1,701 research outputs found

    Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes

    Full text link
    Fast pricing of American-style options has been a difficult problem since it was first introduced to financial markets in 1970s, especially when the underlying stocks' prices follow some jump-diffusion processes. In this paper, we propose a new algorithm to generate tight upper bounds on the Bermudan option price without nested simulation, under the jump-diffusion setting. By exploiting the martingale representation theorem for jump processes on the dual martingale, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal-dual algorithm, therefore significantly improves the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our proposed algorithm

    Dual representations for general multiple stopping problems

    Get PDF
    In this paper, we study the dual representation for generalized multiple stopping problems, hence the pricing problem of general multiple exercise options. We derive a dual representation which allows for cashflows which are subject to volume constraints modeled by integer valued adapted processes and refraction periods modeled by stopping times. As such, this extends the works by Schoenmakers (2010), Bender (2011a), Bender (2011b), Aleksandrov and Hambly (2010), and Meinshausen and Hambly (2004) on multiple exercise options, which either take into consideration a refraction period or volume constraints, but not both simultaneously. We also allow more flexible cashflow structures than the additive structure in the above references. For example some exponential utility problems are covered by our setting. We supplement the theoretical results with an explicit Monte Carlo algorithm for constructing confidence intervals for the price of multiple exercise options and exemplify it by a numerical study on the pricing of a swing option in an electricity market.Comment: This is an updated version of WIAS preprint 1665, 23 November 201

    From Black-Scholes to Online Learning: Dynamic Hedging under Adversarial Environments

    Full text link
    We consider a non-stochastic online learning approach to price financial options by modeling the market dynamic as a repeated game between the nature (adversary) and the investor. We demonstrate that such framework yields analogous structure as the Black-Scholes model, the widely popular option pricing model in stochastic finance, for both European and American options with convex payoffs. In the case of non-convex options, we construct approximate pricing algorithms, and demonstrate that their efficiency can be analyzed through the introduction of an artificial probability measure, in parallel to the so-called risk-neutral measure in the finance literature, even though our framework is completely adversarial. Continuous-time convergence results and extensions to incorporate price jumps are also presented

    Linear vector optimization and European option pricing under proportional transaction costs

    Full text link
    A method for pricing and superhedging European options under proportional transaction costs based on linear vector optimisation and geometric duality developed by Lohne & Rudloff (2014) is compared to a special case of the algorithms for American type derivatives due to Roux & Zastawniak (2014). An equivalence between these two approaches is established by means of a general result linking the support function of the upper image of a linear vector optimisation problem with the lower image of the dual linear optimisation problem

    Pricing American Options using Monte Carlo Method

    Get PDF
    This thesis reviewed a number of Monte Carlo based methods for pricing American options. The least-squares regression based Longstaff-Schwartz method (LSM) for approximating lower bounds of option values and the Duality approach through martingales for estimating the upper bounds of option values were implemented with simple examples of American put options. The effectiveness of these techniques and the dependencies on various simulation parameters were tested and discussed. A computing saving technique was suggested to reduce the computational complexity by constructing regression basis functions which are orthogonal to each other with respect to the natural distribution of the underlying asset price. The orthogonality was achieved by using Hermite polynomials. The technique was tested for both the LSM approach and the Duality approach. At the last, the Multilevel Mote Carlo (MLMC) technique was employed with pricing American options and the effects on variance reduction were discussed. A smoothing technique using artificial probability weighted payoff functions jointly with Brownian Bridge interpolations was proposed to improve the Multilevel Monte Carlo performances for pricing American options

    MONTE CARLO APPROXIMATIONS OF AMERICAN OPTIONS THAT PRESERVE MONOTONICITY AND CONVEXITY

    Get PDF
    Numerical Methods in Finance, Springer Proceedings in Mathematics, 2011.International audienceIt can be shown that when the payoff function is convex and decreasing (re- spectively increasing) with respect to the underlying (multidimensional) assets, then the same is true for the value of the associated American option, provided some conditions are satisfied. In such a case, all Monte Carlo methods proposed so far in the literature do not preserve the convexity or monotonicity properties. In this paper, we propose a method of approximation for American options which can preserve both convexity and monotonicity. The resulting values can then be used to define exercise times and can also be used in combination with primal-dual methods to get sharper bounds. Other application of the algorithm include finding optimal hedging strategies
    corecore