24,053 research outputs found

    Finding a point in the relative interior of a polyhedron

    Get PDF
    A new initialization or `Phase I' strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points - an all-pervasive assumption in interior point method theory that implies the existence of the central path - our initial method (Algorithm 1) is globally Q-linearly and asymptotically Q-quadratically convergent, with a provable worst-case iteration complexity bound. When this assumption is not met, the numerical behaviour of Algorithm 1 is highly disappointing, even when the problem is primal-dual feasible. This is due to the presence of implicit equalities, inequality constraints that hold as equalities at all the feasible points. Controlled perturbations of the inequality constraints of the primal-dual problems are introduced - geometrically equivalent to enlarging the primal-dual feasible region and then systematically contracting it back to its initial shape - in order for the perturbed problems to satisfy the assumption. Thus Algorithm 1 can successfully be employed to solve each of the perturbed problems.\ud We show that, when there exist primal-dual strictly feasible points of the original problems, the resulting method, Algorithm 2, finds such a point in a finite number of changes to the perturbation parameters. When implicit equalities are present, but the original problem and its dual are feasible, Algorithm 2 asymptotically detects all the primal-dual implicit equalities and generates a point in the relative interior of the primal-dual feasible set. Algorithm 2 can also asymptotically detect primal-dual infeasibility. Successful numerical experience with Algorithm 2 on linear programs from NETLIB and CUTEr, both with and without any significant preprocessing of the problems, indicates that Algorithm 2 may be used as an algorithmic preprocessor for removing implicit equalities, with theoretical guarantees of convergence

    An Interior-Point algorithm for Nonlinear Minimax Problems

    Get PDF
    We present a primal-dual interior-point method for constrained nonlinear, discrete minimax problems where the objective functions and constraints are not necessarily convex. The algorithm uses two merit functions to ensure progress toward the points satisfying the first-order optimality conditions of the original problem. Convergence properties are described and numerical results provided.Discrete min-max, Constrained nonlinear programming, Primal-dual interior-point methods, Stepsize strategies.

    A distributed primal-dual interior-point method for loosely coupled problems using ADMM

    Full text link
    In this paper we propose an efficient distributed algorithm for solving loosely coupled convex optimization problems. The algorithm is based on a primal-dual interior-point method in which we use the alternating direction method of multipliers (ADMM) to compute the primal-dual directions at each iteration of the method. This enables us to join the exceptional convergence properties of primal-dual interior-point methods with the remarkable parallelizability of ADMM. The resulting algorithm has superior computational properties with respect to ADMM directly applied to our problem. The amount of computations that needs to be conducted by each computing agent is far less. In particular, the updates for all variables can be expressed in closed form, irrespective of the type of optimization problem. The most expensive computational burden of the algorithm occur in the updates of the primal variables and can be precomputed in each iteration of the interior-point method. We verify and compare our method to ADMM in numerical experiments.Comment: extended version, 50 pages, 9 figure

    Dual versus Primal-Dual Interior-Point Methods for Linear and Conic Programming

    Full text link
    Dual versus Primal-Dual Interior-Point Methods for Linear and Conic Programmin

    Global convergence of a primal-dual interior-point method for nonlinear programming

    Get PDF
    Many recent convergence results obtained for primal-dual interior-point methods for nonlinear programming, use assumptions of the boundedness of generated iterates. In this paper we replace such assumptions by new assumptions on the NLP problem, develop a modification of a primal-dual interior-point method implemented in software package LOQO and analyze convergence of the new method from any initial guess

    Efficient Numerical Optimization for Parallel Dynamic Optimal Power Flow Simulation Using Network Geometry

    Get PDF
    In this work, we present a parallel method for accelerating the multi-period dynamic optimal power flow (DOPF). Our approach involves a distributed-memory parallelization of DOPF time-steps, use of a newly developed parallel primal-dual interior point method, and an iterative Krylov subspace linear solver with a block-Jacobi preconditioning scheme. The parallel primal-dual interior point method has been implemented and distributed in the open-source PETSc library and is currently available. We present the formulation of the DOPF problem, the developed primal dual interior point method solver, the parallel implementation, and results on various multi-core machines. We demonstrate the effectiveness our proposed block-Jacobi preconditioner and various Krylov subspace methods at improving parallel performance
    • ā€¦
    corecore