5 research outputs found

    Software-defined routing protocol for mobile cognitive radio networks : a cross-layer perspective

    Get PDF
    The growing demand for wireless applications, combined with inefficient spectrum use, necessitates developing a new wireless communication paradigm that focuses on dynamic spectrum access rather than the fixed spectrum using cognitive radio technology. The unlicensed user, known as secondary user or cognitive user, uses cognitive radio technology to grow opportunistic communication over licensed spectrum bands and improve spectrum management performance. The routing protocol in Cognitive Radio Networks (CRNs) serves as a communication backbone, allowing data packets to transfer between cognitive user nodes through multiple paths and channels. However, the problem of routing in CRNs is to create a robust-stable route over higher channel availability. The previously developed protocols missed opportunities to exploit the time-variant channel estimation technique, which selects the best route using the cross-layer routing decision engine to track the adverse impact of cognitive user mobility and primary user activity. This study aims to construct a robust routing path while limiting interference with primary user activity, delaying routing, and maximizing routing throughput. Here, a new routing framework is created in this study to explore new extended routing functions and features from the lower layers (Physical layer and Data Link layer) feedback to improve routing performance. Then, the link-oriented channel availability and channel quality have been developed based on two reliable metrics, which are channel availability probability and channel quality, to estimate and select a channel that maximizes link-throughput. Furthermore, this study proposes a novel cross layer routing protocol, namely, the Software-Defined Routing Protocol. It is a cross-layer method to combine the lower layer (Physical layer and Data Link layer) sensing derived from the channel estimation model. It periodically updates the routing table for optimal route decision making. The output simulation of the channel estimation method has shown that it has produced a powerful channel selection strategy to maximize the average rate of link throughput and achieved a channel estimate under the time-variant effect. Extensive simulation experiments have been performed to evaluate the proposed protocol in compression with the existing benchmark protocols, namely, dual diversity cognitive Ad-hoc routing protocol and cognitive Ad-hoc on-demand distance vector. The proposed protocol outperforms the benchmarks, resulting in increasing the packet delivery ratio by around (11.89%-12.80%), reducing delay by around (2.74%-4.05%), reducing overhead by around (14.31%-18.36%), and increasing throughput by around (23.94%-28.35%). The software-defined routing protocol, however, lacks the ability to determine the better idle channel at high-speed node mobility. In conclusion, the cross-layer routing protocol successfully achieves high routing performance in finding a robust route, selecting high channel stability, and reducing the probability of interference with primary users for continued communication

    Design and analysis of routing protocol for cognitive radio ad hoc networks in Heterogeneous Environment

    Get PDF
    Multi-hop routing protocol in cognitive radio mobile ad hoc networks (CRMANETs) is a critical issue. Furthermore, the routing metric used in multi-hop CRMANETs should reflect the bands availability, the links quality, the PU activities and quality of service (QoS) requirements of SUs. For the best of our knowledge, many of researchers investigated the performance of the different routing protocols in a homogeneous environment only. In this paper, we propose a heterogeneous cognitive radio routing protocol (HCR) operates in heterogeneous environment (i.e. the route from source to destination utilize the licensed and unlicensed spectrum bands). The proposed routing protocol is carefully developed to make a tradeoff between the channel diversity of the routing path along with the CRMANETs throughput. Using simulations, we discuss the performance of the proposed HCR routing protocol and compare it with the AODV routing protocol using a discrete-event simulation which we developed using JAVA platform

    Joint Channel and Interference Aware Cooperative Routing for Cognitive Radio Network

    Get PDF
    Cognitive Radio based network technology provides a promising solution for various types of real-time wireless communication by offering better spectrum utilization and resource allocation. Generally, the dynamic network topology, interference, channel switching and under-utilization of resource can degrade the network performance. Therefore, development of promising solution to obtain the desired performance is a challenging research topic in CRNs. Several researches have been carried out which have focused on development of routing protocol for CRNs to improve the performance. These routing protocols are classified as local and global routing which are mainly focused on overhead reduction and optimal route selection respectively. However, the conventional approaches suffer from various issues such as interflow-interference, channel switching delay and node overhearing problems which can progress towards the poor network performance. In this paper, our objective is to focus on the inter-flow interference, channel switching delay, and develop a cooperative communication based approaches where inter-flow interference and overhearing issues are mitigated using cooperative communication. Furthermore, Switching Delay and Interference (SDI) routing metric is developed to reduce the switching delay and also finally, a cooperative scheme of packet transmission is developed where direct or cooperative communication is selected for successful packet transmission. The proposed approach jointly considers channel and interference issue, hence it is known as Joint Cooperative Channel and Interference Aware Routing (JCIAR). The performance of proposed approach is compared with the existing techniques such as Primary User Aware k-hop route discovery scheme (PAK), AODV, CognitiveAODV, and Location-Aided Routing for CRN (LAUNCH) in terms of delay, packet delivery rate and throughput. The obtained result shows a significant improvement in network performance

    Primary User-Aware Optimal Discovery Routing for Cognitive Radio Networks

    No full text
    Routing protocols in multi-hop cognitive radio networks (CRNs) can be classified into two main categories: local and global routing. Local routing protocols aim at decreasing the overhead of the routing process while exploring the route by choosing, in a greedy manner, one of the direct neighbors. On the contrary, global routing protocols choose the optimal route by exploring the whole network to the destination paying the flooding overhead cost. In this paper, we propose a primary user-aware k -hop routing scheme where k is the discovery radius. This scheme can be plugged into any CRN routing protocol to adapt, in real time, to network dynamics like the number and activity of primary users. The aim of this scheme is to cover the gap between local and global routing protocols for CRNs. It is based on balancing the routing overhead and the route optimality, in terms of primary users avoidance, according to a user-defined utility function. We analytically derive the optimal discovery radius ( k ) that achieves this target. Evaluations on NS2 with a side-by-side comparison with traditional CRNs protocols show that our scheme can achieve the user-defined balance between the route optimality, which in turn reflected on throughput and packet delivery ratio, and the routing overhead in real time
    corecore