15,646 research outputs found

    Minimal logic for computable functions

    Get PDF

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Complexity of Timeline-Based Planning over Dense Temporal Domains: Exploring the Middle Ground

    Get PDF
    In this paper, we address complexity issues for timeline-based planning over dense temporal domains. The planning problem is modeled by means of a set of independent, but interacting, components, each one represented by a number of state variables, whose behavior over time (timelines) is governed by a set of temporal constraints (synchronization rules). While the temporal domain is usually assumed to be discrete, here we consider the dense case. Dense timeline-based planning has been recently shown to be undecidable in the general case; decidability (NP-completeness) can be recovered by restricting to purely existential synchronization rules (trigger-less rules). In this paper, we investigate the unexplored area of intermediate cases in between these two extremes. We first show that decidability and non-primitive recursive-hardness can be proved by admitting synchronization rules with a trigger, but forcing them to suitably check constraints only in the future with respect to the trigger (future simple rules). More "tractable" results can be obtained by additionally constraining the form of intervals in future simple rules: EXPSPACE-completeness is guaranteed by avoiding singular intervals, PSPACE-completeness by admitting only intervals of the forms [0,a] and [b,∞\infty[.Comment: In Proceedings GandALF 2018, arXiv:1809.0241

    Practical State Machines for Computer Software and Engineering

    Full text link
    This paper introduces methods for describing properties of possibly very large state machines in terms of solutions to recursive functions and applies those methods to computer systems

    The Light Lexicographic path Ordering

    Full text link
    We introduce syntactic restrictions of the lexicographic path ordering to obtain the Light Lexicographic Path Ordering. We show that the light lexicographic path ordering leads to a characterisation of the functions computable in space bounded by a polynomial in the size of the inputs
    • …
    corecore