1,797 research outputs found

    Anonymous privacy-preserving task matching in crowdsourcing

    Get PDF
    With the development of sharing economy, crowdsourcing as a distributed computing paradigm has become increasingly pervasive. As one of indispensable services for most crowdsourcing applications, task matching has also been extensively explored. However, privacy issues are usually ignored during the task matching and few existing privacy-preserving crowdsourcing mechanisms can simultaneously protect both task privacy and worker privacy. This paper systematically analyzes the privacy leaks and potential threats in the task matching and proposes a single-keyword task matching scheme for the multirequester/multiworker crowdsourcing with efficient worker revocation. The proposed scheme not only protects data confidentiality and identity anonymity against the crowd-server, but also achieves query traceability against dishonest or revoked workers. Detailed privacy analysis and thorough performance evaluation show that the proposed scheme is secure and feasible

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    Optimum Statistical Estimation with Strategic Data Sources

    Full text link
    We propose an optimum mechanism for providing monetary incentives to the data sources of a statistical estimator such as linear regression, so that high quality data is provided at low cost, in the sense that the sum of payments and estimation error is minimized. The mechanism applies to a broad range of estimators, including linear and polynomial regression, kernel regression, and, under some additional assumptions, ridge regression. It also generalizes to several objectives, including minimizing estimation error subject to budget constraints. Besides our concrete results for regression problems, we contribute a mechanism design framework through which to design and analyze statistical estimators whose examples are supplied by workers with cost for labeling said examples

    Privacy in crowdsourcing:a systematic review

    Get PDF
    The advent of crowdsourcing has brought with it multiple privacy challenges. For example, essential monitoring activities, while necessary and unavoidable, also potentially compromise contributor privacy. We conducted an extensive literature review of the research related to the privacy aspects of crowdsourcing. Our investigation revealed interesting gender differences and also differences in terms of individual perceptions. We conclude by suggesting a number of future research directions.</p
    corecore