66 research outputs found

    Integral surface based Second Order Sliding Mode Controller design for Inverted Pendulum with PD SMC Compensation

    Full text link
    Stabilization of a nonlinear single stage inverted pendulum is a complicated control problem, as nonlinearity is present inherently and external factors affect the equilibrium position. In this paper, a PD sliding mode controller is connected with Second order PI (Proportional+Integral) sliding mode controller, which is designed to improve the performance for nonlinear state differential equations with unknown parameters. This paper throws light on the sliding surface design and highlights the important features of multiplexing sliding mode control inputs resulting in robustness and higher convergence of output, through extensive mathematical modeling. Simulations and experimental application is done on the system to evaluate the controller for performance, complexity of implementation and also on the impact of the nonlinear IP system on its stability

    Modified PSO based PID Sliding Mode Control using Improved Reaching Law for Nonlinear systems

    Full text link
    In this paper, a new model based nonlinear control technique, called PID (Proportional-Integral-Derivative) type sliding surface based sliding mode control is designed using improved reaching law. To improve the performance of the second order nonlinear differential equations with unknown parameters modified particle swarm intelligent optimization (MPSO) is used for the optimized parameters. This paper throws light on the sliding surface design, on the proposed power rate exponential reaching law, parameters optimization using modified particle swarm optimization and highlights the important features of adding an integral term in the sliding mode such as robustness and higher convergence, through extensive mathematical modeling. Siding mode control law is derived using Lyapunov stability approach and its asymptotic stability is proved mathematically and simulations showing its validity. MPSO PID-type Sliding mode control will stabilize the highly nonlinear systems, will compensate disturbances and uncertainty and reduces tracking errors. Simulations and experimental application is done on the non-linear systems and are presented to make a quantitative comparison.Comment: arXiv admin note: substantial text overlap with arXiv:2207.1112

    Design of second-order sliding mode controllers for MR damper-embedded smart structures

    Full text link
    This paper presents the design of second-order sliding mode controllers for semi-active control using magneto-rheological (MR) dampers. The approach can be useful in applications involving shock absorbers but here our main concern is the suppression of building vibrations induced by dynamic loadings such as earthquakes or strong winds. The MR dampers have been of increasing interest in structural control as they are inexpensive to manufacture and have attractive properties such as small energy requirements, reliability and stability in operations, as well as a fast response of milliseconds. Challenges of MR damper structural control rest with the system's high nonlinearity due to the force-velocity hysteresis, and the constraint of the magnetisation current, required to be between its zero and maximal values. A variety of control algorithms have been applied, including the decentralized bangbang control, modulated homogeneous friction algorithm, clipped optimal control, Lyapunov-based control, and also non model-based intelligent schemes. In these techniques, the currents are usually obtained from the damping force indirectly rather than directly from the controller output. For direct current control, in this paper we propose second-order sliding mode controllers, which can satisfy the control constraint, provide high accuracy, retain robustness and remove chattering. The effectiveness of the proposed direct current control technique is verified, in simulations, on a benchmark building model subject to excitation of various scaled earthquake records

    Real time implementation of a super twisting control of a BLDC motor

    Get PDF
    This paper presents and implements a Super-Twisting high order sliding mode control for a BLDC motor. Conventional sliding mode controller has a very fast response, it allows the convergence in finite time and characterized by its robustness against disturbances and uncertainties; However, the chattering phenomenon due to the discontinuous nature of its control organ degrades its performance, especially in case of mechanical membranes control. To overcome this disadvantage, the most commun solutions are based on the adaptation of its discontinuous nature at static regime, it reduces effectively the chattering phenomenon, but on the other hand impacts performance in terms of robustness. The Super-Twisting is an algorithm of high order sliding mode applicable on systems with relative degree 1, it produces a continuous control which cancels the chattering phenomenon and preserve all traditional sliding mode command performances. To validate the effectiveness and the robustness of the Super-Twisting controller for controlling brushless motors, experimental results using a 3KW BLDC motor are provided and compared with those of a conventional sliding mode controller

    Design of Super Twisting Integral Sliding Mode Control for Industrial Robot Manipulator

    Get PDF
    In the present work, integral sliding mode based continuous control algorithm is extended to multi input multi output system. The typical integral sliding mode control (ISMC) contains nominal control with discontinuous feedback control due to which overall control becomes discontinuous in nature. The proposed controller is a fusion of two continuous terms and one of which is able to handle, estimate and reject the disturbance successfully. A proposed robust ISMC technique is applied for industrial robot manipulators which utilizes interactive manipulation activity. Here, robust position tracking control obtained via ISMC principle for two link IRM scheme influenced by parametric uncertainties and external disturbances. The proposed ISMC design replaces the discontinuous part by continuous control, which super twisting control is able to handle the disturbance rejection completely. The effectiveness of the proposed control technique is tested under uncertain conditions and comparison study with other controllers has been done. The simulation result shows that the tracking error is effectively minimized by the proposed technique in presence of uncertain conditions
    corecore