19,244 research outputs found

    Automating defects simulation and fault modeling for SRAMs

    Get PDF
    The continues improvement in manufacturing process density for very deep sub micron technologies constantly leads to new classes of defects in memory devices. Exploring the effect of fabrication defects in future technologies, and identifying new classes of realistic functional fault models with their corresponding test sequences, is a time consuming task up to now mainly performed by hand. This paper proposes a new approach to automate this procedure. The proposed method exploits the capabilities of evolutionary algorithms to automatically identify faulty behaviors into defective memories and to define the corresponding fault models and relevant test sequences. Target defects are modeled at the electrical level in order to optimize the results to the specific technology and memory architecture

    Advancing Hardware Security Using Polymorphic and Stochastic Spin-Hall Effect Devices

    Full text link
    Protecting intellectual property (IP) in electronic circuits has become a serious challenge in recent years. Logic locking/encryption and layout camouflaging are two prominent techniques for IP protection. Most existing approaches, however, particularly those focused on CMOS integration, incur excessive design overheads resulting from their need for additional circuit structures or device-level modifications. This work leverages the innate polymorphism of an emerging spin-based device, called the giant spin-Hall effect (GSHE) switch, to simultaneously enable locking and camouflaging within a single instance. Using the GSHE switch, we propose a powerful primitive that enables cloaking all the 16 Boolean functions possible for two inputs. We conduct a comprehensive study using state-of-the-art Boolean satisfiability (SAT) attacks to demonstrate the superior resilience of the proposed primitive in comparison to several others in the literature. While we tailor the primitive for deterministic computation, it can readily support stochastic computation; we argue that stochastic behavior can break most, if not all, existing SAT attacks. Finally, we discuss the resilience of the primitive against various side-channel attacks as well as invasive monitoring at runtime, which are arguably even more concerning threats than SAT attacks.Comment: Published in Proc. Design, Automation and Test in Europe (DATE) 201

    Diagnosing faults in autonomous robot plan execution

    Get PDF
    A major requirement for an autonomous robot is the capability to diagnose faults during plan execution in an uncertain environment. Many diagnostic researches concentrate only on hardware failures within an autonomous robot. Taking a different approach, the implementation of a Telerobot Diagnostic System that addresses, in addition to the hardware failures, failures caused by unexpected event changes in the environment or failures due to plan errors, is described. One feature of the system is the utilization of task-plan knowledge and context information to deduce fault symptoms. This forward deduction provides valuable information on past activities and the current expectations of a robotic event, both of which can guide the plan-execution inference process. The inference process adopts a model-based technique to recreate the plan-execution process and to confirm fault-source hypotheses. This technique allows the system to diagnose multiple faults due to either unexpected plan failures or hardware errors. This research initiates a major effort to investigate relationships between hardware faults and plan errors, relationships which were not addressed in the past. The results of this research will provide a clear understanding of how to generate a better task planner for an autonomous robot and how to recover the robot from faults in a critical environment

    Content addressable memory project

    Get PDF
    A parameterized version of the tree processor was designed and tested (by simulation). The leaf processor design is 90 percent complete. We expect to complete and test a combination of tree and leaf cell designs in the next period. Work is proceeding on algorithms for the computer aided manufacturing (CAM), and once the design is complete we will begin simulating algorithms for large problems. The following topics are covered: (1) the practical implementation of content addressable memory; (2) design of a LEAF cell for the Rutgers CAM architecture; (3) a circuit design tool user's manual; and (4) design and analysis of efficient hierarchical interconnection networks

    Tools for distributed application management

    Get PDF
    Distributed application management consists of monitoring and controlling an application as it executes in a distributed environment. It encompasses such activities as configuration, initialization, performance monitoring, resource scheduling, and failure response. The Meta system (a collection of tools for constructing distributed application management software) is described. Meta provides the mechanism, while the programmer specifies the policy for application management. The policy is manifested as a control program which is a soft real-time reactive program. The underlying application is instrumented with a variety of built-in and user-defined sensors and actuators. These define the interface between the control program and the application. The control program also has access to a database describing the structure of the application and the characteristics of its environment. Some of the more difficult problems for application management occur when preexisting, nondistributed programs are integrated into a distributed application for which they may not have been intended. Meta allows management functions to be retrofitted to such programs with a minimum of effort

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions
    corecore