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Minimal Logic for Computable Functions 

Helmut Schwichtenberg 
Mathematisches Institut der Univers i tät M ü n c h e n 

Theresienstr. 39, D-8000 M ü n c h e n 2 

We discuss a specification language with variables for higher order functionals and 
constants for computable functionals (cf. Plotkin [9]). In this language it is possible to 
represent functional objects (like programs or circuits transforming streams of data) by 
terms and carry out formal proofs that they meet a given specification. 

The intended semantics is such that the domain of a computable functional con-
sists of all continuous (partial) functionals in the sense of Scott [11]. We also allow 
non-monotone functionals (like equality or the property of being total, considered as 
boolean-valued functions) in our model; however, such functionals can only be applied 
to something and can never be arguments. In this sense they are external objects. 

As our deduction System for this language we take the —»V-fragment of Gentzen's 
natural deduction (i.e. just introduction and elimination rules for —• and V), plus 
induction Schemata for natural numbers, boolean objects and finite functionals (cf. 
Scott [11]). ~»,3,V are defined as usual. In spite of our minimal supply of logical 
rules we get classical logic, since we can derive the stability of atomic formulas, i.e. 
Vp: boole(-i-p —+ p), by boolean induction (case analysis). Here we make use of the fact 
that we build atomic formulas from boolean terms. 

We then extend this language by a strong existential quantifier written 3* (as 
opposed to 3 defined by -A/-»). A formula containing 3* is generally not an entity the 
deduction System can deal with: some "realising terms" are required to turn it into a 
"judgement" (this terminology is due to Weyl [15] and has been taken up by Martin-
Löf) . E.g. r realises 3 * x i p ( x ) is a judgement, which can be translated into (p(r) (cf. 
[12])-

Finally we use a recent implementation of this deduction System to give some ex-
aniples. A main point here is that, since we only use the —• V-fragment of natural 
deduction, derivations are essentially terms in the typed A-calculus extended by re-
cursion constants. Hence it is possible to use the built-in evaluation mechanism of 
S C H E M E (a LISP-dialect) to carry out the normalisation of proofs (a technical point 
here is that an inverse to the evaluation is needed to make this work; cf. [1]). This in 
turn makes it possible to use proofs as programs. 
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1. Specification 

The aim of this paper is to discuss a framework for the formal verification of Hard
ware and of functional programs. In this introductory section we want to demons trä te 
that a setting of minimal logic with constants denoting higher prder primitive recursive 
functions and with the possibility to quantify over partial functions is well-suited to 
design and verify hardware components. The reason for this is that a piece of hardware 
transforms streams of (possibly undefined) data, and hence can adequately be modelled 
by a type two object. Moreover, a process to build a circuit from given components is 
to be modelled by a function taking type two arguments and is consequently of type 
three; however, we do not pursue this matter here. 

Let us make these ideas more concrete and work out a simple example, the register 
(or D-flip-flop). Its specification is as follows. reg takes a control stream c and an input 
stream z and produces an Output stream reg(c, z), whose value at time n -f 1 should be 
the value of the input stream at the (unique) previous time point l with the property 
that the control stream at time / was true and from then on up to and including time 
n it was false. If no such time / exists, then the value is not specified. 

Let us first write out this specification more formally. We will use the variables 

z of type nat —• word for input streams 
c of type nat —» boole for control stream 
w of type word. 

possibly without the hat (i.e. c, z, w) to signalize that they ränge over total objects only, 
and with indices. Then the specification is 

Vc, z, n, /./ < n —> c ( l ) = true —> (Vm.7 < m < n —• c ( m ) = false) —> reg(c, z, n) = £(/). 

(i) 
We define reg by second order primitive recursion, as follows. 

reg(c,z, i . n a t ) 

reg(c, z, 0) 

reg(c,z,n + 1) 

From this definition we only need the last equation to prove (1). However, the füll 
definition is needed to maintain the property that every closed term of a ground type 
normalizes into a canonical term of that ground type. 

We now give an informal proof of (1), by induction on all total objects of type nat. 
Later in section 5.3 we will formalize this proof. 

For n = 0 the claim is trivial since / < 0 is false. For n + 1, assume the induction 
hypothesis, and furthermore 

/ < n + 1, 

j word 

j word 

= if (c(n), z(n), reg(c, z, n)) 

and 

c(/) = true 

V m J < m < n + 1 — c ( m ) — false. 

(2) 

(3) 
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We have to show that reg(c, £, n -f 1) = £(/). Let us distinguish cases according to the 
possible values of c(n). Note that c is a partial function, thus J _ b o o l e is a possible value 
here. 

Case c(n) = J _ b o o l e . We have to show J _ b o o l e = £(/). From / < n +1 we can conclude 
that either / < n or eise / = n. The first case is impossible, since then form (3) we get 
c(n) = false contradicting our case assumption, and the second case / = n is impossible 
too since then (2) and our case assumption lead to a contradiction. 

Case c(n) = true. We have to show i ( n ) = From / < n + 1 we can conclude 
that either / < n or eise / = n. The first case is impossible, since then form (3) we get 
c(n) = false contradicting our case assumption, and in the second case l = n the goal 
simply follows from an equality axiom. 

Case c ( n ) = false. We have to show reg(c, £, n) = £(/). By induction hypothesis it 
suffices to show l < n . Since / < n + 1 we only have to exclude / = n. But / = n is 
impossible since then (2) and our case assumption lead to a contradiction. 

2. Denotational semantics 

To give a meaning to terms involving constants like reg, we develop Gödel 's notion 
of a primitive recursive function of higher type [6] in the context of partial continuous 
functionals as introduced by Kreisel in [7] and developed mainly by Scott and Yu. Ersov 
(see [11], [3]). To make this paper readable for people not familiär with the theory of 
partial continuous functionals we have included the introductory sections of [13]. We 
then give the well-known definition of totality for partial continuous functionals and a 
simple proof (essentially due to Longo and Moggi [8]) that the equivalence relation ~ e 

on the set T6 of total functionals of type g defined by 

Zi Z 2 Vx G T e ( z \ X ~ a Z 2 x ) 

is in fact a congruence relation, i.e. compatible with application. Finally we discuss how 
our language can be extended by symbols for external, i.e. non-continous functionals, 
just as ordinary first order logic can be extended by adding function symbols. This is 
very useful for practice, since many functionals one wants to talk about (e.g. non-strict 
equality) are non-monotonic and hence non-continuous. 
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2.1 Finite functionals 

The sets \ D e \ of partial continuous functionals of type g are the proper domains for 
computable functionals (Kreisel in [7] and Ersov in [3] give convincing arguments for 
this) and also for the partial primitive recursive functionals we want to study here. In 
section 2.2 we will give a definition of the sets \ D e \ , in a form convenient for our later 
arguments. The elements of \ D e \ , i.e. the partial continuous functionals of type g , can 
be viewed as limits of certain finite functionals; such finite functionals are the subject 
of the present section. It seems best to treat them in the context of Scott's information 
Systems of [11]. 

Definit ion 1. A n i n f o r m a t i o n System consists of a set D of (concrete) data objects, a 
set Con of ßnite subsets of D such that 

u C v G Con = = > u G Con (1) 

a n d f o r any X £ D 
{ X } G Con, (2) 

a n d a r e f l e x i v e a n d transitive r e l a t i o n • on Con such that f o r a l l X \ , . . . ,-X"m G D a n d 
u G Con 

u • { * ! , . . . , X r o } « • { I 1 } A . . . A u 3 { I m } . (3) 

Note that (3) implies that from u • v\,..., u • v m we can conclude v : = v\ U . . . U 
vm G Con and u • v • Vi for i = 1, . . . , m. The u G Con are called consistent finite sets 
of data objects, or just (finite) approximations. u • v is read as "w extends u". 

Our basic information System is j D n a t , whose data objects are the natural numbers 
0,1,2,.. . , whose approximations are the singletons {0},{1},{2},... together with the 
empty set 0, and whose extension relation • is just the set theoretic inclusion D . Sim-
ilarly we construct the information System Dboole based on the boolean data objects 
false and true. 

Given information Systems D and JE, we now construct a new information System 
D —> E , as in [11]. Its data objects are the pairs ( u , v ) with u G Con/) and v G Con#. 
A finite set {(u t,v,):z G /} of data objects is consistent in D —> E if 

V / ' C / ( ( J m G C o n D = • \ J v i E C o n E ) . (4) 

In order to define the extension relation • for D —> E we first define the result of an 
application of W = G /} G C o n o - ^ E to u G Con/p: 

{(ui, Vi): i G I } u := ( J { t > u • u t}. (5) 

Then by (4) we know that W u G Con^. Obviously, application is monotone in the 
second argument, i.e. 

u • u' = > W u • W u 1 . (6) 

Now define W • W by 

W • { ( « J , ü J ) : i G .7} : < = > Vj G J.W«;. • vj. (7) 

file:///JviE
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L e m m a 2. If D and E are information Systems, then so is D —* E. 
Proof. We first show the transitivity of • . So let 

W • { ( « ; • , 6 J) • {(ulv'D-.k e ff}-

Then we have for all k G K by (6) and (7) 

It remains to show (3) for D —• E. Since is obvious we only deal with 4=. So let 
{ ( u i , ü t - ) : i G /} 3 {(wj>v>)} f ° r j € J - I* suffices to show that {(u'j,v'j):j G J} is 
consistent. So assume J' C J and ( J j € 7 , û - G Con£>. By (4) we have to show that 
Uje J' v'j ^ C o n £ . But this follows from 

U f a : u « ; - 3 « i } 3 U k - « ; 3 « i } 3 ^ • 

Note that with the above definition of the extension relation • in D —> E applica
tion is also monotone in the first argument, i.e. 

W • W =» W u • W u . (8) 

To see this observe that 

W u • { J i W u ' j i u ^ u ) } • [ j W j i u • tij} = W u . 

We will exclusively deal with the information Systems built up from -Dnat and 
^boole by the —»-Operation. More formally, define the notion of a type symbol and its 
level inductively by the clauses 

1. nat and boole are type symbols, and lev(nat) = lev(boole) = 0. 

2. If g and o are type symbols, then so is (g —* er), and 

\ev(g —> er) = max(lev(£>) + l,lev(cr)). 

As usual we write gi,..., gm —> o for (g\ —* (#2 —• . . . {gm —> &) • • •))• Note that any 
type symbol can be written uniquely in the form g\,..., gm —> nat or g\,..., gm —> 
boole. For any type symbol g define the information System De as follows. D n at and 
D b o o \ e have already been defined, and De-^a := De —* Da. The De are called Standard 
information Systems. 

Note that for Standard information Systems the exponential test (4) for consistency 
of a finite set of data objects can be replaced by a quadratic test. To see this call an 
information System coherent (see Plotkin [10, p. 210]) if for any finite set {X{: i G /} of 
data objects 

Vi , j G I . { X u X j } G Con = • { X { : i G 1} G Con. (9) 

Obviously JD n a t and î booie are coherent. Now the coherence of all Standard information 
Systems De follows from 
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L e m m a 3. If D and E a r e i n f o r m a t i o n Systems and E is coherent, then so is D —> E . 

Proof. Let { ( u i , V i ) : i G /} be finite and assume 

V t , i G I . { ( u i , V i ) , ( U J , V J ) } G C o n D ^ E . (10) 

We have to show { ( u i , V i ) : i G /} G Con£>->£. So, by (4), assume I ' Q I and !J»e/' u i ^ 
Con/). We have to show ( J i e / / v i € Con#. Now since E is coherent by assumption, it 
suffices to show Vi U Vj G Con# for all i , j G So let i , j G By assumption we have 
Ui U Uj G ConD and hence by (10) and the definition of C o n D - + E also Vi U Vj G Con^. 
• 

The elements of C o n e := Cono9, i.e. the consistent finite sets of data objects or 
approximations in D e will be called f i n i t e functionals of type g. In section 2.2 they will 
be used to define the partial continuous functionals as limits of finite functionals. Finite 
functionals will also be special partial primitive recursive functionals. 

2.2 Limits of finite functionals 

We now give the definition (due to Scott [11]) of the partial continuous functionals of 
type g, in a form suitable for our later arguments. They are taken as limits (or, more 
precisely, as ideals) of finite functionals. 

Definition 1. A n ideal x i n a n i n f o r m a t i o n System D ( w r i t t e n x G \ D \ ) is a set x of 
data objects which is consistent i n the sense that any G n i t e subset of x is i n Cono, and 
closed against i. e. if u • { X } for some f i n i t e subset u of x , then X G x . 

The crucial fact about ideals in D —> E is that they can be identified with contin
uous functions from |Z>| to \ E \ , defined as follows. 

Definition 2. Let D \ , . . . , D m : = D and E be i n f o r m a t i o n Systems. A f u n c t i o n 
f : \ D \ —• | JE71 is called continuous if i t is monotone, i.e. for a l l x , y G \ D \ 

SQy f ( x ) C f ( y ) (1) 

and satisßes the approximation property, i.e. for a l l x,y G \ D \ and v G Con£; 

v C f ( x ) = > 3üe Conö(Ü C x A v C / ( £ ) ) , (2) 

where u denotes the closure of u under i.e. ü":= { X : u • {X}}. 

It is well known that this notion of continuity is the same as the ordinary one with 
respect to the Scott-topologies of | D | and \ E \ , defined as follows. For any consistent 
(finite or infinite) set y of data objects in an information system D let 

y := {x G \ D \ : x D y} 

Then {ü:u G Cono} is the basis of a To-topology (the Scott-topology) on |D | , which 
has the properties 

3u G Cono-x = ü x is open 

and 
i C y x G {y}~ Vw G Cono(x G ü = > y G ü). 

For the proofs we refer the reader to [11]. 
We now show how ideals in D —> E can be considered as continuous functions from 

\ D \ to \ E \ . 
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L e m m a 3. L e t D and E be information Systems. T o any ideal z G \ D —• E \ we can 
associate a continuous function 

fds:\D\^\E\ 
by 

ictz(x) : = zx := [J{i> : B u C x.(u,v) G z}. (3) 

Also, to any continuous function f : \ D \ —• \ E \ we can associate an ideal 

ideal(/) e \ D ^ E \ 

by 

ideal(/) := {(u,v) : v C / ( « ) } . (4) 

T h e assignments given by ( 3 ) and ( 4 ) are inverse to each other. 

The proof is rather straightforward and not given here. • 
The ideals x G \ D 6 \ are called partial continuous functionals of type Q. Application 

of z G l-Dg-xrl to x G \ D e \ is given by (3). Note that this application Operation zx is 
continuous in both arguments, in the sense of Definition 2. 

A n important consequence of the identification of ideals z G \ D —• E \ with continu
ous functions from \ D \ to \ E \ given in Lemma 3 is the following extensionality property 
L e m m a 4. L e t D and E be information System and z,z' G \ D —• E \ . T h e n from 
zu C z'ü for all u G Con£> we can conclude z C z'. 

Proof. z = ideal(fctz) = {(u,v) : v C zu}. • 
Hence the sets \ D 6 \ of partial continuous functionals together with the application 

Operators given by (3) form a pre-structure in the sense of Friedman [4, p. 23]. (Statman 
calls this a frame in [14, p. 331]) 

Any z G \ D —> ( E —> F ) \ can be viewed as a binary function fct^ : \ D \ , \ E \ -> | F | 
defined by 

ict2

2(x,y) := f c t f c t z ( x ) (y ) . 

We want to characterize the functions which can be obtained in this way. It turns out 
that these are exactly the binary continuous functions in the sense of Definition 2. This 
is a consequence of Lemma 3 together with the following 

L e m m a 5. L e t D \ , . . . , D m , E and F be information Systems. T o any continuous 
function f : \ D \ | , . . . , | D m | , —> \ F \ we can associate a continuous 

f - : \ D 1 \ , . . . , \ D m \ - + \ E - * F \ 

by 
f - ( x i , . . . , xm) = ideal ( / (x i , . . . , x m , •)), (5) 

where f(x1,..., x m , •): | £ | -> | F | is deßned by f(xi,..., z m , -)(y) = f(xi,..., x m , y). 
Also to any continuous g : \ D \ \ , . . . , \ D m \ —> \ E —> F \ we can associate a continuous 

g + : \ D 1 \ , . . . , \ D m \ , \ E \ ^ \ F \ 

by 
g + ( x u . . . , x m , y ) = {ctgizi I m ) ( y ) . (6) 
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T h e assignments given by ( 5 ) and ( 6 ) a r e inverse to each other. 

Proof. Monotonicity and the approximation property can be verified easily, for / _ as 
well as for g + . Furthermore, we have 

(/-)+(*> y) = k t f - w ( y ) = fctideai(/(f,.))(y) = f ( x > y ) 

and 

= ideal(y+(x,-)) = ideal(fct f l ( f )) = g ( z ) , 

where, in both cases, the last equation follows from Lemma 3. • 
We now show that the sets \ D ß \ of partial continuous functionals together with the 

application Operators (3) form a model of the typed A-calculus (or a structure, in the 
terminology of Friedman [4, p. 23]). 

The terms, their types and their sets of free variables are given by 

1. Any variable x \ ( i = 0,1,2,. . . ) is a term of type g, FV(xf) = x e

{ . 

2. If r is a term of type <7, then \x\.r is a term of type g —> a , FV(Axf .r) = FV(r) \ 

{*?}• 
3. If t is a term of type g —• a and s is a term of type g, then (ts) is a term of type 

a, FV((te)) = FV(t) U FV(s). 

We write ts\S2 . . . s m for (... ((tsi)s2)... sm), and X x \ x 2 ... x m . r for Axi.Ax2 . . . A x m . r . 
A term is called closed if FV(r) = 0. 

For any term r of type a and any list x of variables of types g containing all the 
variables free in r we define a continuous function 

\S~r\:\Dei\,...,\Dtm\-*\D<r\ 

by induction on r, as follows. 

1. |x i—> | is the t-th projection function, which is clearly continuous. 

2. \x i—• \y.r\ := |x, y t—> r |_ (cf. Lemma 5). 

3. |x *-¥ ts\ is the result of substituting the functions |x »-> t\ and |x ^ s\ in the 
continuous binary application function. Clearly the resulting function is continuous. 

Now we can define the value of a term r with free variables among x under an assignment 
of partial continuous functionals x to the variables x to be just |x i—• r|x. In particular, 
for any closed term r of type g we have defined its value |r| € \ D e \ . 
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2.3 Primitive recursion 

There are far more continuous functions / : \ D $ \ —• \ D a \ than just those given by terms 
r of the typed A-calculus. Of special importance (and much studied in the literature, 
e.g. in [11], [3], [9]) are the computable ones, which by definition are those given by 
recursively enumerable ideals of finite functionals (in l-D^^I). Here we want to deal 
with the more restricted (and hence better to analyze) notion of a primitive recursive 
functional, due to Gödel . Now what are primitive recursive functions / : \ D $ \ —» \ D a \ ^ 
It seems best to define them by means of an extension of the notion of a term in the 
typed A-calculus. 

For any type symbol g, let countably many variables x f be given. Also, for any 
finite functional u G C o n e , we introduce a constant [ u ] e . The constant [m] n a t (denoting 
the numeral m) is abbreviated by m n a t or just m, and the constant [0]e (denoting the 
totally undefined finite functional in Con e ) is abbreviated by J _ e . We further introduce 
a constant N for the successor function. Finally, for any type symbol g, we introduce a 
recursion constant R e . The primitive recursive terms, their types and their sets of free 
variables are given by 

la. xf is a primitive recursive term of type g, FV(xf) = xf. 

Ib. [ u ] e is a primitive recursive term of type g, F V ( [ u ] e ) = 0. 

lc. N is a primitive recursive term of type nat —• nat, F V ( N ) = 0. 

Id. R e is a primitive recursive term of type nat, g, (nat, g —* g) —• g, F V ( R e ) = 0. 

2. If r is a primitive recursive term of type <j, then X x f . r is a primitive recursive term 
of type g - <j, FV(Axf .r) = FV(r) \ { » f } . 

3. If t is a primitive recursive term of type g —> a and s is a primitive recursive term 
of type g, then ts is a primitive recursive term of type er, FV(ts) = FV(t) U FV(.s). 

In order to define the value of a primitive recursive term we first have to define a 
value \Re\ G |£) nat,e,(na.t.,e—Q)-*Q\ ^ o r e a c n recursion constant R e . This can be done as 
follows. For any nonnegative integer m, define a function 

h m : \ D ß l \ D M i t Q ^ e \ - * \ D e \ 

by 

f*o(y,*) = V 
hm+i(y,z) = z{m}{hm{y,z)). 

Clearly each h m is continuous, by induction on m. Now define a function 

/ • |-^nat| —+ |^c,(nat,e-mat)-»ß| 

by 

/(0) = 0 
/({m}) = ( f c m ) - - , 

using Lemma 5 of the previous subsection. Obviously / is continuous. Finally let 
\Rß\ := / _ . We then have \ R e \ + + + ( x , y , z) = / + + ( £ , y , z ) , and from the definition of / 
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we obtain 

| Ä , | + + + ( 0 , y , z ) 

| Ä , | + + + ( { 0 } , y , z ) 

| Ä j + + + ( { m + l} ,y,z) 

0, 
My>*) = y, 
h m + x ( y , z ) = * { m } ( | Ä j + + + ( { r o } , y , z ) ) . 

Exactly as for terms of the typed A-calculus (in section 2.2) we can now define, for 
any primitive recursive term r of type a and any list x of variables of types g containing 
all the variables free in r, a continuous function \x t-+ r\: \ D e i | , . . . , |J5 t f m | —» |«D<y|, by 
induction on r. Just add, in clause 1, that \x i—• [ti] t f| is the constant function with 
value ü~ G \ D e \ > \x N \ is the constant function with value the successor function 
G |D n a t—nat | (which is clearly continuous), and \x \—• R e \ is the constant function with 
value \ R e \ G | - D n a t f f f i ( n a t | f f _ t f ) _ f f | defined above. 

Now we define the v a l u e of a primitive recursive term r with the free variables 
among x under an assignment of partial continuous functionals x to the variables x to 
be just \x »—• r|x. In particular, for any closed primitive recursive term r of type g we 
have defined its value \r\ G l-DJ- Let 

| £ ) ß | P r := { \ r \ : r closed primitive recursive term of type g} C \ D e \ . 

The elements of | - D e | p r are called p a r t i a l p r i m i t i v e recursive f u n c t i o n a l s . Note that any 
element of \ D e - , a \ p r can be viewed — via Lemma 5 of the previous subsection — as a 
continuous function \ D e \ —• \ D a \ . 

It seems worthwile to also note that any partial primitive recursive functional when 
viewed as a function / : \ D Q \ —• \ D a \ is defined on all of \ D e \ , i.e. on all partial continuous 
functionals of type g , not just on the subset | p r . of type g . This seems to be desirable, 
since e.g. a primitive recursive Operation on the reals like the exponential function ex 

should be defined on arbitrary Cauchy sequences of rationals, not just on the primitive 
recursive ones. 

The sets | ^ e | p r C \ D e \ are closed against application, since the primitive recursive 
terms are. Now consider any System of sets satisfying | ^ c | p r Q 9 R e Q \ D Q \ ANC^ 
closed against application. By Lemma 4 of the previous subsection we know that the 
extensionality condition holds for {9Jttf}, i.e. if x,y G dJle-,a and Vz G $ J l e ( x z = yz) 
then x = y. Hence the sets 9 J l e form a pre-structure in the sense of Friedman. They 
also form a model of the typed A-calculus, since the | £>e | p r do. We view such structures 

as the intended models of theories involving primitive recursive terms. 
Any primitive recursive term r can be transformed into a normal form r* with the 

same value and such that this normal form is a constant provided the original term 
is closed and of a ground type. This is not completely obvious, since the presence of 
constants [ { ( u i , V { ) : i G /}] for finite functionals creates some difficulties. We must be 
able to convert e.g. [{(ut,i>i):i G -0]r, and the result should have as its value the 
supremum of all V{ with i such that the value of r extends In order to deal with 
this difficulty we must extend our notion of a primitive recursive term by some more 
term-forming Operations. For the details we refer the reader to [13]. 
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2.4 Total functionals 

B y induction on the type g we define when a function of type g is to be called total: 
x G |-Dnat| is total if it is of the form {ra}, x G |A>oole| is total if it is of tbe form {true} 
or {false}, z G IZ^—^I is total if for any total x G \ D Q \ the value zx G | A r | is also total. 

Frequently the total functions are the only ones we are really interested in (but still 
we need the partial ones, since any total function of type g —* a has \ D e \ as its domain). 
E .g . , a real is a total Cauchy sequence of rationals. 

The sets T6 of total functions together with the application Operations can be made 
into a pre-structure, by di vi ding them through the following equivalence relation. Let 

{m} ~ n a t { n } m = n 

{p} -boole {q} P = q 

Z \ ~ E ^ K , Z 2 Vx G T Q . Z I X ~ „ Z 2 X 

We must show that the ~ c are in fact a congruence relation, i.e. compatible with 
application. We prove that by a simple argument essentially due to Longo and Moggi 
[8]. First we need an auxiliary lemma, which says that with z\ and z2 also z\ PI z2 (the 
intersection of the ideals) is total. 

L e m m a . fct Z l n 2 2 (x) = fct Z l(x) fl fct 2 2(x). 

Proof. This follows easily from the definition of fct z(x). We have 

i c t Z i n z 2 ( x ) = [J{v: 3 u C x : ( u , v ) G z\ H z2} 

f c t Z i ( x ) = [J{v:3u C x : ( u , v ) G Z{] 

Then C is immediate, since any v from the upper union occurs (with the same u ) in 
both lower unions. For D y let X G Vi, U{ C x and (u,-,t;,-) G Z{ for i = 1,2. Let 
u : = u\ U u2 C x . Then also (u, { X } ) G z%. • 

L e m m a . F o r total x,y,z we have 

x ~ß y zx ~(j zy 

Proof. We first show that from x ~Q y we can conclude that x PI y is total. This is true 
since by the last lemma, for total z of type p where p = p r with lev(r) = 0, 

( x fl y)z = x z D yz — xz — yz. 

Then we obtain, for total 2, 

zxz = z(x fl y)z = zyz 

and hence zx ~a zy. • 
A continuous function / : \ D ß l |,..., \ D 6 m \ —> \ D a \ is called total if it maps total 

arguments into a total value. It follows easily from the definitions that with / also / _ 
and /+ from section 2.2 are total. 

Examples of total functions are | Ä £ a t | and | i ?^ o o l e | . Hence for any primitive recur
sive term r built from these, from TV and only total constants [u] we have that \x h-* r|x 
is total provided the x are. 
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2.5 External functionals 

We now extend our language by symbols for e x t e r n a l , i.e. non-continuous functions. 
Examples are definedness 

<5nat--Dnat —> -^boole 

- / \ _ f true, if x is defined; 
ö n a t l « ) - j f a l s e j o t h e r w i s e . 

and non-strict equality 
= n a t « - ^ n a t * -^nat * -^boole? 

and similarly £boole and =boole- This is to be done in such a way that the semantics 
is not changed. We clearly have to restrict the syntax then, since unrestricted use 
of A-abstraction, e.g. in X x . x — 0, would lead to terms without a value (since only 
contimuous functions can be values). 

Let # be a set of function symbols of "functionality" 

/ : (^ l , . . . ,^m) -» <T. 

The $-terms, their types, their sets of f r e e variables and their sets of nonabstractable 
variables are given by 

la. x? is an J-term of type g , FV(xf) = x \ , nonabs(xf) = 0. 

Ib. [ u ] e is an ̂ -term of type g , F V ( [ u ] e ) = nonabs([w]e) = 0. 

lc. N is an #-term of type nat —> nat, FV(iV) = nonabs(JV) = 0. 

Id. R e is an 5-term of type nat, g , (nat, g —• g) —• g , F V ( R e ) = nonabs(J?g) = 0. 

2. If r is an 5~term of type a and x £ nonabs(r), then Axf .r is an ^-term of type 
g —• er, FV(Axf .r) = FV(r) \ {x\}, nonabs(Azf .r) = nonabs(r). 

3. If t is an J-term of type g —> a and s is an J-term of type g , then £s is an 5-term 
of type a , F V ( t s ) = FV(t) U FV(a). nonabs((*s)) = nonabs(t) U nonabs(s), 

4. (Function application) If / G 5 is a function symbol of functionality ( g i , . . . , £ m ) —* 
er and r i , . . . , r m are J-terms of types g \ , . . . , g m , then f r \ . . . r m is an 5_term of 
type a , F V ( f n . . . r T O ) = nonabs(/n . . . r m ) = FV(r j ) U • • • U F V ( r m ) . 

Note that / is not an J-term. A variable x is called abstractable in r if x £ nonabs(r). 
In order to give a semantics for J-terms, we must assume that we have a (possibly 

non-continuous) 
f : | D f l l | , . . . , | i ? , J - | Z > a | 

for any / : ( g i , . . . , g m ) —• a E $. We now define, for any ̂ -term r of type a , any list x 
of variables of types g containing all abstractable but no nonabstractable free variables 
of r (i.e. { x } D FV(r) \ nonabs(r), { x } fl nonabs(r) = 0) and any assignment 77 of 
continuous functions to the nonabstractable variables in r, a continuous function 

\x»r\1:\D6l\,...,\Dßm\^\D<T\ 

by induction on r. This definition is very similar to the corresponding definition for 
terms of the typed A-calculus given in section 2.2, so we only treat the clauses for 
A-abstraction and function application. 



301 

2. Let r be an $-term and x £ nonabs(r). Then \x h-> \ x . r \ r j : = \xyx i—• r|_77. 

4. Let / r i . . . r m with / G J be an J-term. Since fr\ . . . r m has no abstractable 
variables, \x t-> / n . . . r m | r 7 is defined to be a constant function whose value is 
given as follows. Let ä?t be a list of all abstractable free variables in r,- (i.e. FV(r , ) \ 
nonabs(rj)), yi be a list of all nonabstractable free variables in r; (i.e. nonabs(r,)) 
and 77, be the restriction of 77 to y,. Then the desired value is 

X m 1 * 

Note that f is generally "external", i.e. there need not be an a £ \ D e i - * m . m - > e m - + a \ 
such that 

abi . . . 6 m = f ( 6 i , . . . , 6 m ) 

for all 6. 

Note also that the set of ^-terms is closed against Substitution. 

3. Logic 
We now describe a formal System of higher order arithmetic, with the domains \ D P \ 
of higher order continuous functions as its intended model. The ground types are (at 
least) nat and boole, so we require induction axioms for both types. 

We think of an atomic formula as being given by a boolean term. Hence, by boolean 
induction, we can prove stability —> A for any atomic formula A , and from this we 
can conclude the stability -<-•</> —> <p of an arbitrary formula (p built from atoms by —» 
and V, by a simple (meta-) induction on requiring only introduction and elimination 
rules for —> and V. Since falsity _L is present (the atom given by the boolean constant 
false), we can define negation disjunction <p V i p and the existential quantifier 3xtp as 
usual. In this way we get the strength of classical logic in spite of the fact that we only 
have the rules — • + , — V + , V~ of minimal logic as our logical basis. This in turn makes 
it possible to represent proofs as A-terms (with — • + , V + corresponding to abstraction 
and — • ~ , V ~ corresponding to application) with constants for induction axioms, hence 
the normalization theorem can be proved by a straightforward extension of the argument 
for primitive recursive terms (cf. section 2.3). 

Since we want to deal with computable higher order functions it is appropriate to 
let our quantifiers ränge over over the partial continuous functions (cf section 2). On the 
other hand, in practice one often is interested in total functions only. Thus we must be 
able to express in our language the totality of a function. Using the idea of "external" 
functions discussed in section 2.5 we can do that easily: we first introduce a constant 
for an external function 6 n a t : -Dnat —> £>boole defined by 

ß (x\ _ / t r u e > if x is defined; 
n I false, otherwise, 

and then use this constant to define totality of an arbitrary function of type p as in 
section 2.4. 

However, from the practical point of view of readability of formulas it is a nuisance 
to be forced to restrict quantifiers any time one wants to talk about total functions. 

file:///x.r/rj
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Hence we use two sorts of variables for any type />, one — written xp — for arbitrary 
functions and one — written xp — for total functions of type p . 

Let us now formally introduce the language. For any type p , we have infinitely 
many variables £q, X P , x£ , . . . intended to ränge over arbitrary continuous functions and 
xj , X P , x £ , . . . intended to ränge over total continuous functions. We assume that a set € 
of program constants is given, each of an arbitrary type p . They are intended to denote 
special primitive recursive functionals. The constants [tt]p, N and R p would suffice here; 
however, it is useful in practice to also allow other constants. Furthermore, we assume 
that a set J of function symbols is given, each of a "functionality" (piy..., p m ) —* a . 
They are intended to denote external, i.e. non-continuous functionals. We always 
require that the function symbols £ n at>£boole for definedness and = nat,=boole for non-
strict equality are available, as defined in section 2.5. We then define ^-terms and their 
values, just as in section 2.5. 

In order to define the normal form of J-terms, we must state conversion rules for 
all program constants and function symbols of our language. E.g. for <5nat we have that 
6(JL n a t ) converts into false and for any "total" term r (seevbelow) S ( r ) converts into 
true. Similarly, for =t>ooie have that 

r = r converts into true, 
j_boole = s c o n v e r t s into false if s is total, 
r = J L b o o l e converts into false if r is total, 

true = false converts into false, 
false = true converts into true. 

We require that the resulting notion of (Standard) reduction has the properties that 

• the reduction sequence for any term r terminates with a normal form r*, 

• r* has the same value as r, and 

• any closed term of a ground type has a constant as its normal form. 

These properties can be proved easily in Standard examples (e.g. for the examples in 
section 5), by the methods of [13]. We do not try here to formulate some general criteria; 
cf [2] for related work. 

In addition, we define the degree of totality tdeg(r) of an J-term r. The intention 
is that tdeg(r) should be 2 if the value |x h-> r\ of r is "supertotal", i.e. defined on a l l 
arguments, 1 if \r\ is total, i.e. defined on total arguments, and 0 otherwise. So assume 
that for all program constants and function symbols a degree of totality is given. We 
then define tdeg(x) = 0, tdeg(x) = 1, tdeg([u]p) = 0, tdeg(TV) = t d e g ( Ä p ) = 1, 
tdeg(Axr) = tdeg(r), 

t d e K « 5 ) = { 2'. iftdeg(<) = 2; 
Ö V } \ min(tdeg(tf), tdeg(s)), otherwise 

and 

tdecf fn r \ - i % if / has degree t d e g / = 2; 
e g u 1 * • * m ) ~ \ min(tdeg /, tdeg(ri) , . . . , tdeg(rm)), otherwise, 

where of course we assume that <$nat,<$boole, = n a t and =boole have the degree of totality 
2. We call a term total if tdeg(r) > 0. 
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A n atomic formula is built from a total term r of type boole, and is written atom(r) 
or just r. Falsity, i.e. atom(false), is denoted by J_, and similarly truth, i.e. atom(true), 
is denoted by T . Formulas are built from atomic formulas by <p —> xp and Vx p <p as well 
as Wxp(p (whereas on the term side only \xpr is allowed and not X x p r ) . As usual we 
define 

-•y> := (p -> _L, 

<p v xp := -xp —* ~^xp —-> _L, 

3x</? := -A/x-«y>. 
As our deductive formalism we choose Gentzen's natural deduction system, more 

precisely just introduction and elimination rules for —* and V. For the elimination rule 
V ~ we have to take into account that we have two sorts of variables here, and hence we 
have the two rules 

—tt and —rV if tdeg(r) > 0. 
ip[r] <p[r] 

In order to express the intended ränge of the total variables properly we also need 
definedness axioms 

Vxy?(x) —> \ f x . S ( x ) —> ( f ( x ) . 

The other direction can be derived from an obvious truth axiom T , since 8 { r ) converts 
into true if tdeg(r) > 0. 

Our induction axioms come in two forms for each of the ground types nat and 
boole, since we have variables for partial and for total objects: 

( p ( 0 ) —• (Vn.</?(n) —* <p(n + 1)) —+ Vn^(n), 

V?(J_nat) - > ip(Q) -> (Vn.p(n) - » y>(n + 1)) -> Vny>(n), 

<̂ >(true) —> y> (false) —* Vp</?(p), 

^ b o o l e ) ^(t rue) v?(false) Vpp(p)-

Finally we need extensionality axioms (i.e. axioms postulating the compatibility of 

extensional equality with application). To formulate them we first have to define exten-

sional equality = p for an arbitrary type p, by 

Z\ = p — * z2 := \fxp(z\x = a z2x). 

Then we require as axioms, for an arbitrary type p —• er, 

x = p y -* zx = a zy (Ext p — a ) 

and also for any function symbol / of functionality ( p i , . . . , p m ) —> a 

* \ = p i V i -> • • • = p m ~> / * = er l E x t / ) 

As already mentioned, we can now use boolean induction to prove 

N/p.-i—>p —• p 

and hence the stability —• A for any atomic formula A . Since 

(-1-11/7 —> t/>) —• -i-i(y? —• z/>) —> <p —> xp 

(—1——•» v?) —> —\—t\/x(p —• Vx<p 

(-»-><p —• <p) —• -i-iVx<p —• Vx<p 

can be derived easily, we get the stability ->-><p —• y> for an arbitrary formula (/?, and 
hence classical logic. 
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4. Realizing terms 
We now want to argue that the formal System of higher order arithmetic introduced 
in the previous section is indeed capable of formalizing constructive proofs, although 
it does not contain a strong existential quantifier 3*. The reason is simply that a 
constructive proof of Vx3*y<p(x, y) contains an algorithm to construct such a y from a 
given x. Now if we have a "balanced" System where the induction axioms are of the 
same proof theoretic strength as the principles of recursive definitions allowed, then this 
algorithm can in fact be formulated as a term of our language, and what we actually 
have proved is the "judgement" (Urteil) 

r realizes Vx3*y<p(x, y), 

which just means Vx<p(x,rx). This simple idea, which in fact is due to Weyl [15], can 
easily be extended to arbitrary formulas built up with —• , V, 3*; this is carried out below. 

To summarize, what we achieve is a more explicit formulation of constructive math-
ematics: not just formulas containing the strong existential quantifier 3*, but judge-
ments including realizing terms. These judgements can then be translated (interpreted) 
in the —• V-fragment of our higher order arithmetical language, without changing its 
intended meaning. 

A classical proof of Vx3y<p(x,y) generally does not yield a program to compute y 
from x . The reason for this is that there might be a universal quantifier Vz right after 
3y, i.e. after -«Vy-», and this makes it possible that an assumption 

Vy-»Vzr/>(x, y, z) 

is instantiated with a non-constant term containing critical variables which are bound 
later by Wz. 

It is well known that this is not just a technical difficulty: if T denotes Kleene's 
T-predicate, then 

Vn3mVfc.T(ri, n, k ) —• T(n , n, m) 

is trivially provable even in minimal logic (with 3m defined as -iVm->, i.e. in classical 
logic), but there is no computable function / satisfying 

Vn, k . T ( n y n, k ) —• T(n , n, /(n)), 

for then 3fcT(n,n,fc) would be decidable. 
We now define judgements to be expressions of the form 

(to be read r P l , . . . , rftp realize <p), where <p is a formula built from atomic formulas 
using —>, V and 3*, and p i , . . . , p m = types(<p) are a sequence of types associated with 
<p, defined as follows. 

types(A) = empty, 

and if types(<p) = p and types(V>) = v\,..., <j„ we let 

types(<p -> x/>) = p ax,... ,p an, 

types(VxPV>(x)) = types(Vxp^(x)) = p - > a\,..., p - > crn, 

types(3*xPV>(a:)) = types(3*xp^(x)) = p, c*\,..., an. 
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To give some examples, let x,y, z be of type nat. Then 

types(Vx3*yA(x, y)) = nat —* nat, 

types(Vx3*y3*zA(x, y, z)) = (nat —• nat), (nat —• nat), 

types(Vx3*yA(x,y) —> 3 * z A i ( z ) ) = (nat —• nat) —» nat. 

Note that types(tp) = empty if ip is a Harrop formula (i.e. contains 3* in premisses of 
—» only). 

For any judgement we now define its modified realizability interpretation, i.e. its 
translation in our 3*-free language of higher order arithmetic. 

(A(f)) 7 := A ( r ) , 

( n , . . . , r n G ^ - ^ ^ ) 7 := Vx(x E <p)7 -> ( n x , . . . , r n x E V>)7, 

( r i , . . . , r n E V x p . t / > ( x ) ) 7 := V x p ( r i x , . . . , rnx E r p ( x ) ) 1 , 

( n , . . . , r „ E Vxp.t/>(x))7 := V x p ( r i x , . . . , r n x E i p ( x ) ) 1 , 

( r , 5 i , . . . , 5 n E 3*xpt/>(x))7 := ( s i , . . . , s n E </>(r))7, 

( r , 5 i , . . . , s n E 3*xp</>(x))7 := ( s i , . . . , s „ E V>(r))7-

Note that (r E y?)7 does not contain 3* any more. 

5. Examples 

We now want to make the abstract material treated up to now somewhat more concrete 
and give some examples of how the —• V-fragment of natural deduction extended by 
some induction Schemata can actually be used to carry out some interactive proofs. Here 
we use an implemetation of this formal System written in S C H E M E . We have chosen 
this language since it is rather easy then to use the built-in evaluation mechanism of 
S C H E M E to carry out the normalisation of proofs (a technical point here is that an 
inverse to the evaluation is needed to make this work; cf. [1]). This in turn makes it 
possible to use proofs as programs. 
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5.1 Quotient and remainder: proofs as programs 

This is an example of the proofs-as-programs paradigm. A proof of 

V m , n3fc, I n = ( m + 1) * k + / A / < m 4-1 

is to be used as a program to divide n by m + 1 with remainder. 
In order to carry out an interactive proof we first have to set the goal. Note that 

3 has to be replaced by - i V - i here. (pf means parse-formula) 

(make-goal '? 

(pf " a l l m , n . ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F")) 

The machine responds by printing 

; ? : a l l m , n . ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F 

We clearly want to use induction on n. Hence we reduce our goal to the subformula 
starting with V n by assuming that we have such an m . 

(assume ,m) 

;ok, under these assumptions ve have the nev goal 
;?-KERNEL: a l l n . ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F from m 

We now choose to apply the appropriate induction axiom by typing (ind) and get as 
response two new goals corresponding to the base and the step case. 

;?-KERNEL-BASE: ( a l l k,l.0=(m+l)*k+l -> Km+1 -> F) -> F from m 
;?-KERNEL-STEP: a l l n . ( ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F) -> 

( a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F) -> F from m 

The last goal ?-KERNEL-STEP is on the top of our goal stack, hence we have to work on 
it first. We introduce names for the bound variable n, the induction hypothesis and the 
premise of the remaining implication. 

(assume 'n 'IH 'Hl) 

;ok, under these assumptions we have the new goal 
;?-KERNEL-STEP-KERNEL: F from 
; m n I H : ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F 
; H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 

Here it is advisable to use the induction hypothesis to prove this goal; hence we have 
to introduce another goal symbol for its premise. 

(use-with 'IH '?!) 
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;ok, ?-KERNEL-STEP-KERNEL can be obtained from 
;?1: a l l k,l.n=(m+l)*k+l -> Km+1 -> F from 
; m n I H : ( a l l k,l.n=(m+l)*k+l -> Km+1 -> F) -> F 
; H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 

We can now drop the induction hypothesis, since it is not used any more. 

(drop >IH) 

;ok, we now have the new goal 

;?1-DR0PPED: a l l k,l.n=(m+l)*k+l -> Km+1 -> F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 

This means that we have to prove that there is no Ar, / for n assuming that there is no 
k', V for n + 1. So let us assume first that we have some fc, / for n: 

(assume >k '1 >H2 >H3) 

;ok, under these assumptions we have the new goal 
;?1-DR0PPED-KERNEL: F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H2:n=(m+l)*k+l 
; H3:Km+l 

At this point we have to remember how the mathematical proof would go. We have 
to distinguish cases here according to whether our given / < m + 1 is in fact < m or 
eise — m . In the first case we let k' = h and /' = / + 1, and in the second case we let 
k' = k + 1 and /' = 0. To carry out this case distinction within our System we use 

Vp, m, /./ < m + 1 —> (/ < m —• p) —• (/ = m —> p) —> p 

as an auxiliary lemma, which can be proved separately by induction on m and an 
auxiliary induction on /. (This formula corresponds to Vp, m, /./ < m +1 —* (/ < m V l = 
m) with the well-known second order definition <p V ip := Vp.(<p —> p) —» —• p) —> p.) 

A general remark is appropriate here. Kreisel and Goad [5] have argued that purely 
universal lemmata like this have no computational content and hence their proofs can 
be omitted from a proof to be used as a program. This is true, but there is an important 
efficiency aspect here: if we insert this lemma just as an assumption constant into our 
proof, then after normalization of the instantiated proof this constant will appear in 
huge numbers, since it cannot be reduced away. Hence we insert a complete proof 
less-suc-proof here. The second and third premise give rise to two new goals. 

(use-with less-suc-proof ' fa l se 'm '1 'H3 '?< '?=) 

;ok, ?1-DROPPED-KERNEL can be obtained from 
;?=: l=m -> F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
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; k 1 H2:n=(m+l)*k+l 
; H3:Km+l 
;?<: K m -> F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H 2 : n « ( m + l ) * k + l 
; H3:Km+l 

Now our active goal is ?<. We first drop the unnecessary hypothesis H3 by (drop 'H3) 
and then introduce K m as a new hypothesis H3 by (assume 'H3). So we get 

;ok, under these assumptions we have the nev goal 
;?<-DROPPED-KERNEL: F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H2:n=(m+l)*k+l 
; H3:Km 

Since we are in the case K m here, we proceed according to the outline above and 
use our hypothesis Hl with k' = k and /' = / + 1. Its two premises then become 
n+l=(m+l)*k+l+l and 1+Km+l, which are recognized by the System to be equivalent 
to H2 and H3, respectively. Hence we type (pt means parse term) 

(use-with ' H l 'k (pt "1+1") 'H2 'H3) 

;ok, ?<-DR0PPED-KERNEL i s proved. The act ive goal now i s 
;?=: l=m -> F from 
; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H2:n=(m+l)*k+l 
; H3:Km+l 

Again we first drop the unnecessary hypothesis H3 by (drop 'H3) and then introduce 
l=m as a new hypothesis H3 by (assume 'H3). So we get 

;ok, under these assumptions we have the new goal 
;?=-DROPPED-KERNEL: F from 
; m n H l : a l l k,l,n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H2:n=(m+l)*k+l 
; H3:l=m 

According to the outline above we now use our hypothesis Hl with k' = k + 1 and 
/' = 0. Its two premises then become n+l=(m+l)*(k+l)+0 and 0<m+l. The second one 
is recognized by the System to be equivalent to truth , and the first one is treated as a 
new goal. 

(use-with ' H l (pt "k+1") 0 '?1 truth-axiom) 

;ok, ?=-DROPPED-KERNEL can be obtained from 
;?1: n+l=(m+l)*(k+l)+0 from 
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; m n H l : a l l k,l.n+l=(m+l)*k+l -> Km+1 -> F 
; k 1 H2:n=(m+l)*k+l 
; H3:l=m 
;No value 

After dropping Hl we normalize this goal, which in this case means that the obvious 
arithmetic simplifications are carried out. Hence we type (drop 'Hl) and then (ng) 
(for normalize goal) and get 

;ok, the normalized goal i s 
;?1-DR0PPED-NF: n=m*k+k+m from 
; m n k 1 H2:n=m*k+k+l 
; H3:l=m 

We now use transitivity of equality (which again is proved separately by inductions) 

(use-with trans-=-proof 'n (pt "m*k+k+l") (pt "m*k+k+m") 'H2 >?2) 

;ok, 71-DROPPED-NF can be obtained from 
;?2: m*k+k+l=m*k+k+m from 
; m n k 1 H2:n=m*k+k+l 
; H3:l=m 

This goal clearly rewrites to l=m, which is one of our hypotheses. This triviality at last 
is recognized by the System: 

(immed) 

;ok, ?2-NF i s immediate from extended context. The act ive goal i s 
;7-KERNEL-BASE: ( a l l k,l.0=(m+l)*k+l -> Km+1 -> F) -> F from m 

The base case is clearly satisfied by k = l = 0. So we conclude our interactive proof by 

(assume 'Hl) 

;ok, under these assumptions we have the new goal 
;?-KERNEL-BASE-KERNEL: F from 

; m H l : a l l k,1.0=(m+l)*k+l -> Km+1 -> F 

(use-with ' H l 0 0 truth-axiom truth-axiom) 

;ok, T-KERNEL-BASE-KERNEL i s proved. Proof f in i shed . 

Since in the process of carrying out the interactive proof the System has built up in-
ternally a "partial" proof (consisting of the context, the end formula and a type free 
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A-term), we have at this stage the completed proof (held in a global variable pp) avail-
able. We now normalize it (np = normalize proof) 

(define npp (np pp)) 

This normalized proof of 

Vm, n3k, I n = (m + 1) * k + l A / < m 4-1 

can now be instantiated to particular numbers (e.g. 16 and 123 if we wish to divide 123 
by 17) and then be normalized again. 

(define nppl23/17 (np (elim npp 16 123))) 

The result is a rather short proof, which allows it to read off immediately the quotient 
and the remainder (dp = display proof) 

(dp nppl23/17) 

; a l l k,1.123=(16+l)*k+l -> K16+1 -> F by assumption ul31 
; a l l 1.123=(16+1)*7+1 -> K16+1 -> F by a l l - e l i m 
;...123=(16+l)*7+4 -> 4<16+1 -> F by a l l - e l i m 
; . . . T by truth-axiom-symbol 
;..4<16+1 -> F by imp-elim 
; . . T by truth-axiom-symbol 
; . F by imp-elim 
; ( a l l k,1.123=(16+l)*k+l -> K16+1 -> F) -> F by ->- intro U131 

In the second and third line k and / are instantiated by 7 (the quotient) and 4 (the 
remainder), respectively. 
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5.2 Quotient and remainder: proofs about programs 

Instead of using the proof of 

Vm, n3k, /.n = (m + l)*fc + / A / < m + l 

as a program, we also could more directly turn the algorithmic idea of the proof into a 
program and then prove that the values of the program at arbitrary n, m are pairs Ar, l 
with the properties required. This can be done easily in our setting, since any higher 
order term of our language can be evaluated on numeric arguments (i.e. used as a 
program) as well as on variable arguments (i.e. used in a proof dealing with variables). 

A slight point to note here is that for efficiency reasons it is not advisable to 
define two terms here by simultaneous recursion (one for the quotient and one for the 
remainder), since then their evaluation leads to excessive (in fact, exponentially many) 
recalculations. Rather, one should define a single pair-valued function here, which we 
call qr. Accordingly we denote the left projection by quot and the right projection by 
rem. The recursive definition of qr clearly expresses the algorithmic idea of the proof 
above. (c-Q = construct pair) 

(define qr 
(lambda (n) 

(lambda (m) 
(cond ((zero-nat? n) (c-<0 0 0)) 

((suc-nat? n) 
( let* ((prev-qr ((qr (pred-nat n)) m)) 

(prev-quot (quot prev-qr)) 
(prev-rem (rem prev-qr)) ) 

( c - i f -na t (<-nat prev-rem m) 
(c-Q prev-quot (c-+ prev-rem 1)) 
(c-G (c-+ prev-quot 1) 0)))) 

(eise ( l i s t ( l i s t »qr n) m)))))) 

The goal to be proved is 

a l l m,n.n=(m+l)*(quot(qr n m))+(rem(qr n m)) & (rem(qr n m))<m+l 

We do not want to comment in detail on the interactive proof of this goal here. It can be 
done easily, again using induction on n and arguing by cases. In the induction step we 
make use of the fact that qr(n + l ,m) rewrites to an if-then-else term according to its 
definition above. The same term qr can of course be used as a program and evaluated 
at numerical arguments, which is somewhat faster than by normalizing the instantiated 
proof as above. 
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5.3 Register: terms as hardware 

Here we come back to the example from section 1, the register. Its specification was 

Vc, z, n, /./ < n —+ c ( l ) = true —• (Vm./ < m < n —> c(m) = false) —• reg(c, z, n) = £(/). 

(*) 
The first thing to note is that if we want to apply the proofs-as-programs paradigm 

here, i.e. obtain a program to compute reg from a proof of 

Vc, i , n 3 w V l . l < n —> c(/) = true —• (Vm./ < m < n —• c(m) = false) —» u) = z(/), 

then a proof of this will generally not yield a program to compute w from c, i and n. 
As dicussed in section 4, the reason for this is the universal quantifier V / after 3w, i.e. 
after -»Vu>-«, for this makes it possible that an assumption 

Vu>-iV/y>(c, z, n, tD, /) 

is instantiated with a non-constant term containing critical variables which are bound 
later by V / . 

In our case here the Situation is better since the universal quantifier V / is in fact 
bounded, and hence the formula starting with V / . / < n —• • • • could be replaced by a 
recursively defined predicate P (c , z, n, w ) . With this modification a proof of our specifi
cation could be used as a program. However, since we have already dealt with such an 
example in section 5.1, we do not pursue this matter any further here. 

What we rather want to do in the present section is to treat our example according 
to the proofs-about-programs paradigm, for this gives an opportunity to d e m o n s t r ä t e 

• how to deal within our System with primitive recursively defined second order 
program constants and variables for partial functions, and 

• how to translate such a constant into a circuit. 

We first have to extend our language by a new program constant reg of the appropriate 
type. Then reg is defined (i.e. made into an operating constant) by 

(define reg 
(lambda (c) (lambda ( i ) (lambda (n) 

(cond ((and (suc-nat? n) ( synt- tota l? n)) 
( le t ((n-1 (pred-nat n))) 

(c- i f -word (c n-1) ( i n-1) (((reg c) i ) n-1)))) 
(eise 

( l i s t ( l i s t ( l i s t 'reg 
(obj-to-term c (c-arrow 'nat 'boole))) 

(obj-to-term i (c-arrow 'nat 'word))) 
n ) ) ) ) ) ) ) 

We now set the goal by 

(make-goal '? 
(pf " a l l n , l , c A , r . K n -> (c~ l)=true -> 
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( a l l m.Km -> m<n -> (c~ m)*false) -> 
(reg c~ i ~ n)=(i~ 1)")) 

then type (ind) to express that we want to prove it by induction on the outermost 
quantified variable n. First we have to prove the induction step, which is of the form 

Vn.V/, c, i<p(n, /, c, i) —• V/, c, itp(n + 1, /, c, z). 

Hence we give names to the generalized variables and premises of the induction step by 

(assume 'n 'IH '1 'c~ ' i ~ ' H l 'H2 'H3) 

The result is 

;ok, under these assumptions we have the new goal 
;?-STEP-KERNEL: (reg c~ i~(n+l)) = ( i~ 1) from 
; n I H : a l l l , c ~ , i ~ . K n -> (c~ l)=true -> 

( a l l m.Km -> m<n -> (c~ m)=false) -> (reg c~ i " n)=(i~ 1) 
; 1 c~ i ~ H l : K n + l 
; H2:(c~ l )=true 
; H 3 : a l l m.Km -> m<n+l -> (c~ m)=false 

In order to work with this goal, we first unfold the definition of reg by normalizing it, 
i.e. we type (ng) and get 

;ok, the normalized goal i s 
;?-STEP-KERNEL-NF: 
[ i f c~ n then i ~ n eise reg c~ i ~ n] = (i~ 1) from . . . 

Now it is rather obvious that we should distinguish cases according to the possible 
values of c(n). Note that c is a partial function, so undefined-boole is a possible value 
here, and we must have the non-strict equality between booolean terms available to 
deal properly with this case. 

(cases-term (pt "c* n")) 

;?-STEP-KERNEL-NF-CASE-UNDEFINED: (c~ n ) » u n d e f i n e d - b o o l e -> 
[ i f undefined-boole then i ~ n eise reg c~ i ~ n]=(i~ 1) from . . . 

;7-STEP-KERNEL-NF-CASE-TRUE: (c~ n)=true -> 
[ i f t rue then i ~ n eise reg c~ i ~ n]=(i~ 1) from . . . 

;?-STEP-KERNEL-NF-CASE-FALSE: (c~ n)=false -> 
[ i f f a l s e then i ~ n eise reg c~ i ~ n] = (i~ 1) from . . . 

The last case false is on top of our goal Stack. We treat it by first first giving a name 
to its hypothesis by (assume 'H4) and the normalizing it by (ng): 
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;ok, the normalized goal i s 
;7-STEP-KERNEL-NF-CASE-FALSE-KERNEL-NF: (reg c Ä i ~ n)=(i~ 1) from 
; n I H r a l l l , c A , i M < n -> (c~ l )* true -> 

( a l l m.Km -> m<n -> (c~ m)*false) -> (reg c~ i Ä n)=(i~ 1) 
; 1 c~ i ~ H l : K n + l 
; H2:(c~ l ) » t r u e 
; H 3 : a l l m.Km -> m<n+l -> (c~ m ) » f a l s e 
; H4:(c~ n)=false 

Here we clearly can use the induction hypothesis. Its first and third premise are intro-
duced as new goals, and its second premise is H2. 

(use-with 'IH '1 'c~ ' i ~ '?1 'H2 '?2) 

;ok, T-STEP-KERNEL-NF-CASE-FALSE-KERNEL-NF can be obtained from 
;?2: a l l m.Km -> m<n -> (c~ m ) » f a l s e from . . . 
;?1: K n from 
; n I H : . . . 
; 1 c~ i ~ H l : K n + l 
; H2:(c~ l)=true 
; H 3 : a l l m.Km -> m<n+l -> (c~ m ) » f a l s e 
; H4:(c~ n ) » f a l s e 

To conclude / < n from 7 < n + 1 it suffices to exclude the case 7 = n. We do that by 
adding a lemma expressing that fact as a global assumption (it could as well be proved 
easily by induction on n) by (aga = add global assumption) 

(aga 'cases-suc (pf " a l l l , n . ( l = n -> F) -> Kn+1 -> K n " ) ) 

and then use it with its first premise taken as a new goal: 

(use-with 'cases-suc '1 'n '?3 'Hl) 

;ok, ?1 can be obtained from 
;?3: l=n -> F from . . . H2:(c~ l)=true H4:(c~ n ) » f a l s e 

It is rather obvious how we should proceed here. We first give a name to the premise 
/ = n by (assume 'H5). Since true=false rewrites to absurdity F, we can reduce 
our goal via transitivity and symmetry of boolean equality (between possibly undefined 
objects!) to c(7) = c(n). Hence we type 

(aga 'lemmal 

(pf " a l l p~l,p~2,p~3,p~4.p~l=p~2 -> p~l=p~3 -> p~2=p~4 -> p~3=p~4")) 

(use-with 'lemmal (pt "c~ 1") (pt "cÄ n") true fa l se '?4 'H2 'H4) 

;ok, 73-KERNEL can be obtained from 
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;?4: (c~ l)=(c~ n) from . . . H5:l=n 

Here we clearly need an equality axiom for c: 

(aga 'comp-c~ (pf " a l l c ~ , n l , n 2 . n l » n 2 -> (c~ nl)*(c~ n2)")) 

(use-with 'comp-c" ' c A '1 >n >H5) 

;ok, ?4 i s proved. The act ive goal now i s 
;?2: a l l m.Km -> m<n -> (c Ä m ) » f a l s e from . . . 
; H 3 : a l l m.Km -> m<n+l -> (c~ m ) » f a l s e 

After introducing names for the variables/assumptions with (assume 'm >H5 'H6) we 
clearly have to use H3 with its second premise introduced as a new goal. 

(use-with >H3 >m >H5 *?5) 

;ok, 72-KERNEL can be obtained from 
;?5: m<n+l from . . . H6:m<n 

This can be proved from transitivity of <, making use of the fact that n < n +1 rewrites 
to true. 

(aga ' t rans- less (pf " a l l nl,n2,n3.nl<n2 -> n2<n3 -> nl<n3")) 

(use-with ' trans- less 'm >n (pt "n+1") *H6 truth-axiom) 

;ok, ?5 i s proved. The act ive goal now i s 
;7-STEP-KERNEL-NF-CASE-TRUE: (c~ n)=true -> 
[ i f true then i A n eise reg c~ i ~ n] = ( i~ 1) from . . . 

Again we introduce a name for the hypothesis by (assume 'H4) and then normalize 
the goal by (ng). 

;ok, the normalized goal i s 
;7-STEP-KERNEL-NF-CASE-TRUE-KERNEL-NF: (i~ n ) » ( i ~ 1) from 
; n I H : a l l l , c Ä , i M < n -> (c~ l)=true -> 

( a l l m.Km -> m<n -> (c~ m ) » f a l s e ) -> (reg c~ i ~ n)=(i~ 1) 
; 1 c~ i ~ H l : K n + l 
; H2:(c~ l)=true 
; H 3 : a l l m.Km -> m<n+l -> (c~ m ) » f a l s e 
; H4:(c~ n)=true 

Here we proceed as follows. From / < n + 1 we can conclude that either / < n or eise 
/ = n. The first case is impossible since then from H3 we get c(n) = false contradicting 
H4, and in the second case the goal simply follows from an equality axiom. For brevity 



316 

we just state what the user has to type in order to carry out this proof plan (i.e. his 
"tactic") and leave out most of the the System responses. 

(aga ' less-suc 
(pf " a l l n , l , p . K n + l -> ( K n -> p) -> ( l*n -> p) -> p")) 

(use-with 
' less-suc 
>n '1 (app ' « - w o r d (pt " i ~ n") (pt "jT 1")) >H1 >?< >?*) 

;ok, T-STEP-KERNEL-NF-CASE-TRUE-KERNEL-NF can be obtained from 
;?=: l=n -> (i~ n)=(i~ 1) from . . . 
;?<: K n -> (i~ n)=(i~ 1) from . . . 

(assume 'H5) 

According to our proof plan we want to argue that this case cannot happen. Hence we 
use ex-falso-quodlibet here, i.e. the lemma V p . ± —> p (which could be proved easily by 
boolean induction on p) 

(use-with >efq (app ' » - w o r d (pt " i ~ n") (pt " i ~ 1")) >?6) 

;ok, ?<-KERNEL can be obtained from 
;?6: F from . . . 
; H 3 : a l l m.Km -> m<n+l -> (c~ m)=false 
; H4:(c~ n)=true 
; H 5 : K n 

(aga ,lemma2 (pf " a l l p~l,p~2,p~3.p~l=p~2 -> p~l=p~3 -> p~2=p~3")) 

(use-with ,lemma2 (pt "c~ n") true fa l se >H4 >?7) 

;ok, ?6 can be obtained from 

;?7: (c~ n)=false from . . . 
; H 3 : a l l m.Km -> m<n+l -> (c~ m)=false 
; H 5 : K n 

(use-with 'H3 'n >H5 truth-axiom) 

;ok, ?7 i s proved. The act ive goal now i s 
;?=: l=n -> ( i Ä n)=(i~ 1) from . . . 

(assume 'H5) 

(aga >comp-iÄ (pf " a l l l , n . l = n -> (i~ n)=(i~ 1)")) 
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(use-with 'comp-i" '1 'n *H5) 

;ok, ?=-KERNEL i s proved. The act ive goal now i s 
;7-STEP-KERNEL-NF-CASE-UNDEFINED: (c~ n)=undefined-boole -> 
[ i f undefined-boole then i ~ n eise reg c~ i ~ n ] » ( i ~ 1) from . . . 

(assume 'H4) 

(ng) 

;ok, the normalized goal i s 
;7-STEP-KERNEL-NF-CASE-UNDEFINED-KERNEL-NF: uw=(i~ 1) from . . . 
; H l : K n + l 
; H2:(c~ l)=true 
; H 3 : a l l m.Km -> m<n+l -> (c~ m)=false 
; H4:(c~ n)=undefined-boole 

Here we proceed in a similar way as in the case true above. From / < n + 1 we can 
conclude that either / < n or eise l = n . The first case is impossible since then form H3 
we get c(n) = false contradicting H4, and the second case / = n is impossible too since 
then H2 and H4 lead to a contradiction. 

(use-with 
' less -suc 
>n > 1 (app '=-word >uw (pt " i ~ 1")) ' H l >?u< '?u=) 

;ok, T-STEP-KERNEL-NF-CASE-UNDEFINED-KERNEL-NF can be obtained from 
;?U=: l=n -> uw=(i~ 1) from . . . 
;?U<: K n -> uw=(i~ 1) from . . . 

(assume ;H5) 

(use-with >efq (app ' « - w o r d 'uw (pt " i Ä 1")) *?8) 

;ok, ?U<-KERNEL can be obtained from 
;?8: F from . . . 
; H 3 : a l l m.Km -> m<n+l -> (c~ m)=false 
; H4:(c~ n)=undefined-boole 
; H 5 : K n 

(use-with ,lemma2 (pt "c~ n") 'undefined-boole fa l s e 'H4 >?9) 

;ok, ?8 can be obtained from 
;?9: (c~ n)=false from . . . 

(use-with >H3 >n 'H5 truth-axiom) 
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;ok, ?9 i s proved. The act ive goal now i s 
;?U=: l=n -> uw=(i~ 1) from . . . 

(assume *H5) 

;ok, under these assumptions we have the new goal 
;?U=-KERNEL: uw=(i~ 1) from . . . H5:l=n 

(use-with >efq (app >=-word >uw (pt " i ~ 1")) 'TIO) 

;ok, ?U=-KERNEL can be obtained from 
;?10: F from . . . 
; H2:(c~ l)=true 
; H4:(c~ n ) » u n d e f i n e d - b o o l e 
; H5:l=n 

(aga 'lemmaS (pf " a l l p~l ,p Ä 2,p~3,p~4. 

(use-with 
'lemmaS (pt "c~ 1") (pt "c~ n") ' true 'undefined-boole 'H2 >H4 '?11) 

;ok, ?10 can be obtained from 
;?11: (c~ l)=(c~ n) from . . . H5:l=n 

(use-with 'comp-c* ' c Ä '1 >n 'H5) 

;ok, ?11 i s proved. The act ive goal now i s 
;?-BASE: a l l l , c A , i M < 0 -> (c~ l)=true -> 

( a l l m.Km -> m<0 -> (c~ m)=false) -> (reg c Ä i ~ 0)=(i~ 1) 

Since / < 0 rewrites to absurdity, this goal can be proved trivially and we can just type 
(immed) to get 

;ok, 7-BASE i s immediate by ex- fa l so-quodl ibet . Proof f i n i s h e d . 

We now come to the final point we want to mention here, namely how to translate 
our (higher order) primitive recursive definition of reg into a circuit. We already noted 
that from this definition we only needed the last (recursion) equation to prove the 
specification given in section 1. The special form of this equation we want to make use 
of is that reg(c, z, n + 1) is defined explicitely from reg(c, z, n) and c(n), z(n), in our case 
by plugging these three terms into an if-form, i.e. 

p~l=p~3 -> p~2=p~4 -> p~l=p~2 -> p~3=p ~4")) 

reg(c, i , n + 1) = if (c(n), z(n), reg(c, z, n)) 

So the components we need are an A L U (Arithmetic-Logic-Unit) corresponding to if, 
usually denoted by 



M U X M U X M U X 

(for multiplexer), and a delay unit 

D E L A Y D E L A Y 

whose Output at time n -f 1 is its input at time n. Hence our circuit for the register is 
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