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MONTE CARLO APPROXIMATIONS OF AMERICAN OPTIONS THAT
PRESERVE MONOTONICITY AND CONVEXITY

PIERRE DEL MORAL, BRUNO RÉMILLARD, SYLVAIN RUBENTHALER

Abstract. It can be shown that when the payoff function is convex and decreasing (re-
spectively increasing) with respect to the underlying (multidimensional) assets, then the
same is true for the value of the associated American option, provided some conditions are
satisfied. In such a case, all Monte Carlo methods proposed so far in the literature do not
preserve the convexity or monotonicity properties. In this paper, we propose a method of
approximation for American options which can preserve both convexity and monotonicity.
The resulting values can then be used to define exercise times and can also be used in
combination with primal-dual methods to get sharper bounds. Other application of the
algorithm include finding optimal hedging strategies.

1. Introduction

Evaluation of American options is a central problem in financial engineering. Many ways

of tackling the problem have been proposed so far, mostly for options on a single asset.

One of the first method was proposed by Brennan and Schwartz (1977), and is based on

numerical solutions of partial differential equations. Then tree-based methods were first

introduced by Cox et al. (1979) for American options. Although Monte Carlo methods

were proposed by Boyle (1977) for European options, it seems that the first simulation-

based method is the one of Tilley (1993). After that paper, Monte Carlo methods increased

in popularity and many papers improved Tilley’s results, e.g. Carriere (1996), Broadie

and Glasserman (1997), Longstaff and Schwartz (2001), Broadie and Glasserman (2004).

Recently, two-stage Monte Carlo methods were developed by Rogers (2002), Andersen and

Broadie (2004) and Haugh and Kogan (2004). For an interesting review of Monte Carlo

methods, see Fu et al. (2001).
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However, even if in some interesting cases, e.g. American call-on-max or American put-

on-max options of dividend paying assets, where the underlying assets follows geometric

Brownian motions, the value of an American option possesses convexity or monotonicity

properties, the Monte Carlo methods described above do not preserve these properties. For

a related work, see Laprise et al. (2006).

In what follows, a Monte Carlo approach is proposed so that convexity and monotonicity

are preserved. It is shown that the algorithm is quite precise for American options on a

small number of assets. When the number of assets is large then the proposed method can

be used to implement primal-dual methods, as in Andersen and Broadie (2004).

In Section 2, one states the definition of the Snell envelope, together with a review

of existing methods for pricing American options, in particular the methods of Carriere

(1996), Longstaff and Schwartz (2001) and Andersen and Broadie (2004). Properties of

options prices in terms of assets dynamics and payoff functions are then studied in Section

3.1, and the algorithm for pricing an American option is described in Section 3.2. Finally,

implementation issues are presented in Section 4, and a brief discussion of the results is

provided in Section 5.

2. A brief review of algorithms for valuation of American options

As it is usually assumed, one wants to calculate the value of a Bermudan option, that is an

option that can be exercised at given fixed periods, instead of a real American option, which

can be exercised anytime. For simplicity, assume that the exercise periods are 0, 1 . . . n.

Suppose that, under the risk neutral measure, the value of the assets, including possibly

stochastic volatility factors, is modeled by a discrete time Markov chain (Xk)k≥0, and

that the actualized payoff Zk at period k, given by Zk = fk(Xk), is integrable for any

k ∈ {0, . . . , n}. For example, if the interest rate is constant and given by r, then

fk(x) = fk

(
x(1), . . . , x(d)

)
= e−rk max

(
max
1≤j≤d

x(j) − K, 0
)



MONTE CARLO APPROXIMATIONS OF AMERICAN OPTIONS 3

is the actualized payoff of a so-called call-on-max option.

In what follows, one first states the solution of the American option problem, in terms

of the Snell envelope in the Probability literature. In Operations Research, such a problem

is called a dynamic programming problem. Then one discusses some deterministic and

stochastic algorithms for calculating the Snell envelope or the exercise region.

2.1. Snell envelope. For a given filtration F, the value U0(x) at period 0 of the “American”

option with X0 = x, is given by

U0(x) = sup
τ∈T0,n

E(Zτ |X0 = x),

where Tk,n stands for the set of all F stopping times with values in {k, . . . , n}, 0 ≤ k ≤ n.

The sequence of functions

Uk(x) = sup
τ∈Tk,n

E(Zτ |Xk = x), k ∈ {0, . . . , n},

is called the Snell envelope.

It is well-known, e.g. Neveu (1975), that the Snell envelope can be calculated in a

recursive way. In fact, Un ≡ Vn ≡ fn, and

Vk(x) = E{Uk+1(Xk+1)|Xk = x},
Uk(x) = fk(x) ∨ Vk(x) = max {fk(x), Vk(x)} ,

k = n − 1, . . . , 0.

Note that Uk also has the representation

Uk(x) = E(Zτ∗
k
|Xk = x),

where τ∗
k = min{j ≥ k ; fj(Xj) = Uj(Xj)}, k = 0, 1, . . . , n. Also

τ∗
k = min{j ≥ k ; fj(Xj) ≥ Vj(Xj)}, k = 0, 1, . . . , n.

An equivalent approach to solving the problem of American options is to look at the

exercise region E , defined as

E = {(k, x) ; fk(x) = Uk(x)} = {(k, x) ; fk(x) ≥ Vk(x)}.



4 PIERRE DEL MORAL, BRUNO RÉMILLARD, SYLVAIN RUBENTHALER

In fact, knowing E suffices to evaluate the option, since in that case, one can obtain the

optimal stopping times τ∗
k viz.

τ∗
k = min{j ≥ k ; (j,Xj) ∈ E}, k = 0, 1, . . . , n.

In some situations, the boundary of the exercise region is quite simple, e.g. Broadie and

Detemple (1997). For example, for the American call option in a Black-Scholes setting,

E =
n⋃

k=0

{k} × [ek,∞),

for some e0, . . . , en, since (k, x) ∈ E implies (k, x′) ∈ E , for any x′ ≥ x. Therefore it suffices

to know the ek’s to evaluate the option.

The boundary of the exercise region for the American put option in a Black-Scholes

setting is also quite simple, and is given by

E =
n⋃

k=0

{k} × [0, ek],

for some e0, . . . , en, since (k, x) ∈ E implies (k, x′) ∈ E , for any x′ ≤ x. However, in general,

the exercise region is more complex. For more details, see Broadie and Detemple (1997).

2.2. Classes of algorithms for valuation of American options. Algorithms for eval-

uating American options can be divided in three classes.

(i) Tree-based methods: For these algorithms, values of U are estimated at a finite

number of points, possibly random. In most cases, the underlying process X is

replaced by a finite state Markov chain
(
X̂k

)
k≥0

. The main representatives are

the algorithms based on the binomial and multinomial methods, initiated by Cox

et al. (1979), and more recently the finite Markov chain methods, e.g. Duan and

Simonato (2001), Duan et al. (2004), ? and Bally et al. (2005). In the latter, a

powerful optimal method for choosing the approximation, known as quantization, is

discussed. See also Kargin (2005) for a similar approach that can be easily adapted
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to Bermudan and American options. Broadly speaking, the stochastic method pro-

posed by Broadie and Glasserman (2004) can be seen as a random version of the

above algorithms. In all cases, theses algorithms are designed to approximate the

value of U0(x) for a fixed x, not for all x.

(ii) Snell’s method: In these algorithms, the Snell envelope U is calculated. The

main representatives are those based on partial differential equations, e.g. Bren-

nan and Schwartz (1977), and Carriere’s algorithm, e.g. Carriere (1996), which is a

simulation-based method. The latter will be described in more details below.

(iii) Exercise region method: For these algorithms, E is estimated. The first algorithm

in this direction appeared in Tilley (1993) for options based on a single asset. It

was later improved by Longstaff and Schwartz (2001). Almost immediately, several

papers appeared that validated the Longstaff-Schwartz method, e.g. Clément et al.

(2002). Other exercise region methods include the “primal-dual” methods of Rogers

(2002) and Andersen and Broadie (2004). These methods are also discussed in more

details below. For other methods for a single asset based on the exercise boundary,

see e.g. Broadie et al. (2000).

The (random) algorithms of Carriere (1996) and Longstaff and Schwartz (2001), all have

in common the following features. They both rely on the simulation of a large number of

paths, and conditional expectations given Fk are approximated by functions in some given

classes Ak, k = 0, . . . , n − 1.

These algorithms, together with the dual approach algorithm, e.g. Rogers (2002) and

Andersen and Broadie (2004), are detailed next.

2.3. Carriere algorithm. Start by simulating N paths, denoted by

S1 = (X1,0, . . . ,X1,n), . . . ,SN = (XN,0, . . . ,XN,n).
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Then, based on approximating classes A0, . . . ,An−1, estimate V by V̂ and U by Û using

local regression methods. More precisely, set V̂n = Ûn = fn, and then, for all n − 1, . . . , 0,

let V̂k and Ûk be defined by

(2.1) V̂k = arg min
g∈Ak

N∑
i=1

{
Ûk+1(Xi,k+1) − g(Xi,k)

}2
, Ûk = fk ∨ V̂k,

provided the solution of the minimization problem (2.1) exists.

In Carriere (1996), Ak is the set of all q-splines.

Remark 2.1. In general, if Ak consists of all possible linear combinations of a finite number

dk of basis functions, then V̂k can be found using regression, and the computations can be

quite fast. Unfortunately, if dk is small compared to N , then the approximation V̂k of Vk

can be poor. However if Vk is convex or monotone, V̂k will not inherit the same properties.

2.4. Longstaff-Schwartz algorithm. Using approximating classes A0, . . ., An−1, esti-

mate E by Ê , where Ê =
⋃

k=1 k × Ek and Ek = {x ; fk(x) ≥ Ṽk(x)}, with Ṽn = fn, τ̂n ≡ n,

and for all k = n − 1, . . . , 0,

(2.2) Ṽk = arg min
g∈Ak

N∑
i=1

{
fτ̂k+1

(Xi,τ̂k+1
) − g(Xi,k)

}2
,

where for any path S = (X0, . . . ,Xn),

τ̂k(S) =
{

k if fk(Xk) ≥ Ṽk(Xk),
τ̂k+1(S) if fk(Xk) < Ṽk(Xk),

provided the solution of the minimization problems (2.2) exist. Then, the estimation of

U0(X0) is given by

(2.3) Û0(X0) =
1
N

N∑
i=1

fτ̂0(Xi,τ̂0).

As before, the same conclusions as those in Remark 2.1 apply.

Remark 2.2. The Carriere and Longstaff-Schwartz algorithms may seem equivalent, but

they are not. In the latter one, emphasis is on stopping times. Instead of estimating Uk by
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fk ∨ Ṽk, as in Carriere’s algorithm, Uk(Xi,k) is estimated by

(2.4) Ûk(Xi,k) =
1
N

N∑
i=1

fτ̂k
(Xi,τ̂k

), k ∈ {0, . . . , n}.

So, in the Longstaff-Schwartz algorithm, Uk is estimated at sample points, not all points.

2.5. Primal-dual approach. As seen before, to approximate the value of an American

option, one can estimate directly E , as proposed in Section 2.4, or approximate first U or

V , and then approximate E , as proposed in Section 2.3 or Section 3.2.

In Andersen and Broadie (2004), the authors proposes a two-stage approach: one for

obtaining a lower bound for U0(X0) and the other one for an upper bound. Suppose that

Ê is an estimation of E , e.g. Ê is obtained by the methods discussed previously.

2.5.1. Algorithm for the lower bound.

A1: For each i = 1, . . . , N0, simulate a path Si = (Xi,0, . . . ,Xi,n) starting from X0;

A2: Define the entrance time of Si in Ê as

τÊ,i
= min

{
j ≥ 0 ; (j,Xi,j) ∈ Ê

}
;

A3: Calculate

(2.5) LB =
1

N0

N0∑
i=1

fτÊ,i

(
Xi,τÊ,i

)
.

Then LB is a pointwise estimation of a lower bound for U0(X0). One could also calculate

the standard deviation σ̂LB associated with the data LBi = fτÊ,i

(
Xi,τÊ,i

)
, 1 ≤ i ≤ N0.

One can assume that (0,X0) �∈ Ê , for otherwise, Û0(X0) = f0(X0).

Remark 2.3. As emphasized by Andersen and Broadie (2004), the last procedure yields a

lower bound for U0(X0). In fact, even if one can approximate U and V , to estimate U0(X0)

more precisely, it is recommended to calculate (2.5) in addition, since errors in U or Ê often

transform in smaller errors for τÊ , as many simulations showed. Unfortunately, so far there

is no mathematical justification of that property.
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For the upper bound, Rogers (2002) showed that for any martingale M ,

U0(X0) ≤ M0 + E

[
max

0≤k≤n
{fk(Xk) − Mk}

]
,

with equality for the (unique) martingale M associated with the Doob-Meyer decomposition

of the supermartingale Uk(Xk).

Remark 2.4. In fact, the starting point of the martingale is not important. For simplicity,

one could restrict ourselves to martingales starting from M0 = 0. In that case, the equality

holds for Mk = M ′
k − M ′

0, where M ′ is the (unique) martingale M associated with the

Doob-Meyer decomposition of the supermartingale Uk(Xk).

Based on Ê , Andersen and Broadie (2004) suggests a Monte Carlo algorithm to construct

a martingale M , close to the optimal Doob-Meyer martingale. For all k ∈ {0, . . . , n}, let lk

be the indicator function of the set
{

(k,Xk) ∈ Ê
}
, let τÊ,k = min{j ≥ k; (j,Xj) ∈ Ê} and

define Lk = E
(
ZτÊ,k

|Fk

)
. Further set set M0 = L0 = Û0(X0), and for any 1 ≤ k ≤ n, set

Mk = Mk−1 + Lk − Lk−1 − lk−1E (Lk − Lk−1|Fk−1) .

Note that the last equation can be written in the much simpler form

Mk = Mk−1 + Lk − E(Lk|Fk−1)(2.6)

= Mk−1 + E {fτk
(Xτk

)|Fk} − E {fτk
(Xτk

)|Fk−1} .(2.7)

Since the conditional expectations must be estimated, they suggest a procedure to approx-

imate M . However, based on (2.6)–(2.7), the following modification seems more natural.

For each simulated path Si, i ∈ {1, . . . , N1}, set Mi,0 = 0, and repeat the following steps,

for each k = 1, . . . , n:

B1: – For each j = 1, . . . , N2, simulate a new sub-path Si,j = {Xi,j,�}n
�=k, starting

from Xi,k;

– Calculate L̂i,k = 1
N2

∑N2
j=1 fτÊ,k

(
Xi,j,τÊ,k

)
;
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B2: – For each j = 1, . . . , N3, simulate a new sub-path Si,j = {Xi,j,�}n
�=k−1, starting

from Xi,k−1;

– Calculate Ê(Li,k|Fk−1) = 1
N3

∑N3
j=1 fτÊ,k

(
Xi,j,τÊ,k

)
;

B3: Set Mi,k = Mi,k−1 + L̂i,k − Ê(Li,k|Fk−1).

Finally, the upper bound UB for U0(X0) is then approximated by

(2.8) UB =
1

N1

N1∑
i=1

[
max

0≤k≤d
{fk(Xi,k) − Mi,k}

]
.

One could also calculate the standard deviation σ̂UB associated with the data UBi =

max0≤k≤d {fk(Xi,k) − Mi,k}, 1 ≤ i ≤ N1.

Because the lower and upper bounds estimations are conditionally independent given Ê ,

a 95% percent confidence interval for U0 is given by

(2.9)
[
LB − 1.9545

σ̂LB√
N0

, UB + 1.9545
σ̂UB√

N1

]
.

Remark 2.5. In Andersen and Broadie (2004), it is argued that the upper bound con-

structed by their Monte Carlo methods will always be greater that the Monte Carlo lower

bound, i.e., the value of (2.5) should be smaller than the value of (2.8). If true, their

reasoning should apply as well to the modified algorithm described above. However their

proof is clearly incorrect1. As shown in Tables 1–2, it is possible that the (pointwise) Monte

Carlo upper bound is smaller that the (pointwise) Monte Carlo lower bound.

3. Approximation of the Snell envelope

From now on, assume that the Markov chain (Xk)k≥0 takes values in a convex subset X

of [0,∞)d. Note that this setting excludes finite state space Markov chains, which can be

treated much more easily. As customary, when s, t ∈ R
d, s ≤ t means that s(j) ≤ t(j) for

all j = 1, . . . , d. For x ∈ X, let ‖x‖ = max1≤i≤d

∣∣x(i)
∣∣. Finally, recall that a real valued

1If true, their argument would lead to the following (false) result: if (εk)n
k=1 are martingale differences

and if τ is a random time with values in {1, . . . , n}, τ not necessarily a stopping time, then E(ετ ) = 0.
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function g defined on X is non decreasing if for any x, x′ ∈ X, x ≤ x′ implies g(x) ≤ g(x′);

conversely, g is non increasing if −g is non decreasing.

Throughout the rest of the section, one has to make some hypotheses. The first assump-

tion is related to the law of the Markov chain.

Assumption 1. For all 1 ≤ k ≤ n, Xk has the following representation

(3.1) Xk = πk(Xk−1, Yk), Yk ∈ Y,

where Yk has law μk, is independent of Fk−1, and x �→ πk(x, y) is continuous on X, for any

fixed y ∈ Y.

Since Monte Carlo simulations play an essential role in the proposed methodology, the

following assumption is needed too.

Assumption 2. For each k ∈ {1, . . . , n}, fk(Xk) is integrable.

That assumption insures that the Snell envelope is well defined.

Assumption 3. For all 0 ≤ j ≤ k ≤ n, the mappings x �→ E {fk(Xk)|Xj = x} and

x �→ fk(x) are continuous.

In the next section, desirable properties like convexity and monotonicity are studied for

American options. The main result is that when the payoff has nice properties, then they

are inherited by U and V as well. Next, in Section 3.2, the proposed algorithm is described.

3.1. Properties of U and V . The first two propositions are about monotonicity and

continuity.

Proposition 3.1. Assume that for every k ∈ {0, . . . , n}, fk is non decreasing (respectively

non increasing) and πk(·, y) is non decreasing for any y ∈ Y. Then, for every k ∈ {0, . . . , n},

Uk and Vk are non decreasing (respectively non increasing).
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If in addition, fk is continuous for any k ∈ {0, . . . , n}, then Uk and Vk are also continuous

for all k ∈ {0, . . . , n}.

When the monotonicity properties do not hold for πk, one needs another assumption to

get the continuity of the Snell envelope.

Proposition 3.2. Under Assumptions 2 and 3, Vk and Uk are continuous for all k ∈

{0, . . . , n}.

The next proposition deals with convexity of the Snell envelope.

Proposition 3.3. Assume that for every k ∈ {0, . . . , n}, fk is convex and non decreasing,

and πk(·, y) is convex and non decreasing for any y ∈ Y. Then Uk and Vk are convex and

non decreasing, for all k ∈ {0, . . . , n}.

If fk is convex and non increasing, and if πk(·, y) is concave and non decreasing for any

y ∈ Y and any k ∈ {0, . . . , n}, then Uk and Vk are also convex and non increasing, for all

k ∈ {0, . . . , n}.

The proofs of Propositions 3.1 and 3.3 follow readily from Proposition A.1, since con-

vexity, continuity and monotonicity are preserved by taking the max, that is, if g and h

are convex and non decreasing (respectively non increasing), then max(g, h) = g ∨ h is also

convex and non decreasing (respectively non increasing). Clearly, if g and h are continuous,

then g ∨ h is continuous. Proposition 3.2 is proven in Section B.1

3.2. Description of the algorithm and justification. Before describing the algorithm,

one has to define what one means by a partition.

Definition 3.4. A partition P of a compact convex set K, is any finite set P = {S1, . . . , Sm}

of simplexes with disjoint non empty interiors, so that K =
⋃m

j=1 Sj . The set of vertices of

the partition P is denoted by V(P).
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Note that K is then the convex hull generated by V(P).

The algorithm is based on Monte Carlo simulations, combined with a sequence of ap-

proximations on compact sets R0, . . . , Rn−1, determined by partitions P0, . . . ,Pn−1.

The idea behind the algorithm is quite simple. Given approximations Ṽk, . . . , Ṽn of

Vk, . . . , Vn, one first get V̂k−1 by estimating Vk−1 at every vertices x ∈ V(Pk−1), using

Monte Carlo simulations, and then, one uses a linear interpolation of V̂k−1, to define Ṽk−1

at any point x ∈ Rk−1. Then Ṽk−1 may be extended to all of X using projections.

More precisely, one may proceed through the following steps.

3.2.1. Algorithm.

C1: Set Ṽn = Ũn = f̃n, where f̃n = fn on Rn and for any x ∈ Rc
n, f̃n(x) = f̃n(x′), where

x′ is the unique point in Rn so that d(x,Rn) = d(x, x′);

C2: For k = n, . . . , 1, generate ξ1,k, . . . , ξNk,k according to μk;

C3: For every x ∈ V(Pk−1), define

V̂k−1(x) =
1

Nk

Nk∑
i=1

Ũk {πk(x, ξi,k)} ,

where Ũk = max
(
f̃k, Ṽk

)
, and where f̃k = fk on Rk and for any x ∈ Rc

k, f̃k(x) =

f̃k(x′), where x′ is the unique point in Rk so that d(x,Rnk) = d(x, x′);

C4: Interpolate linearly V̂k−1 over Rk−1, as in Definition C.1, and call it Ṽk−1.

For the precise meaning of linear interpolation and ways to implement it, see Section C.

Remark 3.1. First, contrary to most Monte Carlo algorithms, one does not simulate

trajectories of the price process S. This is the key to preserve monotonicity and convexity,

as illustrated in Figure 1.Next, in the case where μ1 = . . . , μn = μ and N1 = . . . = Nn = N ,

one could take the same set of random points ξ1, . . . , ξN from distribution μ, thus reducing

calculations. Last but not least, note that since fk is not interpolated, which would induce

extraneous errors, our algorithm cannot be interpreted as generating a tree-based algorithm.
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As a by-product of the method, one obtains an estimation Ê of the exercise region E . Such

approximations are illustrated in Figures 4 and 6.
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Figure 1. Full Monte Carlo method vs suggested Monte Carlo method with N=100

The following results show that the algorithm produces good uniform approximations of

the Snell envelope U .

Theorem 3.5. Suppose that for all k ∈ {0, . . . , n}, fk, Vk and Uk are continuous. Let R0 be

a given compact convex subset of X. Let ε > 0 be given. Then one can find compact convex

sets R1, . . . , Rn−1 ⊂ X, partitions P0, . . .Pn−1 generating respectively R0, . . . , Rn−1, such

that almost surely, one can find integers N10, . . . , Nn0, so that for the simple interpolation

method,

sup
x∈Rk

|Uk(x) − Ũk(x)| = ‖Uk − Ũk‖Rk
≤ ‖Vk − Ṽk‖Rk

< ε,

whenever N1 ≥ N10, . . . , Nn ≥ Nn0.

The next result shows that using convex interpolations, as in Definition C.2, one can

preserve the convexity of the Snell envelope.

Corollary 3.6. Suppose in addition that for each k, fk is monotone and πk(·, y) is non

decreasing for any fixed y ∈ Y. If the quick interpolation method is used, then Theorem

3.5 holds true and the functions Ṽk and Ũk have the same monotonicity as the Uk’s and
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Vk’s when restricted to Rk. If a convex interpolation on a grid is used instead of a linear

interpolation, then the conclusion of Theorem 3.5 holds true and the functions Ṽk and Ũk

have the same monotonicity as the Uk’s and Vk’s when restricted to Rk. If in addition fk is

convex and non decreasing and πk(·, y) is convex and non decreasing for any fixed y, then

the Uk’s and Vk’s are convex when restricted to Rk. The same holds true if fk is convex

and non increasing and πk(·, y) is concave and non decreasing, for any fixed y.

The proofs of these results are given is Appendix B.

4. Implementation issues

The first example of application is the classical Black-Scholes-Merton setting. Examples

of calculations are provided for the case of an American call-on-max option on one and two

assets. The second example is the N-GARCH model, as studied in Duan and Simonato

(2001) and Duan et al. (2003). Examples of calculations are given for the American put

option. In each numerical example, estimated lower and upper bounds are calculated, using

the modified Andersen-Broadie algorithm described in Section 2.5.

4.1. Geometric Brownian motion. Suppose that under the risk neutral measure Q, the

model satisfies

(4.1) dXi(t) = (r − δi)Xi(t)dt + σiXi(t)dWi(t),

where W1, . . . ,Wd are dependent Brownian motions with correlation matric ρ. Setting

αi =
(
r − δi − σ2

i /2
)
Δ and βi = σiΔ1/2, then the conditional law of Xt given Xt−1 = x is

log-normal, with mean vector log(x) + α, and covariance matrix C, where log(x) stands for

the vector with components log(xi), 1 ≤ i ≤ d, and Cij = βiβjρij , 1 ≤ i, j ≤ d. It follows

that Assumption 1 is satisfied with Yk ∼ N(α,C) and π
(j)
k (x, y) = xje

yj , j = 1, . . . , d.

Furthermore, for each fixed y = (y1, . . . , yd), πk(·, y) is continuous, non decreasing, convex

and concave. Since x �→ max1≤j≤d xj is non decreasing and convex and x �→ min1≤j≤d xj is
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non decreasing and concave, it follows that for the call-on-max, Uk and Vk are convex and

non decreasing, while for the put-on-min, Uk and Vk are convex and non increasing.

4.1.1. Numerical illustration for the American call option. For this example, St satisfies

(4.1) with the same parameters as in Andersen and Broadie (2004), i.e., r = 0.05, δ = 0.1,

σ = 0.2, T = 3 and K = 100. They did their calculations assuming that S0 = 100, that is

the option is at-the-money. For this reason, one could take R0 = · · · = Rn = R = [23, 230],

so that P (ST ∈ R|S0 = 100) ≥ 0.997. The Monte Carlo algorithm described in Section 3.2

was implemented using M = 1000 equally spaced vertices in R. Also, one used N10 = · · · =

Nn0 = N = 10000 new trajectories each time.

As argued previously, for each k = 0, . . . , n, Uk and Vk are convex and non-decreasing.

Since d = 1, one can take take the convex interpolation described in Example 1 of Appendix

C. It follows from Corollary 3.6 that Ũk and Ṽk are also convex and non decreasing.

Table 1 reports the results of the simulations for n = 2 and n = 10 exercise periods. In

each case, the primal-dual algorithm was implemented with N0 = 2000000, N1 = 1500 ,

N2 = N3 = 10000. The corresponding estimated values of Ũ0 are displayed in Figure 2.

Table 1. Estimated values of the call option with initial value S0 = 100
and strike price K = 100.

Method n = 2 n = 10
Monte Carlo 7.027575 7.950981
Lower bound 7.179106 (0.009548) 7.980827 (0.008106)
Upper bound 7.173063 (0.004365) 7.973237 (0.007579)
95% Confidence interval [7.1604, 7.1816] [7.9650, 7.9881]
Binomial tree 7.18 7.98

4.1.2. Numerical illustration for the American call-on-max option on two assets. For this

example, St =
(
S

(1)
t , S

(0)
t

)
satisfies (4.1) with the same parameters as in Andersen and

Broadie (2004), i.e., r = 0.05, δ = 0.1, σ = 0.2, ρ = I2, T = 3 and K = 100. They

did their calculations assuming that S
(1)
0 = S

(0)
0 = 100, that is the option is at-the-money.
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Figure 2. Estimated value of U0(s) for an American call option for s ∈
[25, 230], with n = 2 exercise periods (panel a) and n = 10 exercise periods
(panel b).

For this reason, one could take R0 = · · · = Rn = R = [23, 230]2 , so that P (ST ∈ R|S0 =

100) ≥ 0.995. The Monte Carlo algorithm described in Section 3.2 was implemented using

M = 2002 vertices corresponding to equally spaced points in each coordinate. Also, one

used N10 = · · · = Nn0 = N = 10000 new trajectories each time.

As argued previously, for each k = 0, . . . , n, Uk and Vk are convex and non-decreasing.

However, due to computation time constraints, the interpolation method used was only

(locally) convex in each of the 1992 sub-rectangles, using the the interpolation described

in Example 2 of Appendix C.1. Therefore the estimated functions Ũk and Ṽk are not

necessarily convex over R. However, they are non decreasing, using Corollary 3.6.

Table 2 reports the results of the simulations for n = 9 exercise periods, as in Andersen

and Broadie (2004), except that they only consider initial values S0 = (90, 90), S0 =

(100, 100) and S0 = (110, 110). In each case, the primal-dual algorithm was implemented

with the same number of iterations, i.e., N0 = 2000000, N1 = 1500 , N2 = N3 = 10000.

The results are quite similar. However, one obtains as a bonus the estimation of Uk over

R = [25, 230]2 . This is illustrated in Figure 3, where the values along the diagonal are also

displayed. One can remark that around the diagonal, the Û0 is not convex, due to the fact

that the convex interpolation was not used.
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It is quite interesting to plot the estimated exercise region at time 0 given by the set of all

points s = (s1, s2) ∈ [25, 230]2 such that Ṽ0(s) ≤ f0(s) = max{0,max(s1, s2) − 100)}. This

is done in Figure 4. It is quite surprising to see that along the diagonal (s, s), the option

is not exercised unless the s > 220. The values S0 = (160, 160) and S0 = (200, 200) were

included in Table 2 to show that the option is not exercised at time 0 for these values, even

if they are quite large compared to the strike price K = 100. Looking at the confidence

intervals, one sees that 60 < 69.4746 and 100 < 107.3452.

Table 2. Estimated values of the call-on-max option with several initial
values S0 and strike price K = 100.

S0 Method Ũ0(S0, S0)
90 Monte Carlo 8.095579

Lower bound 8.068165 (0.008518)
Upper bound 8.070320 (0.008704)

95% Confidence Interval [8.0515, 8.0873]
Binomial tree 8.075

100 Monte Carlo 13.900166
Lower bound 13.912179 (0.010687)
Upper bound 13.904105 (0.009686)

95% Confidence Interval [13.8913, 13.9230]
Binomial tree 13.902

110 Monte Carlo 21.300620
Lower bound 21.334454 (0.012411)
Upper bound 21.338053 (0.011061)

95% Confidence Interval [21.3102, 21.3597]
Binomial tree 21.345

160 Monte Carlo 69.244785
Lower bound 69.507220 (0.016665)
Upper bound 69.519498 (0.011474)

95% Confidence Interval [69.4746, 69.5419]
Binomial tree

200 Monte Carlo 106.990926
Lower bound 107.372955 (0.014175)
Upper bound 107.370157 (0.008543)

95% Confidence Interval [107.3452, 107.3869]
Binomial tree
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Figure 3. Estimated value of a call-on-max American option at period 0
for s ∈ [25, 230]2 (panel a) and along its diagonal (panel b), with n = 9
exercise periods.
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Figure 4. Estimated exercice region at period 0 for a call-on-max American
option with 9 exercise periods.

4.2. N-GARCH models. As a last example of application, consider the following N-

GARCH model under the martingale measure Q:

Sk = Sk−1e
r−δ−hk/2+h

1/2
k Yk

hk = β0 + β1hk−1 + β2hk−1(Yk−1 − θ)2,

where Yk ∼ N(0, 1). Then {Sk}k≥0 or {(Sk, hk)}k≥0 are not Markov processes. However, it

is easy to check that {Xk = (Sk, hk+1)}k≥0 is a Markov chain. In fact, Assumption 1 holds

with πk(s, h, y) =
(
ser−δ−h/2+h1/2 y, β0 + β1h + β2h(y − θ)2

)
. It follows that for any given

y ∈ R, πk(s, h, y) is monotone in s but it is not monotone in h, nor it is convex or concave. It
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is well-known, e.g., Duan and Simonato (2001), that under the condition β1+β2(1+θ2) < 1,

Xk has a stationary distribution and limk→∞ E(Hk) → h� = β0{1 − β1 − β2(1 + θ2)}−1.

In Duan and Simonato (2001) and Duan et al. (2003), the authors proposed two kinds of

approximations for the American put option on Sk. They calculated the option prices for

S0 = 50 for three strike prices K ∈ {45, 50, 55}, three volatility levels h1 ∈ {0.8h�, h�, 1.2h�}

and four exercise periods n ∈ {10, 30, 90, 270}. Here, under similar setting, option prices for

n = 10 and n = 30 exercise periods are estimated using the Monte Carlo methodology and

the primal-dual algorithm. However, since there there was almost no difference in option

prices when K = 45 or K = 55, only the case K = 50 was considered. The Monte Carlo

estimation was based on N = 10000 for each time steps. In the case n = 10, the rectangle

[45, 55] × [5β0, 45β0] was partitioned into 300 × 100 points and the same number of points

was used to partition [40, 65] × [5β0, 50β0] for the case n = 30. These rectangles, obtained

through Monte Carlo simulations, correspond to approximate 95% confidence regions for

X10 and X30 respectively. As before, the number of iterations used for the primal-dual

algorithm were N0 = 2000000, N1 = 1500 , N2 = N3 = 10000. Note that by Corollary

3.6, Ũk is non-increasing in s. This is reflected in Figure 5, where the values of Ũ0(s, h) are

displayed. The corresponding exercise regions are shown in Figure 6.
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Figure 5. Estimated value of U0 for an American put option based on a
N-GARCH model, with 10 exercise periods (panel a) and 30 exercise periods
(panel b).
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Table 3. Estimated values of the American put options at time 0 for n = 10
and n = 30 exercise periods, with initial asset value S0 = K = 50, three
initial volatilities h1 and strike price K = 50.

h1/h
� Method n = 10 n = 30

0.8 Monte Carlo 0.642316 1.070787
Lower bound 0.628298 (0.000642) 1.092107 (0.001067)
Upper bound 0.628709 (0.000728) 1.095878 (0.002013)

95% C.I. [0.6270, 0.6301] [1.0900, 1.0998]
Markov Chain 0.63 1.09

1.0 Monte Carlo 0.696359 1.119633
Lower bound 0.680187 (0.000695) 1.142400 (0.001112)
Upper bound 0.679323 (0.000770) 1.147375 (0.002043)

95% C.I. [ 0.6788, 0.6808] [ 1.1402, 1.1514]
Markov Chain 0.68 1.14

1.2 Monte Carlo 0.746471 1.166276
Lower bound 0.729034 (0.000743) 1.189325 (0.001156)
Upper bound 0.729605 (0.000816) 1.192303 (0.002188)

95% C.I. [ 0.7276, 0.7312] [ 1.1871, 1.1966]
Markov Chain 0.73 1.19
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Figure 6. Estimated exercice region Ê at period 0 for the American put
option based on a N-GARCH model, for 10 exercise periods (panel a) and
for 30 exercise periods (panel b).

5. Conclusion

Monotonicity and convexity are important properties shared by many American option

prices, especially when it comes to define the exercise region. In this paper, it was shown

that these properties can be preserved by a Monte Carlo algorithm which is easy to im-

plement and yields the whole Snell envelope. Also a modified approach inspired by the
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work of Andersen and Broadie (2004) can be used to improve the precision of the estima-

tion. Numerical results showed that the proposed methodology provides accurate results

for American option prices when assets follows a Markov chain with continuous state space.

In addition, the Monte Carlo algorithm can also be applied for finding optimal hedging

strategies, as in Hocquard et al. (2007) and Papageorgiou et al. (2008).
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Appendix A. Auxiliary results

Suppose that g ∈ B+(X), that is g : X �→ [0,∞) is measurable. Suppose also that

φ : X × Y �→ X is measurable and that for any y ∈ Y , φ(·, y) is continuous. Moreover,

assume that for any x ∈ X, g(φ(x, ·)) is integrable with respect to a measure ν on Y. Then

the function Mg, defined on X by x �→ Mg(x) =
∫
Y g(φ(x, y))ν(dy), belongs to B+(X).

Proposition A.1. Assume g ∈ B+(X) and suppose that for any y ∈ Y, φ(·, y) is non

decreasing.

(i) If g is monotone then Mg has the same monotonicity.

(ii) If g is monotone and continuous, then Mg is monotone continuous.

(iii) If g is convex and non decreasing, and if for any y ∈ Y, φ(·, y) is convex over X,

then Mg is also convex and non decreasing.

(iv) If g is convex and non increasing, and if, for any fixed y ∈ Y, φ(·, y), is concave,

then Mg is also convex and non increasing.

Proof. Suppose g is non decreasing for any fixed y. Therefore, for any fixed y, x �→ g(φ(x, y))

is non decreasing. If g is non increasing, then for any fixed y, x �→ g(φ(x, y)) is non

increasing. Integrating with respect to ν yields (i). If, for any fixed y, g is non decreasing

and continuous, then x �→ g(φ(x, y)) is continuous and non decreasing. Hence (ii) follows

from the Dominated Convergence Theorem. If g is non increasing and continuous then x �→
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g(φ(x, y)) is continuous and non decreasing, and (ii) follows from the Bounded Convergence

Theorem.

To prove (iii), assume that g is convex and non decreasing, and that φ(·, y) is convex, for

any fixed y ∈ E. Then, for any λ ∈ [0, 1], for any y ∈ E, and for any x, x′ ∈ X,

φ(λx + (1 − λ)x′, y) ≤ λφ(x, y) + (1 − λ)φ(x′, y),

so

g(φ(λx + (1 − λ)x′, y)) ≤ g(λφ(x, y) + (1 − λ)φ(x′, y))

≤ λg(φ(x, y)) + (1 − λ)g(φ(x′, y)).

Integrating with respect to y, one obtains Mg(λx + (1− λ)x′) ≤ λMg(x) + (1− λ)Mg(x′),

proving that Mg is convex. Finally, if g is convex and non increasing, and φ(·, y) is concave

for any fixed y, then, for any λ ∈ [0, 1], and for any y, φ(λx+(1−λ)x′, y) ≥ λφ(x, y)+ (1−

λ)φ(x′, y), so

g(φ(λx + (1 − λ)x′, y)) ≤ g(λφ(x, y) + (1 − λ)φ(x′, y))

≤ λg(φ(x, y)) + (1 − λ)g(φ(x′, y)).

Integrating with respect to y, one obtains Mg(λx + (1− λ)x′) ≤ λMg(x) + (1− λ)Mg(x′).

This completes the proof. �

The next result is easy to prove.

Proposition A.2. For any real numbers x, y, z, w,

|x ∨ z − y ∨ w| ≤ |x − y| ∨ |z − w|.

In particular, |x ∨ z − x ∨ w| ≤ |z − w|.

Appendix B. Proofs of the main results
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B.1. Proof of Proposition 3.2. First, for any k ∈ {0, . . . , n},

Uk(x) = sup
τ∈Tk,n

E {fτ (Xτ )|Xk = x} ,

so it follows that Vk(x) ≤ Uk(x) ≤ Hk(x) =
∑n

j=k E {fj(Xj)|Xk = x}. Next, by hypothesis,

Vn and Hk(πk(·, y)) are continuous for any y ∈ Y and any k ∈ {0, . . . , n}. To show that Vk

is continuous for any k ∈ {0, . . . , n}, it suffices to show that if Vk is continuous, then Vk−1

is also continuous.

So suppose that Vk is continuous. Then so is Uk. Suppose that (xj)j≥1 is a sequence

converging to x ∈ X. Then, Uk(πk(xj , y)) ≤ Hk(πk(xj , y)), and for all y ∈ Y,

Uk(πk(xj , y)) → Uk(πk(x, y)), Hk(πk(xj , y)) → Hk(πk(x, y))

as j → ∞. Moreover, by hypothesis,∫
Hk(πk(xj , y))μk(dy) = Hk−1(xj) − fk−1(xj)

j→∞−→ Hk−1(x) − fk−1(x)

=
∫

Hk(πk(x, y))μk(dy).

Thus, by Fatou’s Lemma, Vk−1(xj) → Vk−1(x) as j → ∞. Therefore Vk−1 and Uk−1 are

continuous. Hence the result. �

B.2. Proof of Theorem 3.5.

Proof. Recall that for all k ∈ {0, . . . , n}, the fk, Vk and Uk are continuous. Set

Mkg(x) =
∫
Y

g(πk(x, y))μk(dy)

and

V̂k−1(x) = M̂kŨk(x) =
1

Nk

Nk∑
i=1

Ũk {πk(x, ξi,k)} .

The approximation algorithm can be summarized as follows:

Ũn = fn and

⎧⎨⎩
V̂k−1 = M̂kŨk on Vk−1 = V(Pk−1),
Ṽk−1 = IPk−1

V̂k−1

Ũk−1 = fk−1 ∨ Ṽk−1.

k = n, . . . , 1,
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where IPg denotes the linear interpolation of g over the compact set R with associated par-

tition P of R as in Definition C.1. For simplicity set Ik−1 = IPk−1
and δk−1 = mesh(Pk−1).

First, for any compact subset R of X, ‖Ũk −Uk‖R ≤ ‖Ṽk −Vk‖R, 0 ≤ k ≤ n, by Proposition

A.2. Therefore, to prove the result, it suffices to show that for any k = 1, . . . , n, given a com-

pact set Rk−1 and ε > 0, one can find δk−1 > 0, a partition Pk−1 with mesh(Pk−1) < δk−1,

another compact set Rk and an integer Nk0 so that ‖Ṽk−1 − Vk−1‖Rk−1
≤ ‖Ṽk − Vk‖Rk

+ ε.

To begin, one has, for any k = 1, . . . , n,

Vk−1 − Ṽk−1 = (Vk−1 − Ik−1Vk−1) +
(
Ik−1Vk−1 − Ik−1V̂k−1

)
.

Since

∥∥∥Ik−1Vk−1 − Ik−1V̂k−1

∥∥∥
Rk−1

= sup
x∈Vk−1

∣∣∣Vk−1(x) − V̂k−1(x)
∣∣∣

=
∥∥∥Vk−1 − V̂k−1

∥∥∥
Vk−1

=
∥∥∥MkUk − M̂kŨk

∥∥∥
Vk−1

and

∥∥∥MkUk − M̂kŨk

∥∥∥
Vk−1

≤
∥∥∥MkUk − M̂kUk

∥∥∥
Vk−1

+
∥∥∥M̂kUk − M̂kŨk

∥∥∥
Vk−1

≤
∥∥∥MkUk − M̂kUk

∥∥∥
Vk−1

+
∥∥∥Vk − Ṽk

∥∥∥
Rk

+
∥∥∥M̂k(Uk1Rc

k
)
∥∥∥
Vk−1

+
∥∥∥Ũk

∥∥∥
Rk

∥∥∥M̂k1Rc
k

∥∥∥
Vk−1

,

it follows that

∥∥∥Ṽk−1 − Vk−1

∥∥∥
Rk−1

≤ ω(Vk−1, Rk−1, δk−1) +
∥∥∥MkUk − M̂kUk

∥∥∥
Vk−1

+
∥∥∥Vk − Ṽk

∥∥∥
Rk

+
∥∥∥M̂k(Uk1Rc

k
)
∥∥∥
Vk−1

+
∥∥∥Ũk

∥∥∥
Rk

∥∥∥M̂k1Rc
k

∥∥∥
Vk−1

,

using the above inequalities together with Remark C.1.
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The aim is to show that if N1, . . . , Nn are large enough, and if R1, . . . , Rn are large enough,

and if δ0, δn−1 are small enough, then the terms ω(Vk−1, Rk−1, δk−1),
∥∥∥MkUk − M̂kUk

∥∥∥
Vk−1

,∥∥∥M̂k(Uk1Rc
k
)
∥∥∥
Vk−1

and
∥∥∥Ũk

∥∥∥
Rk

∥∥∥M̂k1Rc
k

∥∥∥
Vk−1

can be arbitrarily small, for all 1 ≤ k ≤ n.

The first term is easy to handle since Vk−1 is continuous and Rk−1 is compact. To

handle the second term, just use the strong law of large numbers, since Vk−1 is finite. The

last two terms can be made arbitrarily small since, by the strong law of large numbers,∥∥∥M̂k(Uk1Rc
k
)
∥∥∥
Vk−1

and
∥∥∥M̂k1Rc

k

∥∥∥
Vk−1

converge almost surely to
∥∥Mk(Uk1Rc

k
)
∥∥
Vk−1

and to∥∥Mk1Rc
k

∥∥
Vk−1

, which both can be as small as one wants, choosing Rk large enough. �

B.3. Proof of Corollary 3.6. It follows from that V̂k−1 = M̂kŨk is continuous, monotone

and convex, if Ũk is, by Proposition A.1. As shown in Proposition C.4 and Lemma C.3, the

quick interpolation and the convex interpolation on a grid both preserve all monotonicity.

In addition, the convex interpolation preserves convexity, by Lemma C.3. Finally, Theorem

3.5 yields the almost sure uniform convergence. �

Appendix C. Linear interpolations

Definition C.1. Given a function g and a partition P of R, the linear interpolation of g

over P is the (unique) function g̃ defined in the following way:

• If x ∈ S ⊂ R, where S ∈ P is a simplex with vertices x1, . . . , xd+1,

g̃(x) =
d+1∑
i=1

λig(xi),

where the barycenters {λ1, . . . , λd+1} are the unique solution of

x =
d+1∑
i=1

λixi,

d+1∑
i=1

λi = 1, λi ∈ [0, 1], i = 1, . . . d + 1.

• If x �∈ R, let xR be the (unique) closest point to x that belongs to R, and set

g̃(x) = g̃(xR).

Uniqueness follows from the convexity of R and the strict convexity of the Euclidean norm.
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Remark C.1. Note that since each xi is extreme in S, the unique solution of

xi =
d+1∑
j=1

λjxj ,

d+1∑
j=1

λj = 1, λj ∈ [0, 1], j = 1, . . . d + 1,

is λi = 1 and λj = 0 for all j �= i, yielding g̃(xi) = g(xi) for all 1 ≤ i ≤ m. Moreover, g̃ is

affine on each simplex, justifying the term “linear interpolation”.

Finally, g̃ is continuous and bounded on X and

sup
x∈R

|g(x) − g̃(x)| ≤ ω(g,R,mesh(P)),

where mesh(P) = maxS∈P supx,z∈S ‖x − z‖ and ω(g,R, δ) is the modulus of continuity of g

over R, i.e., ω(g,R, δ) = supx,z∈R, ‖x−z‖≤δ |g(x) − g(z)|.

Example 1. Suppose d = 1. Then the linear interpolation g̃ of a monotone (respectively

convex) function g on R = [a, b] is monotone (respectively convex). To see that, let P be

the partition given by P = {a = x0 < x1 < · · · < xm = b}, i.e the simplexes are [xi−1, xi],

i = 1, . . . ,m. Set Δi = g(xi)−g(xi−1)
xi−xi−1

, 1 ≤ i ≤ m. Then the linear interpolation of g over R

is given by

g̃(x) =

⎧⎨⎩ g(a), x ≤ a,
g(xi) + (x − xi)Δi+1, x ∈ [xi, xi+1], i = 0, . . . ,m − 1,
g(b) x ≥ b.

If g is monotone, the slopes Δi all have the same sign, so g̃ has the same monotonicity. If

g is convex, the slopes Δi are non decreasing, so g̃ is also convex.

Definition C.2. Given a convex function g and a partition P of R, a convex linear inter-

polation of g over P is a function g̃ defined on X such that

(CLI1) g̃(x) is convex on R;

(CLI2) g(x) = g̃(x), for all x ∈ V(P);

(CLI3) For any x ∈ R, there exists non negative numbers λz, z ∈ V(P), such that

(a)
∑

z∈V(P)

λz = 1,

(b) x =
∑

z∈V(P)

zλz,
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(c) g̃(x) =
∑

z∈V(P)

λzg(z);

(CLI4) For any x �∈ R, g̃(x) = g̃(y), where y is the unique point satisfying d(x,R) = d(x, y).

The following result proves that convex linear interpolation exists and it can be obtained

via the simplex algorithm.

Lemma C.3. Suppose C is the convex hull of {x1, . . . , xn}. Suppose also that g1, . . . , gn

are real numbers. For any x ∈ C, set

Λx =

{
λ ∈ [0, 1]n;

n∑
i=1

λixi = x,
n∑

i=1

λi = 1

}
.

Define

g̃(x) = inf
λ∈Λx

n∑
i=1

λigi.

Then g̃ is convex over C and g̃(xi) ≤ gi. If in addition, g is a convex function over C such

that g(xi) = gi, then g̃ is a linear convex interpolation of g. In particular, g(x) ≤ g̃(x) for

all x ∈ C, and g̃(xi) = gi, for all 1 ≤ i ≤ n.

Suppose that the points x1, . . . , xn form a grid. Then if g is monotone, then g̃ has the

same monotonicity, i.e., if g is non-decreasing in xj the so is g̃, for any 1 ≤ j ≤ d.

Proof. First, it is obvious that f̃(xi) ≤ gi for any 1 ≤ i ≤ n. Next, suppose that a, b ∈ C.

Take λ ∈ Λa and λ′ ∈ Λb. Let t ∈ [0, 1] be given and set x = ta + (1 − t)b. Then

tλ + (1 − t)λ′ ∈ Λx, so

g̃(x) ≤
n∑

i=1

(
tλi + (1 − t)λ′

i

)
gi = t

(
n∑

i=1

λigi

)
+ (1 − t)

(
n∑

i=1

λ′
igi

)
.

Taking the infimum over all λ ∈ Λa and all λ′ ∈ Λb in the last inequality yields g̃(x) ≤

tg̃(a) + (1 − t)g̃(b). Hence g̃ is convex over C.

Next, suppose that g is convex over C, and g(xi) = gi for all i = 1, . . . , n. Let x ∈ C be

given. Since λ : Λx �→
∑n

i=1 λigi is continuous and Λx is compact, there exists λ ∈ Λx so that

g̃(x) =
∑n

i=1 λigi. Therefore g(x) ≤
∑n

i=1 λig(xi) =
∑n

i=1 λigi = g̃(x). Hence g(x) ≤ g̃(x).

In particular, gi = g(xi) ≤ g̃(xi) ≤ gi, showing that g̃(xi) = gi, for all 1 ≤ i ≤ n.
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Finally, to prove the monotonicity property of g̃, note that it suffices to prove it for the

interior points of C. For simplicity, the proof is given for a two-dimensional grid but it holds

true for any dimension. Let the grid be given by G = (yi, zj); 1 ≤ i ≤ M1, 1 ≤ j ≤ M2) and

set gij = g(yj , zj). From linear programming, it is known that for any x = (y, z), then

g̃(y, z) = sup
a,b,c∈A

a + by + cz,

where A = {a, b, c ∈ R; a + byi + czj ≤ gij, for all (yi, zj) ∈ G}.

It is known that there are 3 points on the grid where the constraints are in fact an

equality. One of these points, say (yi, zj) must an interior point of the grid, for otherwise

(y, z) could not be an interior point of C. Therefore a + byi + czj = gij . One also has

gij + b(yi+1 − yi) = a + byi+1 + czj ≤ gi+1,j , so b ≤ gi+1,j−gij

yi+1−yi
. Similarly, gij − b(yi − yi−1) =

a + byi−1 + czj ≤ gi−1,j , so b ≥ gij−gi−1,j

yi−yi−1
. It follows that if g is non-decreasing in y, b ≥ 0.

Hence, for ε > 0 small enough, g̃(y + ε, z)− g(y, z) = bε ≥ 0. The same argument applies in

g is non-increasing in y. Hence the result. �

C.1. Quick linear interpolation on rectangles. Suppose that g is defined on R = [0, 1]d,

and g is known at all extreme points of R. If one wants to linearly interpolate g, as in

Definition C.1, a convenient choice for the partition P is the set of all d! simplexes defined,

for any permutation π of {1, . . . , d}, by Sπ = {y ∈ [0, 1]d; yπ1 ≤ · · · , yπd
}. Note that the

vertices of S = {y ∈ [0, 1]d; y1 ≤ · · · , yd} are 0 and the vectors u1, . . . , ud are such that the

A = (u1| · · · |ud) is defined by Aij = 1 if 1 ≤ j ≤ i ≤ d, and Aij = 0 otherwise. Any y ∈ S

can be uniquely written as y =
∑d

j=1 λjuj, with λ1 = y1, λk = yk − yk−1, 2 ≤ k ≤ d, and

λd+1 = 1 − yd. To define g̃ at x = (x1, . . . , xd) ∈ R, proceed in the following way:

• Let π be a permutation such that xπ1 ≤ xπ2 ≤ · · · ≤ xπd
and let P be the associated

permutation matrix. Set y = Px;

• Set λ1 = y1, λk = yk − yk−1, 2 ≤ k ≤ d, and λd+1 = 1 − yd;
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• Set ĝ(x) =
d∑

j=1

λjg
(
P
uj

)
+ λd+1g(0).

Remark C.2. If R =
∏d

j=1[aj, bj ], then set x′
j = xj−aj

bj−aj
, 1 ≤ j ≤ d and apply the last

procedure. The extreme points necessary for the interpolation are then given by a+DP
uj ,

1 ≤ j ≤ d and a, where D is the diagonal matrix with diagonal b−a. The quick interpolation

on a grid is just the repeated application of the quick interpolation on the partition of

rectangles generating the grid.

Example 2. Suppose that one wants to interpolate linearly a convex function f over [0, 1]2,

knowing only the values at extremes, that is f(0, 0), f(1, 0), f(0, 1) and f(1, 1). One could

take the partition P = {C1, C2}, where C1 = {(x, y) ∈ [0, 1]2; y ≤ x} and C2 = {(x, y) ∈

[0, 1]2;x ≤ y}. This would lead to the quick interpolation described above, namely g(x, y) ={
f1(x, y), (x, y) ∈ C1

f2(x, y), (x, y) ∈ C2
, where f1(x, y) = x{f(1, 0)−f(0, 0)}+y{f(1, 1)−f(1, 0)}+f(0, 0)

and f2(x, y) = x{f(1, 1) − f(0, 1)} + y{f(0, 1) − f(0, 0)} + f(0, 0).

On the other hand, one could also consider the partition P ′ = {C3, C4}, where C3 =

{(x, y) ∈ [0, 1]2;x + y ≤ 1} and C4 = {(x, y) ∈ [0, 1]2;x + y ≥ 1}. That would lead to

the following interpolation g′ of f : g′(x, y) =
{

f3(x, y), (x, y) ∈ C3

f4(x, y), (x, y) ∈ C4
, where f3(x, y) =

x{f(1, 0)−f(0, 0)}+y{f(0, 1)−f(0, 0)}+f(0, 0), f4(x, y) = x{f(1, 1)−f(0, 1)}+y{f(1, 1)−

f(1, 0)} − Δ + f(0, 0), and Δ = f(1, 1) − f(0, 1) − f(1, 0) + f(0, 0).

So which partition should be chosen? If convexity is at stake, the answer relies only on

the sign of Δ. In fact, it it easy to check that g is convex on [0, 1]2 if and only if Δ ≤ 0,

while g′ is convex on [0, 1]2 if and only if Δ ≥ 0. It is also easy to check that Lemma C.3

applied with the four extreme points (0, 0), (1, 0), (0, 1) and (1, 1) of [0, 1]2 yields g when

Δ ≤ 0 (resp. g′ when Δ ≥ 0).
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Proposition C.4. Suppose that g is monotone and g̃ represents the quick interpolation of

g over a grid. Then g̃ has the same monotonicity as g, i.e., if g is non-decreasing in xj the

so is g̃, for any 1 ≤ j ≤ d.

Proof. It suffices to prove the result on any rectangle forming the partition of the grid.

By translation and rescaling, one can consider that R = [0, 1]d. In that case, note that

one can write g̃(x) =
∑d

j=1 yj

{
g(P
uj) − g(P
uj+1)

}
, where ud+1 = 0. Next, P
uj −

P
uj+1 = P
ej , where ej is the unit vector with (ej)j = 1 and (ej)i = 0, i �= j. Hence

P
uj ≥ P
uj+1, so if g is non-decreasing in xj, then bj = g(P
uj) − g(P
uj+1) ≥ 0. It

follows that if x in an interior point of one of the simplexes, then x + εej belongs to the

same simplex if ε > 0 is small enough. Suppose that the rank of xj is k. Then, the rank

of xj + ε is also k and g̃(x + εej) − g̃(x) = εg(P
uk) − g(P
uk+1) ≥ 0, since P
ek = ej .

Hence the monotonicity in xj is preserved. �
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Sophia-Antipolis

E-mail address: bruno.remillard@hec.ca


