarization, amplitude SAR image I with H × W
pixel size and a corresponding denoised image Î, the index is defined as

EPI(I, Î) = ∑H
1 ∑W

1 |∇I|
∑H

1 ∑W
1
∣∣∇Î

∣∣ , (12)

where |∇| is the absolute value of the gradient operator. The EPI values range from 0
to 1, where 1 indicates perfect edge preservation.
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We will discuss more specific details on their choice and utilization in Section 4.

Tools. All experiments have been executed on a machine equipped with an Intel Xeon
E5-2687W-v4 and 6 NVIDIA Titan V, resorting to PyTorch [77] as deep learning framework
and using Weight&Biases [78] for performing our initial hyperparameter search.

4. Results and Discussions

In this section, we report the main results of our experimental campaign. We catego-
rized our efforts into four main investigations:

1. DIP hyperparameter search. We evaluate if the same combination of hyperparame-
ters can produce convincing results independently on the land-cover content of the
inpainted sample.

2. Generation process quality evaluation from a “signal processing” perspective. We
estimate the quality of generated samples by computing metrics typical of the image
full-reference quality assessment field, i.e., SSIM, and MS-SSIM.

3. Generation process “data compatibility” evaluation. We evaluate the results of
our inpainting technique relying on metrics employed in the SAR de-speckling field,
i.e., ENL [75] and EPI [76], to understand if the anonymized samples are compatible
with the original data;

4. Generation process “data usability” evaluation. We analyze our generation results in
terms of the possibility of running additional applications on top of them. We do so by
processing the generated samples with deep learning tools. In particular, we employ
CNNs purposely trained for semantic tasks like land-cover classification to see if the
generated samples maintain semantic information related to the original land type,
and can be “used” in place of the original samples with no major performance losses.

4.1. DIP Hyperparameter Search and Dataset Creation

The DIP technique possesses several degrees of freedom. Given a reference network
architecture, an end user can work with different combinations of hyperparameters like
layer activation functions, padding, and upsampling. Also, the optimization routine can be
customized by using various loss functions or by providing input realizations of different
noise distributions.

We rely on the same network architecture proposed by the original DIP authors, i.e., the
U-Net, using Adam [79] as an optimizer, narrowing down the hyperparameter search space
by using as loss functions the SSIM and MSE, and, as a quality metric to compare the
different hyperparameter combinations, the SSIM. As a matter of fact, the literature has been
reporting for a long time the shortcomings in image quality evaluation of Euclidean metrics
such as MSE and Peak Signal-to-Noise-Ratio (PSNR) [73,80–83]. These metrics estimate
absolute errors and struggle in describing the perceived quality of images. On the contrary,
the SSIM is based on the concept of structural information, i.e., spatially close pixels have
strong inter-dependencies, and these dependencies influence the information of objects in
the scene and the overall perceived quality of an image. Moreover, Euclidean metrics like
the MSE are not bound in their dynamic range. In contrast, the SSIM ranges from 0 to 1,
with values next to 1 indicating an image qualitatively closer to the reference one.

As an example, Figure 7 shows the results of two DIP-based inpainting processes and
the corresponding values of MSE and SSIM of the final inpainted images. Despite similar
MSEs between the two results, the inpainted image shown in Figure 7f presents clearly
poorer quality when compared visually with the reference image. This phenomenon is
instead captured immediately by the SSIM, whose values offer a more intuitive interpre-
tation. Therefore, we adopt the SSIM as the final evaluation metric, since it enables us to
easily compare the different hyperparameter combinations without manually inspecting
all the inpainted samples.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of two inpainted images (VV polarization only for display purposes) using
MSE and SSIM as quality metrics. (a) Reference input I0; (b) Inpainting mask M; DIP output Î,
MSE= 0.018, SSIM = 0.863; (d) Reference input I0; (e) Inpainting mask M; (f) DIP output Î, MSE
= 0.026, SSIM = 0.553. Despite very similar values of MSE, the SSIM immediately captures the poor
visual quality of Î in Figure 7f.

In the end, we perform a grid search over the whole parameter space indicated in
Table 1, i.e., 108 hyperparameter evaluations for all the 7 land-cover classes considered
for a total of 756 experiments. In Figure 8, we report a graphical representation of the
UNet architecture used and its relative hyperparameters under investigation. In each
experiment, we take 100 samples of the specific class, iterate the DIP for 3000 iterations, and
then calculate the average SSIM among all generated images. Unpromising/unsuccessful
runs are terminated using the Hyperband algorithm [84].

Padding*
Conv2D

Activation*
Upsampling*
MaxPool2D

�̅�𝐙

Skip path

Extracted
features

Upsampled
features

Final
features

Figure 8. Scheme of the adopted UNet architecture. Parameters indicated by ∗ are investigated in the
hyperparameter search.
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Table 1. Selected hyperparameters for tuning the DIP technique.

Hyperparameter Class Parameters Values

Layer activation functions Tanh
ReLU

LeakyReLU

Layer padding strategy Reflection
Zero

Layer upsampling strategy Bilinear
Nearest

Deconvolution

Loss function MSE
SSIM

Input noise distribution Gaussian
Rayleigh
Uniform

Interestingly, we find that all the different land-cover classes share similar DIP config-
urations. For all classes, we obtain optimal results using:

• reflection as padding strategy;
• a deconvolution for upsampling;
• the SSIM as loss function;
• a uniform input noise distribution.

The only exception is represented by the layers’ activation functions. On Barren,
Forest, and Water samples, the DIP performs best with a hyperbolic tangent activation; on
Croplands and Grassland images, with a LeakyReLU; finally, on Shrubland and Urban
samples with a ReLU.

However, it is important to remark that these activation functions are not applied in
the last upsampling layer of the network (refer again to Figure 8). In the last network layer,
we simply apply the padding and upsampling strategies with no activation: in this way, we
can better match the dynamic of the input samples without restraining them to a specific
range. In the other layers, the activation functions help instead in building a better feature
representation of the samples belonging to different land-cover classes.

As an example, the results of the hyperparameter evaluation for the class Urban/Built-
up using the SSIM as loss function are reported in the parallel coordinates plot of Figure 9.
Each colored line represents a different combination of hyperparameters, with the selected
values indicated in the vertical column intersected by the line, and the final SSIM obtained
by the combination reported in the final column. As we can easily inspect, the layer
upsampling strategy has the heaviest influence on the final results, followed by the input
noise distribution. Nonetheless, we can observe that the final values of SSIM range from
0.91 up to 0.95, i.e., all combinations reach satisfactory performances.

Regarding the loss function of (6), while we obtain fair results relying on the MSE, we
noticed that the images optimized using this metric require higher numbers of iterations
and present lower SSIM and higher MSE values. Figure 10 reports the results obtained
using the DIP configuration highlighted above, optimizing the DIP with either the SSIM
for 3000 iterations or with the MSE for 9000. As we can see, even though the optimization
process relying on the MSE has run for longer, the DIP provided better numbers for both
metrics using the SSIM as loss function. Notice that, when relying on the SSIM as loss
function in (8), we compute its negated version, i.e., we aim at minimizing −SSIM.
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Figure 9. Selection of most performing hyperparameters runs for the land class Urban.
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Figure 10. Results comparison between the final SSIM and MSE achieved by using the SSIM or the
MSE as loss functions. (a) Mean SSIM for all land-cover classes. The higher, the better; (b) Mean MSE
for all land-cover classes. The lower, the better.

As a further experiment, we also investigate how performances change according to
the size of the inpainted area. To do so, we inpaint 10 samples from each land-cover class
using either the SSIM or the MSE as loss functions and varying the size of the inpainted
area. More specifically, we consider areas 16 × 16, 32 × 32, 64 × 64, 128 × 128, 160 × 160 and
192 × 192 pixels’ wide. Figure 11 shows the results, averaged over all land-cover classes.

As expected, increasing the inpainted area leads to performance degradation using
both losses, since the information the DIP can extrapolate from the analyzed sample di-
minishes. However, by relying on the SSIM loss, the DIP consistently achieves better
performances in terms of final MSE and SSIM. Nevertheless, the MSE loss can also provide
good results, remaining a valid alternative loss for the considered task. In addition, the lit-
erature has shown that some relations hold between SSIM and MSE and that, under certain
conditions, the SSIM behaves like a Normalized MSE [85].

In conclusion, using the best configuration reported above with a different activation
function for each land-cover class, we inpaint 400 samples for each one of the terrain
categories considered, optimizing the DIP for 6000 iterations and filtering out those tiles
for which the DIP did not converge. We end up with 2772 samples to analyze in different
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scenarios, as we show in the next section. Figures 12 and 13 report one sample per land-
cover class taken from this set of images.

16×16 32×32 64×64 128×128 160×160 192×192
Inpainted area size

0.4

0.6

0.8
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IM

SSIM loss
MSE loss

(a)

16×16 32×32 64×64 128×128 160×160 192×192
Inpainted area size

0.01

0.1

0.2
0.3
0.4

M
SE

SSIM loss
MSE loss

(b)

Figure 11. Results comparison between the final SSIM and MSE achieved by using the SSIM or the
MSE as loss functions and varying the inpainted area size. (a) Average SSIM for all land-cover classes.
The higher, the better; (b) Average MSE for all land-cover classes. The lower, the better.

(a) Barren sample I0. (b) Mask M. (c) DIP output Î.

(d) Croplands sample I0. (e) Mask M. (f) DIP output Î.

Figure 12. Cont.
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(g) Forest sample I0. (h) Mask M. (i) DIP output Î.

(j) Grassland sample I0. (k) Mask M. (l) DIP output Î.

Figure 12. DIP inpainting results (VV polarization only) for the Barren, Croplands, Forest, and Grass-
land classes, using the hyperparameter configuration illustrated in Section 4.1.

(a) Shrubland sample I0. (b) Mask M. (c) DIP output Î.

(d) Urban sample I0. (e) Mask M. (f) DIP output Î.

Figure 13. Cont.
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(g) Water sample I0. (h) Mask M. (i) DIP output Î.

Figure 13. DIP inpainting results (VV polarization only) for the Shrubland, Urban, and Water classes,
using the hyperparameter configuration illustrated in Section 4.1.

4.2. Quality Evaluation from Signal Processing Perspective

The first set of evaluations on the inpainted samples focuses on quality metrics com-
monly employed for image quality assessment. Notice that, rather than estimating an
absolute error between the original and DIP inpainted SAR images, we are interested in
assessing the perceived quality of the inpainting process, i.e., the “veracity” of the inpainted
samples from a final user perspective. As a matter of fact, our goal is to make the inpainted
region different from the original image, therefore it would be meaningless to check for the
similarity between the original image and the inpainted one within the inpainted region.

To this end, we rely on the SSIM [82], and MS-SSIM [74]. Both indices are based on the
concept of structural information illustrated above, with the MS-SSIM being an evolution
of the SSIM where the latter metric is evaluated at multiple scales using different stages
of subsampling [74]. As such, both SSIM and MS-SSIM are global metrics, i.e., evaluated
on the whole sample, and full reference metrics, i.e., they compare two samples of which
one is used as reference. Their values range from 0 to 1, where values close to 1 indicate
perfect similarity.

We compare the DIP generated samples against their pristine counterpart, considering
both polarizations, in two different scenarios:

1. No Inpainted Area (NIA): in this case, we neglect the pixel region inpainted by the
DIP, i.e., the region S of (7). This is useful to check that the region that should have
not been touched by the tampering mask actually remains the same, indicating that
the DIP is correctly converging;

2. Full Image (FI): in this case, we consider the complete DIP-generated images, inpaint-
ing region S included. This is useful to check that the content of the inpainted region
is visually coherent with the rest of the picture.

Our aim in the NIA scenario is to gauge the reconstruction capabilities of the DIP
against the ground truth offered by the known pixels of the sample under investigation.
Instead, in the FI scenario, we aim at investigating how the inpainted content by the DIP
affects the overall quality and “credibility” of the generated image when compared against
the original one.

Figure 14 reports the average results for the aforementioned metrics divided by land-
cover class in the two different scenarios. In particular, Figure 14a depicts the achieved
SSIM values. Almost all classes achieve satisfactory values above 0.85, in line with those
obtained with the hyperparameter search. It is interesting to notice how the Water samples
possess the lowest results. Given that this land-cover class generally presents low texture
due to the absence of relevant targets and objects, the effect of speckle noise is more
prominent. Therefore, these numbers seem in line with the findings of Ulyanov et al. [27],
who observed that “noisy” images are more difficult to process.

In the NIA scenario SSIM values are higher. This is expected as the pixels outside S
are the only source of information used by the DIP to process the sample. Nonetheless,
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the achieved SSIM in the FI scenario is not far from the NIA. This likely indicates that DIP
can extrapolate enough information from the surrounding context to create a reasonable
inpainted area. Such intuition seems corroborated also by the results in Figure 14b, i.e., those
related to the MS-SSIM. From this perspective, it is interesting to notice that at different
scales the perceived quality of the inpainting process is even higher.
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IM
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(b)

Figure 14. Signal processing metrics computed in the two scenarios of the No Inpainted Area (NIA)
and Full Image (FI). (a) Mean SSIM for all land-cover classes. The higher, the better; (b) Mean
MS-SSIM for all land-cover classes. The higher, the better.

4.3. Data Compatibility Evaluation

The second set of evaluations focuses on metrics that are usually employed in the
SAR imagery quality assessment. This set of evaluations aims at understanding if the
anonymized data is “compatible” with the original data in terms of structure and character-
istics. In particular, we want better insight into how the DIP can recreate textures specific
to the SAR imagery field, like speckle phenomena in those land-cover classes more affected
by it.

To this end, we resort to two metrics used in the SAR de-speckling field, i.e., the
Equivalent Number of Looks (ENL) [75] and Edge Preservation Index (EPI) [76]. The
first is a standard measure of the quality of SAR de-speckling algorithms and can be
roughly defined as the number of samples (i.e., the number of looks) needed in a non-
coherent average to obtain an image with the same amount of speckle as the de-noising
algorithm considered. The higher the value of ENL, the better the capabilities of the speckle
filtering algorithm considered. The EPI instead is concerned with evaluating the ability of
filtering algorithms to preserve edges between different areas, an important property for
maintaining the radiometric information of SAR images [86]. As such, it computes the ratio
between the edges of the gradient of the de-speckled image and the original noisy sample,
providing values between 0 and 1 describing how many of them have been preserved.

Rather than testing the quality of a de-speckling algorithm, our goal is to verify if those
metrics present similar values in the DIP inpainted and in the original samples, keeping in
mind that the SEN12MS samples have not been de-speckled in any way [65]. In this case as
well we consider two different scenarios:

• Only Inpainted Area (OIA): in this case, we focus only on values inpainted by the DIP,
i.e., only on pixels inside S ;
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• FI: this scenario resembles the FI case of the previous experiment, i.e., we consider the
complete DIP-generated images.

In the first case, we aim at understanding if the DIP can recreate a reasonable level of
speckle in the target area S by just extrapolating this information from the surrounding
regions. In the second scenario, we want to verify if the completely generated images
present a credible texture when compared to the original samples.

For computing the ENL we follow a slightly different procedure than the one usually
employed in the literature. The standard computation of ENL needs the selection of a
uniform area where texture is negligible due to the radar cross-section being constant.
However, in our scenario we want to use ENL for globally evaluating the generation
quality of the DIP samples, that is, we aim at assessing if any SAR-related information is
lost when samples are inpainted with the proposed pipeline. To this end, we proceed in the
following manner:

• we divide the DIP inpainted samples into non-overlapping patches Pi, i = 1, . . . , N
with a resolution of 25 × 25 pixels;

• we compute the ENL as indicated in (11) [76] for each patch Pi;
• we computed the average ENL considering the N patches of each sample.

Figure 15 shows the ENL obtained in the OIA scenario, divided by polarization and
land-cover class. Unsurprisingly, we have slightly lower numbers when comparing the
original with DIP-inpainted tiles. However, when looking at results solely based on land-
cover classes we can observe a clear trend: some categories present higher ENL, with this
behavior being consistent for original as well as DIP inpainted samples. This might suggest
that the configurations found for the DIP can generalize enough the scattering properties
of the specific land-cover class and create pixel-areas with an appropriate texture even
without specific ground truth, as in the considered inpainting task.
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(a) VV polarization.

Barren Croplands Forest Grassland Shrubland Urban Water
Land-cover class

0.0

0.5

1.0

1.5

EN
L

Original samples
DIP inpainted samples

(b) VH polarization.

Figure 15. Mean ENL for all land-cover classes in the OIA scenario.

Figure 16 reports the results obtained in the FI scenario. For better representation,
we also report in Figure 17 the same numbers presented as relative absolute differences
between ENLs of original and generated samples. As we can inspect, these differences lie
in a 0.5–2.5% range, suggesting that DIP inpainted samples present almost identical ENLs
to their original counterpart. This somehow confirms our previous intuition: the proposed
pipeline recreates with high fidelity the characteristics of all the considered land-cover
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classes, including degradation phenomena like speckle noise. From this perspective, DIP
and original samples are almost indistinguishable.
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(a) VV polarization.
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Figure 16. Mean ENL for all land-cover classes in the FI scenario.
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Figure 17. Relative absolute ENL difference (|∆-ENL|) between original and generated samples for
all land-cover classes in the FI scenario.

Finally, Figure 18 shows the results obtained computing the EPI between original
and DIP samples in the two tackled scenarios. In both cases, values are consistent among
land-cover classes and close to 0.7, where an EPI of 1 corresponds to a perfect edge-
preserving algorithm. This might suggest that the DIP has some difficulties in recreating
sharp transitions in the texture of SAR samples.
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Figure 18. Cont.
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(b) FI scenario.

Figure 18. Mean EPI for all land-cover classes in the OIA and FI scenarios.

However, notice that we deliberately stop the DIP optimization at 6000 iterations;
running the DIP for longer times often brings higher quality results. To verify this hy-
pothesis, we execute two additional inpainting on the Barren and Water samples of
Figures 12 and 13 using 12, 000 iterations, i.e., twice the standard number of iterations.
Figure 19 reports the EPI values obtained at the different steps of the process. As we
can inspect, after 6000 iterations the EPI is still improving. If an end user is particularly
interested in preserving the edges of the original samples, the DIP is able to recreate this
information despite a slightly higher computational cost.
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(a) EPI against number of iterations, Barren sample of Figure 12.
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(b) EPI against number of iterations, Water sample of Figure 13.

Figure 19. EPI values against the number of DIP iterations. The higher the EPI values, the better the
edge preservation.

4.4. Data Usability Evaluation

Even though some of the metrics considered in the previous sections might be asso-
ciated with perceptual quality (e.g., SSIM, MS-SSIM, EPI, etc.), in the last experimental
campaign we want to gain a deeper understanding of whether the DIP generated samples
might be “plausible” from a semantic perspective. In particular, we investigate whether in-
painted samples can be “mistaken” for original tiles when processed with tools designed to
extrapolate semantic information from them, like CNNs developed for land-cover analysis
tasks. This set of experiments gives us insights into whether the anonymized samples can
be used in place of the original ones with low performance degradation.

The literature on synthetic image generation has extensively worked on the concept of
“CNN-pseudo” metrics: the argument behind it is that, if the generated images are plausi-
ble, then CNNs trained on pristine samples for semantic tasks (e.g., image classification,
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object segmentation, etc.) will be able to correctly deal with synthetic content nonetheless.
For instance, a synthetically generated cat can still be recognized as a cat if the generated
picture presents good semantic information. Isola et al. [45] judged the quality of generated
images by processing them with a CNN [87]. Other authors proposed metrics to evaluate
the quality of generated images based on features extracted by CNNs, like the Inception
Distance (ID) [88], the Fréchet Inception Distance (FID) [89], and the Kernel Inception
Distance (KID) [90].

Usually, the networks used for computing such measures are trained for object classifi-
cation tasks or related. From this perspective, we believe land-cover classification to be the
closest task in the remote sensing field.

Therefore, following the paradigm introduced by Isola et al. [45], we train three
different CNN architectures to predict the land-cover class of a double polarization SAR
image provided as input. Our choice fell over popular CNNs for object classification,
namely the ResNet50 [91], the InceptionV3 [92], and the EfficientNetB0 [93]. For training,
we follow the procedure indicated by Schmitt et al. [94]. We create a one-hot encoding
scheme where the label for every image corresponded to the mode in the paired IGBP
land-cover map, i.e., the most frequent land-cover class. Subsequently, we train all models
using standard cross-entropy loss and Adam [79] optimizer with learning rate 10−3 and
decay rate 10−5. In creating the training-validation-test splits, we follow the same partitions
used by the authors of [94] for the first two sets. As a test set, we use the 2778 original and
2778 DIP-inpainted samples analyzed in the previous sections.

In Figure 20, are represented the accuracies obtained by all three models on the original
samples. Figure 21 instead reports the absolute difference in classification accuracies
between original and DIP inpainted samples. For the Croplands, Forest, and Urban classes,
the performances of all three models in the two scenarios are contained in a 10% gap. This
suggests that, in these cases, the inpainted samples are indistinguishable from the original
ones also for CNNs trained for semantic tasks.

The classification of Water samples is problematic for all three architectures and a
similar behavior appears when analyzing Barren samples with the EfficientNetB0 and
InceptionV3 networks. For these land-cover classes, the accuracies on DIP-inpainted
images drop sharply, with differences up to 90%. We can observe a similar behavior also
for the Shrubland class where, however, these differences are limited to a 30–50% gap.
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Figure 20. Accuracies obtained by all models on original samples only.
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Figure 21. Relative absolute accuracy difference (|∆-Accuracy|) achieved by all the considered models
when processing original and generated samples, for all land-cover classes.
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In Figures 22 and 23, we report the confusion matrices obtained by using the Efficient-
NetB0 and the ResNet50 models, respectively. In the “Other” class, we included predictions
of classes not in the subset considered for the inpainting experiments. On pristine samples,
the networks achieve accuracies over 70% for all classes except Shrubland. This behavior
might be motivated by the Shrubland category being particularly akin to other vegetation
classes, e.g., Grassland and Barren, especially from a radiometric perspective. As a matter
of fact, we can observe that Shrubland might be mistaken for these two classes.

Interestingly, with DIP samples, this behavior is even more emphasized: EfficientNetB0
mistakes more than 56% of Shrubland images for either Grasslands or Croplands, while
ResNet50 misclassifies almost 50% of them for either Grasslands or Barren. The Barren
class too gets easily mistaken for Grassland and Croplands for 53.5% of the samples in the
case of EfficientNetB0, whereas it is mistaken for Shrubland and Grassland for 25% of the
samples in the case of ResNet50.

Finally, we can observe that both networks suffer in correctly classifying DIP-generated
samples of Water. EfficientNetB0 classifies them as Croplands or Grassland 40.5% of the
time, while ResNet50 misclassifies them as Grassland or Barren 93% of the time. Even in
this case, the radiometric characteristics of those classes might be the reason behind this
phenomenon, as all of them are typically affected by speckle.

(a) Confusion matrix on original samples. (b) Confusion matrix on DIP samples.

Figure 22. Confusion matrices from the test set results computed using the EfficientNetB0 network.
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Figure 23. Confusion matrices from the test set results computed using the ResNet50 network.
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5. Conclusions

In this paper, we presented an extensive evaluation of the Deep Image Prior (DIP)
technique for image inpainting on amplitude Synthetic Aperture Radar (SAR) images. We
showed that the DIP adapts to amplitude SAR imagery with no significant modifications
to the original inpainting pipeline and maintains its strong points, e.g., the absence of a
training phase.

In particular, we searched and found the hyperparameter combinations leading to
the best results independently of the land-cover content of the analyzed sample. Such
combinations differ only in the activation function of the inner layers of the network used,
suggesting that the DIP has a certain degree of adaptability.

We analyzed the inpainting results using evaluation metrics from different fields, namely:

• Image quality assessment, i.e., SSIM and MS-SSIM;
• SAR image de-speckling, i.e., ENL and EPI;
• Convolutional Neural Network (CNN) semantic metrics.

All these measures gave different insights into the quality assessment of the DIP
inpainted samples. SSIM and MS-SSIM, being indicators of the perceived quality of the
analyzed images, showed that the DIP extracts enough information from the surrounding
regions to create reasonable inpainted areas. The ENL and EPI confirmed that the DIP
generalizes the scattering properties of the considered land-cover classes and performs
inpainting with an appropriate texture. Finally, the CNN semantic metrics indicated that,
despite some uncertainty when processing similar land-cover content, deep learning tools
trained for semantic tasks interpret DIP inpainted images as authentic samples.

In conclusion, all the experiments suggest that the DIP method can produce high-
quality results, meeting the requirements of various applications, especially those meant to
conceal sensitive information such as civilians’ or troops’ locations. Our results suggest
that the DIP method presents a viable alternative to other inpainting techniques designed
for natural photographs or those that require large datasets for training. We believe that the
DIP method can open new possibilities for amplitude SAR image processing and analysis,
like image quality enhancement, and we plan to explore its potential in future work.
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