19 research outputs found

    Pricing Randomized Allocations

    Full text link

    Budget Constrained Auctions with Heterogeneous Items

    Full text link
    In this paper, we present the first approximation algorithms for the problem of designing revenue optimal Bayesian incentive compatible auctions when there are multiple (heterogeneous) items and when bidders can have arbitrary demand and budget constraints. Our mechanisms are surprisingly simple: We show that a sequential all-pay mechanism is a 4 approximation to the revenue of the optimal ex-interim truthful mechanism with discrete correlated type space for each bidder. We also show that a sequential posted price mechanism is a O(1) approximation to the revenue of the optimal ex-post truthful mechanism when the type space of each bidder is a product distribution that satisfies the standard hazard rate condition. We further show a logarithmic approximation when the hazard rate condition is removed, and complete the picture by showing that achieving a sub-logarithmic approximation, even for regular distributions and one bidder, requires pricing bundles of items. Our results are based on formulating novel LP relaxations for these problems, and developing generic rounding schemes from first principles. We believe this approach will be useful in other Bayesian mechanism design contexts.Comment: Final version accepted to STOC '10. Incorporates significant reviewer comment

    Lottery pricing equilibria

    Get PDF
    We extend the notion of Combinatorial Walrasian Equilibrium, as defined by Feldman et al. [2013], to settings with budgets. When agents have budgets, the maximum social welfare as traditionally defined is not a suitable benchmark since it is overly optimistic. This motivated the liquid welfare of [Dobzinski and Paes Leme 2014] as an alternative. Observing that no combinatorial Walrasian equilibrium guarantees a non-zero fraction of the maximum liquid welfare in the absence of randomization, we instead work with randomized allocations and extend the notions of liquid welfare and Combinatorial Walrasian Equilibrium accordingly. Our generalization of the Combinatorial Walrasian Equilibrium prices lotteries over bundles of items rather than bundles, and we term it a lottery pricing equilibrium. Our results are two-fold. First, we exhibit an efficient algorithm which turns a randomized allocation with liquid expected welfare W into a lottery pricing equilibrium with liquid expected welfare 3-√5/2 W (≈ 0.3819-W). Next, given access to a demand oracle and an α-approximate oblivious rounding algorithm for the configuration linear program for the welfare maximization problem, we show how to efficiently compute a randomized allocation which is (a) supported on polynomially-many deterministic allocations and (b) obtains [nearly] an α fraction of the optimal liquid expected welfare. In the case of subadditive valuations, combining both results yields an efficient algorithm which computes a lottery pricing equilibrium obtaining a constant fraction of the optimal liquid expected welfare. © Copyright 2016 ACM

    A Simple and Approximately Optimal Mechanism for an Additive Buyer

    Full text link
    We consider a monopolist seller with nn heterogeneous items, facing a single buyer. The buyer has a value for each item drawn independently according to (non-identical) distributions, and her value for a set of items is additive. The seller aims to maximize his revenue. We suggest using the a-priori better of two simple pricing methods: selling the items separately, each at its optimal price, and bundling together, in which the entire set of items is sold as one bundle at its optimal price. We show that for any distribution, this mechanism achieves a constant-factor approximation to the optimal revenue. Beyond its simplicity, this is the first computationally tractable mechanism to obtain a constant-factor approximation for this multi-parameter problem. We additionally discuss extensions to multiple buyers and to valuations that are correlated across items

    Approximate Revenue Maximization with Multiple Items

    Full text link
    Maximizing the revenue from selling _more than one_ good (or item) to a single buyer is a notoriously difficult problem, in stark contrast to the one-good case. For two goods, we show that simple "one-dimensional" mechanisms, such as selling the goods separately, _guarantee_ at least 73% of the optimal revenue when the valuations of the two goods are independent and identically distributed, and at least 50%50\% when they are independent. For the case of k>2k>2 independent goods, we show that selling them separately guarantees at least a c/log2kc/\log^2 k fraction of the optimal revenue; and, for independent and identically distributed goods, we show that selling them as one bundle guarantees at least a c/logkc/\log k fraction of the optimal revenue. Additional results compare the revenues from the two simple mechanisms of selling the goods separately and bundled, identify situations where bundling is optimal, and extend the analysis to multiple buyers.Comment: Presented in ACM EC conference, 201

    A General Theory of Sample Complexity for Multi-Item Profit Maximization

    Full text link
    The design of profit-maximizing multi-item mechanisms is a notoriously challenging problem with tremendous real-world impact. The mechanism designer's goal is to field a mechanism with high expected profit on the distribution over buyers' values. Unfortunately, if the set of mechanisms he optimizes over is complex, a mechanism may have high empirical profit over a small set of samples but low expected profit. This raises the question, how many samples are sufficient to ensure that the empirically optimal mechanism is nearly optimal in expectation? We uncover structure shared by a myriad of pricing, auction, and lottery mechanisms that allows us to prove strong sample complexity bounds: for any set of buyers' values, profit is a piecewise linear function of the mechanism's parameters. We prove new bounds for mechanism classes not yet studied in the sample-based mechanism design literature and match or improve over the best known guarantees for many classes. The profit functions we study are significantly different from well-understood functions in machine learning, so our analysis requires a sharp understanding of the interplay between mechanism parameters and buyer values. We strengthen our main results with data-dependent bounds when the distribution over buyers' values is "well-behaved." Finally, we investigate a fundamental tradeoff in sample-based mechanism design: complex mechanisms often have higher profit than simple mechanisms, but more samples are required to ensure that empirical and expected profit are close. We provide techniques for optimizing this tradeoff
    corecore