
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2018

Anonymous privacy-preserving task matching in
crowdsourcing
Jiangang SHU

Ximeng LIU
Singapore Management University, xmliu@smu.edu.sg

Xiaohua JIA

Kan YANG

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/JIOT.2018.2830784

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
SHU, Jiangang; LIU, Ximeng; JIA, Xiaohua; YANG, Kan; and DENG, Robert H.. Anonymous privacy-preserving task matching in
crowdsourcing. (2018). IEEE Internet of Things. 5, (4), 3068-3078. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4150

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/JIOT.2018.2830784
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

3068 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

Anonymous Privacy-Preserving Task
Matching in Crowdsourcing

Jiangang Shu , Graduate Student Member, IEEE, Ximeng Liu , Member, IEEE, Xiaohua Jia , Fellow, IEEE,

Kan Yang, Member, IEEE, and Robert H. Deng , Fellow, IEEE

Abstract—With the development of sharing economy,
crowdsourcing as a distributed computing paradigm has become
increasingly pervasive. As one of indispensable services for most
crowdsourcing applications, task matching has also been exten-
sively explored. However, privacy issues are usually ignored
during the task matching and few existing privacy-preserving
crowdsourcing mechanisms can simultaneously protect both task
privacy and worker privacy. This paper systematically analyzes
the privacy leaks and potential threats in the task matching
and proposes a single-keyword task matching scheme for the
multirequester/multiworker crowdsourcing with efficient worker
revocation. The proposed scheme not only protects data confiden-
tiality and identity anonymity against the crowd-server, but also
achieves query traceability against dishonest or revoked workers.
Detailed privacy analysis and thorough performance evaluation
show that the proposed scheme is secure and feasible.

Index Terms—Anonymity, crowdsourcing, privacy, revocation,
task matching, traceability.

I. INTRODUCTION

CROWDSOURCING [1] has emerged as an effective way
to deal with complex tasks that require human intelli-

gence or machine computation. Many Web-based and mobile-
based crowdsourcing platforms, e.g., Amazon Mechanical
MTurk,1 CrowdFlower,2 and TaskRabbit,3 have been estab-
lished for a vast number of tasks ranging from house improve-
ment to text translation. In such a crowdsourcing platform, task
requesters can publish tasks to the platform (crowd-server) and
task workers can query the tasks of their interests.

Manuscript received March 16, 2018; revised April 18, 2018; accepted
April 24, 2018. Date of publication April 27, 2018; date of current ver-
sion August 9, 2018. This work was supported in part by the Research
Grants Council of Hong Kong under Grant GRF CityU 11208917 and Grant
CRF CityU C1008-16G and in part by the NSF China under Grant 61732022
and Grant 61702105. (Corresponding author: Xiaohua Jia.)

J. Shu and X. Jia are with the Department of Computer Science, City
University of Hong Kong, Hong Kong (e-mail: jgshu2-c@my.cityu.edu.hk;
csjia@cityu.edu.hk).

X. Liu and R. H. Deng are with the School of Information Systems,
Singapore Management University, Singapore (e-mail: snbnix@gmail.com;
robertdeng@smu.edu.sg).

K. Yang is with the Department of Computer Science, University of
Memphis, Memphis, TN 38152 USA (e-mail: kan.yang@memphis.edu).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author. This includes definitions,
theorems, and Proofs related to the main paper. This material is 0.169 MB
in size.

Digital Object Identifier 10.1109/JIOT.2018.2830784
1[Online]. Available: https://www.mturk.com/mturk/welcome
2[Online]. Available: https://www.crowdflower.com
3[Online]. Available: https://www.taskrabbit.com

As a key service of crowdsourcing, task matching has
attracted a lot of attention from both research community
and industry. In the current solutions [2]–[4], the crowd-
server performs accurate task-worker matching based on task
requirements specified by requesters and queries submitted by
workers. Since the requirements and queries usually contain
sensitive information and yet the crowd-server is not fully
trusted, such solutions will inevitably disclose the sensitive
information of tasks and workers to the crowd-server. Existing
privacy-preserving mechanisms, especially in spatial crowd-
sourcing, only preserve worker information but ignore the
protection of task information [5]–[7]. The crowd-server can
infer the workers’ information by combining the task-worker
matching result with the task information, and thus these one-
sided mechanisms cannot fully preserve the worker privacy in
the end. Therefore, it is necessary to protect both task privacy
and worker privacy against the crowd-server during the task
matching.

Encryption-before-outsourcing is a fundamental method to
protect the privacy. Searchable encryption (SE) is an important
technique that seems to provide a good solution for the task-
worker matching over the encrypted data in crowdsourcing.
Most of SE schemes [10]–[18] only allow the queries from a
single user holding the secret key. However, there are multiple
requesters and multiple workers in crowdsourcing. It is infeasi-
ble to let all the users (requesters and workers) share the same
secret key, as every user revocation will incur the update of the
stored encrypted data and the key redistribution to all the non-
revoked users. And meanwhile, user accountability cannot be
achieved in a provable manner when the secret key is leaked.
It does not work either to simply let each worker have its own
secret key and share this key with all the requesters. To make
published tasks searchable by all the workers, in this case a
requester has to encrypt a task with each worker’s key and
submit multiple copies of encrypted tasks to the crowd-server.
This will incur a huge amount of computation and transmis-
sion overhead. Therefore, the single-user SE cannot be directly
applied in the multiuser task matching in crowdsourcing.

Proxy re-encryption is a major technique to achieve
multiuser SE [8], [9], [24], [25]. However, in these proxy-
based solutions, users’ identities need to be explicitly trans-
mitted to the server together with the encrypted data for
server-side re-encryption, which will lead to the identity
leakage. Another alternative solution is to utilize broadcast
encryption to generate a distinct secret key for each user, and
thus every user can query the encrypted data with its own

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Published in IEEE Internet of Things Journal, August 2018, Volume 5, Issue 4, pp. 3068-3078.
https://doi.org/10.1109/JIOT.2018.2830784

https://orcid.org/0000-0002-4650-8008
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0001-8702-8302
https://orcid.org/0000-0003-3491-8146

SHU et al.: ANONYMOUS PRIVACY-PRESERVING TASK MATCHING IN CROWDSOURCING 3069

key [28]. But, since the user secret keys are all derived from
a common master secret key, user revocation will incur a high
overhead for recomputing and redistribution of the new keys.
It is difficult to design a privacy-preserving task matching
scheme that can simultaneously achieve identity anonymity
and efficient revocation.

In this paper, we design an anonymous privacy-preserving
task matching scheme with efficient worker revocation in
the multirequester/multiworker crowdsourcing systems. Our
scheme not only protects data confidentiality and identity
anonymity against the crowd-server, but also achieves trace-
ability against the dishonest workers and revoked workers.
We also analyze its security and performance through detailed
security analysis and performance evaluation, and the results
show that our scheme is secure and feasible. The main
contributions of this paper can be summarized as follows.

1) This paper systematically analyzes the privacy leaks and
potential threats in the task matching for crowdsourcing
and defines a set of privacy requirements against the
crowd-server, dishonest workers, and revoked workers.

2) Compared with the proxy-based solutions [8], [9], [24],
[25], the proposed scheme achieves the task matching
without leaking identity privacy.

3) Compared with the broadcast-based solutions [28], the
proposed scheme supports efficient worker revocation
with minimal overhead on the crowd-server, and mean-
while without recomputing and redistributing new keys
to the nonrevoked workers.

The rest of this paper is organized as follows. Section II
presents the related works and Section III provides the pre-
liminaries. In Section IV, we formulate the problem of
crowdsourcing task matching with the system model, threat
model, privacy requirements, and design goals. In Section V,
we describe the detailed construction of a single-keyword task
matching scheme and also analyze its security. In Section VI,
we implement the proposed scheme and conduct a detailed
performance analysis in comparison with the state-of-the-art
works theoretically and experimentally. Finally, we conclude
this paper in Section VII.

II. RELATED WORK

There are three research topics involved in this paper: 1) task
matching in crowdsourcing; 2) SE; and 3) group signature.

A. Task Matching in Crowdsourcing

Task matching has been extensively studied since the intro-
duction of crowdsourcing [1]. Crowdsourcing tasks are usually
assigned to workers based on their interests [2], search histo-
ries [3], or social profiles [4]. However, privacy issue during
task matching was ignored by these works. Considering the
crowd-server being untrusted, worker location privacy was
first considered in spatial crowdsourcing. To et al. [5] intro-
duced a trusted third party to protect worker location privacy
based on differential privacy. Shen et al. [6] designed a
secure task assignment protocol using additive homomor-
phic encryption with the introduction of a semi-honest third
party. Extending spatial crowdsourcing to mobile crowd-
sourcing, Gong et al. [7] considered worker context privacy

(e.g., activity) and proposed a flexible framework to optimize
the tradeoffs among utility, privacy, and efficiency. All these
works rely on a trusted or semi-trusted proxy to collect and
process the sensitive worker information, and moreover they
only consider worker privacy. For these reasons, we first con-
sidered both worker privacy and task privacy simultaneously,
and utilized proxy re-encryption to achieve the single-keyword
and multikeyword matching [8], [9], without any interactive
help from the proxy during the task matching. However, due
to the adoption of proxy re-encryption, our previous schemes
cannot protect workers’ identity privacy.

B. Searchable Encryption

SE is a potential way to achieve the encrypted task-
worker matching. According to its application scenarios, the
model of SE can be generally classified into four cate-
gories: 1) single-owner/single-user; 2) multiowner/single-user;
3) single-owner/multiuser; and 4) multiowner/multiuser.

In the single-owner/single-user model, both searchable
ciphertexts and trapdoors are created by a single data owner
(also as user) with a secret key. Since the first searchable
symmetric encryption (SSE) [10], fuzzy query [11], ranked
query [12], personalized query [13], Boolean query [14], and
pattern query [15] have been extensively explored in this
model.

In the multiowner/single-user model, multiple data owners
can create searchable ciphertexts using a common public key
while only a private key holder (as user) is allowed to query.
Since the first pubic key encryption with keyword search
(PEKS) [16], conjunctive, subset, and range query [17], [18]
have also been extensively studied in this model.

In the single-owner/multiuser model, only a secret key
owner can create searchable ciphertexts, whereas a group
of users authorized by the owner are allowed to query. To
achieve this goal, Curtmola et al. [19] first proposed a gen-
eral construction which combines broadcast encryption with
a single-owner/single-user SE scheme. Inspired by oblivi-
ous cross-tag [20], Jarecki et al. [21] proposed a multiclient
SSE and Faber et al. [22] further realized rich queries. To
remove the per-query interaction between the owner and the
user in [21], Sun et al. [23] proposed a noninteractive mul-
ticlient SSE. If we introduce a single-owner/multiuser SE
scheme directly into the multirequester/multiworker crowd-
sourcing, the system usability will be largely affected, as
multiple trapdoors need to be generated for a query.

In the multiowner/multiuser model, every user is allowed
to search over encrypted data outsourced by multiple owners.
Proxy re-encryption is first introduced by Dong et al. [24]
and Bao et al. [25] to achieve this goal. However, these proxy
re-encryption-based SE schemes cannot protect identity pri-
vacy. Moreover, collusion attack vulnerability and interaction
cost make them not applicable to the crowdsourcing-based task
matching. Zhang et al. [26] introduced an extra third party as
middleware for transforming indexes and trapdoors before out-
sourcing, which is not feasible to be deployed in crowdsourc-
ing. Besides the above conventional multiowner/multiuser SE
schemes, attribute-based keyword search (ABKS) [27] and
identity-based keyword search (IBKS) [28] have also been

3070 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

studied. In ABKS or IBKS, if and only if a user’ attributes
or identity satisfy a file’s access policy specified by the
data owner, the user will gain the search authorization to
that file. Such mechanisms based on owner-enforced search
authorization are not applicable to crowdsourcing. Recently,
policy-hiding ABE [29], [30] has been proposed to achieve
the anonymity of policy during the decryption on the user
side, which is different from our goal to achieve the query
anonymity during the task matching on the crowd-server side.

C. Group Signature

Group signature, introduced by Chaum and Van Heyst [31],
allows each member of a group anonymously sign messages
on behalf of the group. Due to its anonymity, traceability, and
nonframeability features, group signatures have been applied
in anonymous online communications, anonymous credential
systems, and digit rights management. Membership revocation
is an important research topic for dynamic groups, and there
are generally three different revocation mechanisms. The first
mechanism enables the group manager to update the group
public key, recompute, and reissue new private signing keys
to all the remaining members after each revocation. It will put
a heavy burden on the group manager. An alternate mechanism
is called verifier-local revocation [32], where revocation mes-
sages are only sent to signature verifiers. In this mechanism,
the verifiers need to check whether a candidate signature is
generated by a revoked member before signature verification.
Since the complexity of revocation checking is linear to the
number of revoked members, it is quite inefficient and will add
computation overheads on the verifiers. The last mechanism
is to enable the group manager to update the group public
key and the signers to update their private signing keys by
themselves [33]. This mechanism keeps constant the verifiers’s
computation costs.

III. PRELIMINARIES

A. Bilinear Pairings

G1, G2, and GT are all multiplicative cyclic groups of prime
order p. Let gi denotes a generator of Gi. A bilinear map e:
G1 ×G2 → GT has the following properties.

1) Bilinearity: For all u ∈ G1, v ∈ G2, and a, b ∈ Z
∗
p,

e(ua, vb) = e(u, v)ab.
2) Nondegeneracy: e(g1, g2) �= 1.
3) Computability: It is efficient to compute e for any input.

In bilinear pairings, there are three basic variants as follows.
1) Type 1: G1 = G2.
2) Type 2: G1 �= G2, and there is a computable isomor-

phism ψ from G2 to G1 with ψ(g2)→ g1.
3) Type 3: G1 �= G2, and there is no isomorphism ψ from

G2 to G1.

B. Complexity Assumptions

1) Bilinear Diffie–Hellman Problem: The bilinear
Diffie–Hellman (BDH) problem in G1 is stated as follows:
given (g, ga, gb, gc) as input, output e(g, g)abc ∈ GT , where
g ∈ G1, a, b, c ∈ Z

∗
p chosen uniformly and independently

Fig. 1. System model.

at random. We say that the BDH assumption holds if all
probabilistic polynomial time algorithms have a negligible
advantage to solve the BDH problem.

2) q-Strong Diffie–Hellman Problem: The q-Strong
Diffie–Hellman (q-SDH) problem in (G1,G2) is stated
as follows: given a (q + 2)-tuple (g1, g2, gγ2 , . . . , gγ

q

2)

as input, output a pair (g[1/(γ+x)]
1 , x), where

g1 ∈ G1, g2 ∈ G2, q, γ, x ∈ Z
∗
p chosen uniformly and

independently at random. We say that the q-SDH assumption
holds if all probabilistic polynomial time algorithms have a
negligible advantage to solve the q-SDH problem.

3) Decisional Linear Problem: The decisional linear
(DLIN) problem in G1 is stated as follows: given
(u, v, h, ua, vb), distinguish hc+d from a random element,
where u, v, h ∈ G1, a, b ∈ Z

∗
p chosen uniformly and inde-

pendently at random. The DLIN assumption holds if all
probabilistic polynomial time algorithms have a negligible
advantage to solve the DLIN problem.

C. Linear Encryption

Linear encryption is an extension of ElGamal encryption.
It is proved to be semantically secure against chosen-plaintext
attack, assuming the DLIN assumption holds. In the linear
encryption, the public key is u, v, h ∈ G1 and the private key is
x, y ∈ Z

∗
p such that ux = vy = h. Its encryption and description

processes are stated as follows.
1) To encrypt a message m ∈ G1, randomly choose a, b ∈

Z
∗
p, output (ua, vb,m · ha+b).

2) To recover the message from a ciphertext (C1,C2,C3),
compute C3/(Cx

1 · Cy
2).

IV. PROBLEM FORMULATION

A. System Model

We consider a dynamic crowdsourcing system, where any
task requester can publish its encrypted tasks on an untrusted
crowdsourcing server such that only authenticated task work-
ers can search over the tasks of their interests. In the system,
the workers may join and leave the system dynamically. For
a revoked worker, it will no longer have permission to query
the tasks.

As shown in Fig. 1, there are four entities in the
crowdsourcing system: 1) a key manager (KM); 2) a

SHU et al.: ANONYMOUS PRIVACY-PRESERVING TASK MATCHING IN CROWDSOURCING 3071

crowdsourcing service provider (crowd-server); 3) multiple
requesters; and 4) multiple workers. The KM is in charge
of system initialization, worker enrollment, and revocation.
Initially, the KM setups the system to publicize public param-
eters and assign a distinct secret key to each participating
worker. When publishing a task, a requester encrypts the
requirement for the task, and then publishes the requirement
ciphertext to the crowd-server, together with the task content in
encryption form. To retrieve the tasks of its interest, a worker
generates the trapdoor and the signature on a query using
its secret key, and submits them to the crowd-server. When
receiving the query request from a worker, the crowd-server
authenticates the worker and sends the matched tasks to the
worker by matching the requirements with the trapdoor. After
that, the worker can decrypt the task contents and carry out
them. Note that the encryption and decryption of task content
is out of scope of this paper. The KM can also trace back the
identities from the suspicious signatures.

B. Threat Model and Privacy Requirements

In the above system model, we consider the KM and all
the requesters as honest (the requesters can be guaranteed by
payments).

Crowd-server is assumed as “honest-but-curious,” i.e., it will
honestly execute the protocol but it is curious to obtain the
private and sensitive information from the ciphertexts, trap-
doors, and signatures. Besides, worker identities and query
frequencies are also very sensitive, i.e., the crowd-server can
launch linking attacks to decide whether any two queries
(including trapdoors and signatures) come from a same worker.
If the linking attacks are successful, the crowd-server can
obtain the query frequency of each worker and easily iden-
tify the worker identities if with some external knowledge.
The crowd-server is usually a reputable company in practice
and is assumed to not collude with the requesters and workers,
which is a reasonable assumption as [24] and [25].

Workers are not always fully trusted. They can be
categorized into two classes.

1) Dishonest worker is a legitimate worker in the system
but may be dishonest in the sense that it may leak its
secret key to other illegitimate (outside) workers to make
profit.

2) Revoked worker was a legitimate worker but now it
has no permission to search over the encrypted tasks
on the crowd-server. After revocation, it may forge the
current legitimate workers to send the queries to the
crowd-server.

Based on the above adversaries, we set the following privacy
requirements.

1) Confidentiality: Ciphertexts and trapdoors should be
protected from the crowd-server.

2) Anonymity: Given the queries from the legitimate
workers, the crowd-server and other inside or outside
workers cannot discover their identities, and decide
whether any two queries come from a same worker.

3) Traceability: Underlying identities of the queries
can always be recognized by the KM. It includes
unforgeability that queries from a legitimate worker

Fig. 2. Work flow.

cannot be forged by any outside worker, and revoca-
bility that revoked workers no longer have permissions
to query.

C. Design Goals

Besides the aforementioned privacy requirements, the
proposed scheme shall also meet the following utility goals.

1) Scalability: To fit the multirequester/multiworker crowd-
sourcing, it should have constant-size secret keys,
ciphertexts and trapdoors. Specifically, their sizes should
be all independent of the number of requesters and
workers in the system.

2) Efficient Revocation: The proposed scheme should sup-
port the efficient worker revocation with minimal over-
heads on the crowd-server and the remaining nonrevoked
workers.

V. SCHEME CONSTRUCTION

In this section, we construct a single-keyword task matching
scheme based on short group signature [33] and PEKS [16].
In the short group signature, we consider three bilinear
groups G1, G2, and GT of prime order p with a mapping
e : G1×G2 → GT and an efficiently computable isomorphism
ψ : G2 → G1, and use a hash function H : {0, 1}∗ → Z

∗
p. In

the SE, we consider two bilinear groups G and GT ′ of prime
order p′ with a mapping e′ : G× G→ GT ′ and employ two
hash functions H1 : {0, 1}∗ → G, H2 : GT ′ → {0, 1}∗. As
shown in Fig. 2, the work flow of the scheme proceeds as
follows.

1) System Initialization: The KM initializes the system and
assigns keys for requesters and registered workers.

2) Task Matching: Given the encrypted task requirements
and trapdoors from requesters and workers, respectively,
the crowd-server performs the task matching process.

3072 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

Algorithm 1 Group Key Generation

1: procedure GKGen(1λ, n)
2: Select g2 ∈R G2
3: g1 ← ψ(g2)

4: Select h ∈R G1\{1G1}, α, β, γ ∈R Z
∗
p

5: Set u, v ∈ G1 such that uα = vβ = h
6: w← gγ2
7: for i = 1 to n do
8: Select xi ∈R Z

∗
p

9: Compute yi

10: gsk[i]← (xi, yi)

11: end for
12: RL← {}, X← 1
13: gpk← (g1, g2, h, u, v,w)
14: gmsk← (α, β, γ,X)
15: return (gpk, gmsk, gsk[1:n],RL)
16: end procedure

3) Query Verification and Tracing: Workers sign their
queries and submit the signed queries to the crowd-
server. The crowd-server verifies the validity of received
queries and traces the underlying identities of suspicious
queries in cooperation with the KM.

4) Worker Revocation: The KM revokes the leaving
workers, and the remaining nonrevoked workers inde-
pendently update their private keys.

A. System Initialization

The KM sets up the system by calling the GKGen and
SKGen algorithms to generate the parameters for group
signature and SE, respectively.

GKGen(1λ, n) → (gpk, gmsk, gsk[1:n],RL). Taking as
input the security parameter λ and the maximum number of
workers n, it performs as Algorithm 1 to output the group
public key gpk = (g1, g2, h, u, v,w), where uα = vβ = h, the
group master secret key gmsk = (α, β, γ,X), n group private
signing keys gsk[1:n] = {(xi, yi = g1/(γ+xi)

1)}, and an empty
revocation list RL.

SKGen(1λ) → (spk, ssk). Taking as input the security
parameter λ, it selects δ ∈R Z

∗
p′ and a generator g ∈R G.

It outputs the searchable public key spk = (g, gδ) and the
searchable secret key ssk = δ.

After that, the KM transmits (gsk[i], ssk) to the worker i for
each i ∈ [1, n]. It also publicizes the group public key gpk,
the searchable public key spk and the revocation list RL while
keeping the group master secret key gmsk.

B. Task Matching

With the public parameters, the requester encrypts a require-
ment keyword w by calling the Enc algorithm and submits the
ciphertext C of w to the crowd-server. The crowd-server can
build a task index table to store the requirement ciphertexts
submitted by the requesters. To retrieve the tasks matching
with some keyword q, the worker generates the trapdoor T
from q by calling the Trap algorithm with its secret key and

Algorithm 2 Sign a Trapdoor
1: procedure Sign(gpk, gsk[i], T)
2: Select a, b ∈R Z

∗
p

3: Compute A1,A2,A3
4: Compute θ1, θ2
5: Select ra, rb, rx, rθ1 , rθ2 ∈R Z

∗
p

6: Compute R1,R2,R3,R4,R5
7: Compute c
8: Compute sa, sb, sx, sθ1 , sθ2

9: return σ ← (A1,A2,A3, c, sa, sb, sx, sθ1 , sθ2)

10: end procedure

submits T to the crowd-server. Given the trapdoor T , the
crowd-server can match it with the ciphertexts in the index
table by performing the Match algorithm.

Enc(spk,w) → C. Given a requirement keyword w, it
chooses r ∈R Z

∗
p′ and computes t = e′(H1(w), (gδ)r). It

outputs C = (gr,H2(t)) as the ciphertext of w.
Trap(ssk, q)→ T . Given a query keyword q, it computes

the trapdoor T = H1(q)ssk.
Match(spk, C, T)→ 1/0. Let C = (C1, C2), where C1 = gr

and C2 = H2(t), if H2(e′(T , C1)) = C2, it outputs 1; otherwise,
it outputs 0.

Theorem 1 (Matching Correctness): The task matching
process is correct. That is, Match(spk, C, T) = 1 iff
q = w.

Proof: Suppose Match(spk, C, T) = 1, we have

H2
(
e′(T , C1)

) = C2

⇔ H2
(
e′(T , C1)

) = H2

(
e′

(
H1(w),

(
gδ

)r
))
.

Since H2 is a hash funcation, we have

e′(T , C1)) = e′
(

H1(w),
(
gδ

)r
)

⇔ e′
(

H1(q)
ssk, gr

))
= e′

(
H1(w),

(
gδ

)r
)

⇔ e′(H1(q), g)δr = e′(H1(w), g)δr

⇒ H1(q) = H1(w).

Since H1 is a hash function, we have q = w. This completes
the proof.

C. Query Verification and Tracing

To prevent outside illegitimate workers from requesting the
query services, the crowd-server needs to verify the validity of
the received queries. Only when the queries are from the legit-
imate workers, the crowd-server will conduct the above task
matching process. With utilizing group signature, the worker
generates the signature σ of the trapdoor T by calling Sign
with its own group private signing key gsk[i] and submits
(T , σ) to the crowd-server. Given (T , σ), the crowd-server
can authenticate σ with the Verify algorithm.

Sign(gpk, gsk[i], T) → σ . Taking the trapdoor T as
input, it outputs the signature σ of T as Algorithm 2,

SHU et al.: ANONYMOUS PRIVACY-PRESERVING TASK MATCHING IN CROWDSOURCING 3073

Algorithm 3 Verify Signature of a Trapdoor
1: procedure Verify(gpk, T , σ)
2: Compute R̃1, R̃2, R̃3, R̃4, R̃5
3: Compute c′ ← H(T ,A1,A2,A3, R̃1, R̃2, R̃3, R̃4, R̃5)

4: if c′ = c then
5: return 1
6: else
7: return 0
8: end if
9: end procedure

denoted as (A1,A2,A3, c, sa, sb, sx, sθ1 , sθ2)

A1 = ua A2 = vb A3 = yih
a+b

c = H(T ,A1,A2,A3,R1,R2,R3,R4,R5)

sa = ra + ca sb = rb + cb sx = rx + cxi

sθ1 = rθ1 + cθ1 sθ2 = rθ2 + cθ2

where θ1 = xia, θ2 = xib, R1 = ura , R2 = vrb , R3 =
e(A3, g2)

rx e(h,w)−ra−rb e(h, g2)
−rθ1−rθ2 , R4 = Arx

1 ·u−rθ1 , R5 =
Arx

2 · v−rθ2 , and a, b, ra, rb, rx, rθ1 , rθ2 ∈R Z∗p .
Verify(gpk, T , σ) → 1/0. Given the trapdoor T and the

signature σ , it verifies the validity of σ as Algorithm 3. It
first computes (R̃1, R̃2, R̃3, R̃4, R̃5) as

R̃1 = usa · A−c
1 R̃2 = vsb · A−c

2

R̃3 = e(A3, g2)
sx · e(h,w)−sa−sb · e(h, g2)

−sθ1−sθ2

× (e(A3,w)/e(g1, g2))
c

R̃4 = Asx
1 · u−sθ1 R̃5 ← Asx

2 · v−sθ2 .

Then it computes

c′ = H
(
T ,A1,A2,A3, R̃1, R̃2, R̃3, R̃4, R̃5

)

and checks whether c′ ?= c. If c′ = c, σ is valid.
If the crowd-server finds a dishonest worker by detecting

abnormal operations (e.g., frequent queries by a worker), it
will transmit the received suspicious queries to the KM which
can trace back its identity by calling the Trace algorithm.

Trace(gmsk, T , σ) → i/0. When σ is valid, it computes
yi = A3/(Aα1 Aβ2) and finds the worker identity i who has yi. If
no such i exists, it outputs 0.

Theorem 2 (Signature Correctness): The group signature is
correct. That is, Verify(gpk, T ,Sign(gpk, gsk[i], T)) = 1 and
Trace(gmsk, T ,Sign(gpk, gsk[i], T)) = i.

Proof: Suppose σ = (A1, A2, A3, c, sa, sb, sx,
sθ1 , sθ2) is a valid signature, we have the following five
equations:

R̃1 = usa · A−c
1 = ura = R1

R̃2 = vsb · A−c
2 = urb = R2

R̃3 = e(g1, g2)
rx

(γ+xi) e(h, g2)
rx(a+b)−γ (ra+rb)−rθ1−rθ2 = R3

R̃4 = Asx
1 · u−sθ1 = uarx−rθ1 = R4

R̃5 = Asx
2 · u−sθ2 = vbrx−rθ2 = R5.

Algorithm 4 Worker Revocation
1: procedure Revoke(gpk, gmsk,RL, I)
2: for i ∈ I do
3: Compute y∗i
4: grk[i]← (xi, y∗i) � Set group revocation key
5: end for
6: Compute X̂
7: Compute ĝ1, ĝ2, ŵ
8: gpk← (ĝ1, ĝ2, h, u, v, ŵ) � Update gpk
9: gmsk← (α, β, γ, X̂) � Update gmsk

10: RL← RL ∪ {grk[i]}i∈I � Update RL
11: return (gpk, gmsk,RL)
12: end procedure

Then we have
(
R̃1, R̃2, R̃3, R̃4, R̃5

) = (R1,R2,R3,R4,R5)

⇔ c′ = c

⇔ Verify(gpk, T , σ) = 1.

Moreover, the first three components of any valid signature
σ , (A1,A2,A3) = (ua, vb, yi · ha+b), form a linear encryption
of yi under the public key (u, v, h). Since the KM possesses
the private keys (α, β), it can always trace the identities from
the valid signatures.

D. Worker Revocation

To prevent a revoked worker from requesting the query ser-
vices, we need to revoke its query permission by making its
secret keys invalid. Considering the efficiency on the crowd-
server, we design a worker revocation mechanism that can
keep the verification cost on the crowd-server a constant. In
this mechanism, the KM updates the group public key gpk and
the revocation list RL by Revoke when the worker revocation
occurs, and the remaining nonrevoked workers can indepen-
dently update their private signing keys with the updated RL
by Update. In this way, the crowd-server can verify the sig-
natures using the updated gpk without any extra computation
overhead. Considering the general case that r ∈ [1, n] work-
ers leave the system at the same time, the proposed worker
revocation mechanism can revoke r workers at once.

Revoke(gpk, gmsk,RL, I) → (gpk, gmsk,RL). Given the
leaving worker identities I = {1, . . . , r}, the KM performs
as Algorithm 4 to update the group public key gpk, the group
master secret key gmsk and the revocation list RL as

gpk = (
ĝ1, ĝ2, h, u, v, ŵ

)

gmsk =
(
α, β, γ, X̂

)

RL = RL ∪ {grk[i]}i∈I

where X̂ = X
∏r

j=1(γ + xj), ĝ1 = g1/X̂
1 , ĝ2 = g1/X̂

2 , ŵ = (ĝ2)
γ ,

and grk[i] = (xi, y∗i = g
1/X

∏i
j=1(γ+xj)

2) is the corresponding
group revocation key for the worker i.

Update(RL, gsk[i]) → gsk[i]. Given the revocation list
RL with the newly added entries {grk[j]}1≤j≤r, a nonrevoked

3074 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

Algorithm 5 Signing Key Update
1: procedure Update(RL, gsk[i])
2: for (xj, y∗j) ∈ {grk[j]}1≤j≤r, do

3: yi ← ψ(y∗j)1/xi−xj/y
1/xi−xj
i � Update yi

4: end for
5: ŷi ← yi

6: gsk[i]← (xi, ŷi) � Update gsk[i]
7: return gsk[i]
8: end procedure

worker i can independently update its private signing key as

gsk[i] = (xi, ŷi = g
1/X(γ+xi)

∏r
j=1(γ+xj)

1) with Algorithm 5.
Remark 1: In practice, we need not require the renewal of

private signing key immediately upon receiving every event of
worker revocation, and the update process only happens when
the worker logs in the system or wants to query. When the
worker logs in the system, the key can be updated once on
a large number of newly revoked workers such that the key
update on a small number of newly revoked workers during
the query will not affect the efficiency on the worker side too
much.

Theorem 3 (Revocation Correctness): The worker revoca-
tion process is correct.

Proof: When revoking r workers at once, the KM out-

puts the group public key (ĝ1 = g
1/X

∏r
j=1(γ+xj)

1 , ĝ2 =
g

1/X
∏r

j=1(γ+xj)

2 , h, u, v, ŵ = g1/X
2) and the revocation list

RL = {grk[j]}1≤j≤r. Given the first revocation key (x1, y∗1 =
g1/X(γ+x1)

2), the worker holding (x, y) updates

y = ψ(
y∗1

)1/x−x1/y1/x−x1 = g
1

X(γ+x)(γ+x1)
1 .

Then, given the second revocation key (x2, y∗2 =
g1/X(γ+x1)(γ+x2)

2), the worker continues updating

y = ψ(
y∗2

)1/x−x2/y1/x−x2 = g
1

X(γ+x)(γ+x1)(γ+x2)
1 .

After repeating r times for all the entries in {grk[j]}1≤j≤r, the

worker can compute ŷ = y = g
1/X(γ+x)

∏r
j=1(γ+xj)

1 . Indeed

ŷγ+x = g
1/X

∏r
j=1(γ+xj)

1 = ĝ1.

Hence, (x, ŷ) is a valid private signing key with respect to the
current public key (ĝ1, ĝ2, h, u, v, ŵ). That means the worker
revocation mechanism is correct.

E. Security Analysis

As defined by the privacy requirements in Section IV-B,
the proposed scheme achieves Confidentiality, Anonymity, and
Traceability as follows.

1) Confidentiality: The proposed scheme is IND-CKA
secure in the random oracle model under the BDH
assumption. Informally speaking, the adversary cannot
distinguish the ciphertexts of two arbitrary keywords
unless the corresponding trapdoors are available. Thus,
ciphertexts and trapdoors are well protected.

TABLE I
NOTATIONS IN MSDE, MUED, SEMEKS, AND APTM

2) Anonymity: The proposed scheme achieves CPA-full
anonymity in the random oracle model assuming the
security of linear encryption. The definition of CPA-full
anonymity also captures query unlinkability. Informally
speaking, the adversary cannot distinguish the group
signatures from two arbitrary workers unless it has per-
mission to trace the signatures. Thus, worker identity
privacy is well protected.

3) Traceability: The proposed scheme achieves insider
traceablility in the random oracle model under the
q-SDH assumption. Informally speaking, the adversary
(except the KM) cannot create valid group signatures
that are untraceable or traced back to uncorrupted work-
ers. The definition of insider traceability also captures
query unforgeability and revocability.

The detailed security definitions and proofs are given in the
supplementary materials available online.4

F. Extension

Compared with the previous multiuser solu-
tions [8], [9], [24], [25], [28] which only support a single
type of matching functionality, e.g., the single-keyword or
multikeyword matching, the proposed scheme has a good
extensibility in the sense that it can be adapted to support
various matching functions by combining any existing SE
scheme, e.g., fuzzy keyword matching [11], Boolean match-
ing [14], and pattern matching [15]. This extensibility is
important for task matching in crowdsourcing, as the single
matching functionality cannot meet the workers’ growingly
diversified query needs.

VI. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the proposed
scheme (denoted by APTM here) through both theoretical
analysis and experimental implementation, in comparison with
the state-of-the-art schemes (MSDE [24], MuED [25], and

4Supplemental material for the reader can be downloaded online at
http://ieeexplore.ieee.org/

SHU et al.: ANONYMOUS PRIVACY-PRESERVING TASK MATCHING IN CROWDSOURCING 3075

TABLE II
COMPARISON IN UTILITY AND SECURITY

TABLE III
COMPUTATION COMPLEXITY

TABLE IV
COMMUNICATION COST

SEMEKS5 [28]). All the notations in the following evaluation
can be referred in Table I.

A. Experimental Setting

In order to evaluate the practical performance, we imple-
ment all the algorithms in the four schemes using python
2.7 based on the pairing-based cryptography library [36] with
version 0.5.14 and the Charm [37] framework for rapidly pro-
totyping cryptosystems with version 0.42. Our experiments
are run on a Ubuntu 12.04 virtual machine with a sin-
gle core at 3.2 GHZ and 8GB RAM. In our experiments,
we realize MSDE, MuED, SEMEKS and the part of SE in
APTM based on the elliptic curve SS512 (|G| = 512 bits,
|GT ′ | = 1024 bits), which is a symmetric elliptic curve with
base field 512-bit and embedding degree 2. And we implement
the short group signature in APTM based on the asymmetric
elliptic curves: MNT159 (|G1| = 159 bits, |G2| = 477 bits,
|GT | = 954 bits), MNT201 (|G1| = 201 bits, |G2| = 603
bits, |GT | = 1206 bits) and MNT224 (|G1| = 224 bits,
|G2| = 672 bits, |GT | = 1344 bits) with embedding degree 2,
and a 159-bit, 201-bit, and 224-bit base field, respectively.
Each curve above has a 160-bit group order, and thus we have
|Zp| = |Zp′ | = 160 bits.

5We omit the part of data sharing and only extract the parameters and
algorithms for multiuser keyword searching.

B. Evaluation Results

Table II lists the major differences of APTM from the other
three schemes in terms of utility and security. Compared with
the proxy-based solutions (MSDE and MuED), APTM sup-
ports the anonymous matching without leaking the identities
of workers while eliminating the storage cost of rekeys on
the crowd-server. Compared with the broadcast-based solu-
tion (SEMEKS), APTM achieves the efficient revocation and
traceability. Compared with both of two types of solutions,
APTM can be easily adapted to realize various matching func-
tions which include but are not limited to the single-keyword
matching. Moreover, APTM resists the server-user collusion
attack in MSDE and avoids the server-owner interaction dur-
ing the keyword encryption in MuED. Meanwhile, we analyze
each algorithm for all the schemes in terms of computation
complexity and communication cost in Tables III and IV,
respectively. Then, we carry out a detailed performance evalua-
tion for each entity involved including the KM, each requester,
each worker and the crowd-server as follows.

KM: The overhead on the KM in APTM is mainly from
three parts: 1) system initialization; 2) worker revocation; and
3) signature tracing.

In the system initialization, the KM needs to generate the
public keys and secret keys, and transmit the secret keys to all
the workers. Its computation complexity is E+(n+2)· E1+E2

3076 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

(a) (b) (c)

Fig. 3. Time cost on the KM. (a) System initialization, (b) worker revocation, and (c) signature tracing.

Fig. 4. Time cost of requirement encryption.

and the total communication cost of secret keys is n · (|Z∗p′ | +|Z∗p| + |G1|). The transmission cost of secret keys in APTM
is less than that in SEMEKS but more than that in MSDE
and MuED. However, APTM saves the transmission cost of
rekeys to the crowd-server compared with MSDE and MuED.
In Fig. 3(a), we vary the value of n from 1000 to 10 000 to
test the time cost of system initialization, and notice that time
cost in all the schemes increases linearly with the number of
workers (n). APTM slightly outperforms MuED and far out-
performs SEMEKS. We can also observe that in the APTMs
under different curves, the higher the MNT curve is, the more
the corresponding time cost is. It takes about 20 s for the most
expensive APTM-MNT224 to setup the system with 10 000
workers, which is a one-time cost and acceptable for the KM.

In the worker revocation, the KM needs to update the group
public key and the revocation list. In Fig. 3(b), we vary the
value of r to test the time cost of the Revoke algorithm,
and observe that the time in all the APTMs is linear with
the number of to-be-revoked workers (r), which validates its
computation complexity E1+ (r+ 2) ·E2. When revoking one
worker, it takes the time varying from 7.4 to 13 ms in all the
APTMs, and when revoking 100 workers at once under the
most expensive MNT224, it takes about 1.35 s, which will
not place a burden on the KM.

We also evaluate the efficiency of signature tracing for the
APTMs under different curves in Fig. 3(c). To trace a signa-
ture, the time cost under each curve is 1.6 ms, 2.2 ms, and
3 ms, respectively. The tracing operation will only be executed
when the secret key leakage happens.

Requester: To evaluate the efficiency of requirement encryp-
tion, we vary the value of k to measure the computation cost

(a) (b)

Fig. 5. Time cost on the worker. (a) Trapdoor and signature generation and
(b) group private signing key update.

(a) (b)

Fig. 6. Time cost of matching over a single requirement ciphertext. Under
different number of keyword (a) ciphertexts when k′ = 1 and (b) trapdoors
when k = 1.

of the Enc algorithm, as shown in Fig. 4. We can observe
that the computation time in all the schemes is linear with the
number of keywords in the task requirement (k), as analyzed
in the computation complexities. Although the time cost in
APTM is a little more than that in MSDE and MuED, it is
far less than that in SEMEKS. For example, when k is set as
10, APTM takes 150 ms to encrypt the task requirement, and
MSDE, MuED, and SEMEKS needs 114 ms, 127 ms, and
280 ms, respectively. Moreover, the communication cost of
ciphertext in APTM (k · (|Z∗p′ | + |G|)) is the minimum among
all the schemes.

SHU et al.: ANONYMOUS PRIVACY-PRESERVING TASK MATCHING IN CROWDSOURCING 3077

Worker: The main job on the worker in APTM includes the
generation of trapdoor and signature, and the update of group
private signing key.

In order to save the cost in the trapdoor and signature gener-
ation on multiple keywords, we concatenate all the generated
trapdoors as the whole message and only generate one signa-
ture. Therefore, its total communication cost of trapdoor and
signature is k′ · |G|+6|Z∗p|+3|G1|, which is the sum of k′ · |G|
for k′ trapdoors and 6|Z∗p| + 3|G1| for one signature, which
is less than that in MSDE and SEMEKS. Fig. 5(a) shows the
total time cost of the Trap and Sign algorithms with respect to
the number of keywords under different curves, in comparison
with MSDE, MuED, and SEMEKS. The time cost in all the
APTMs is linear with the number of keywords in the query
(k′) and the APTMs far outperform SEMEKS. We notice that
the APTMs will become more efficient than MSDE with the
increasing number of keywords. For example, when k′ = 10,
MSDE takes 144 ms to generate the trapdoor while the APTMs
need 123 ms, 136 ms, and 147 ms under MNT159, MNT201,
and MNT224, respectively, in which the signature generation
takes 32.8 ms, 46.4 ms, and 57.1 ms, respectively.

Fig. 5(b) shows that the time cost to update the group private
signing key is linear with the number of newly revoked work-
ers (r) in the revocation list RL, as verified by its computation
complexity 2r ·E1. This updating time cost on a small number
of newly revoked workers is quite efficient. For example, the
time to update the group private signing key for one newly
revoked worker is 1.5 ms, 2.4 ms, and 3 ms under MNT159,
MNT201, and MNT 224, respectively. Thus, the singing key
update on the worker side, incurred by worker revocation, has
slight impact on the query efficiency.

Crowd-Server: The cost on the crowd-server includes the
signature verification cost and the trapdoor matching cost.
In the signature verification, its computation complexity is
8E1+5ET+5P12+H. The time to verify a signature is 41.5 ms,
61.7 ms, and 76.9 ms under MNT159, MNT201, and MNT
224, respectively. In the matching over a single requirement
ciphertext, its computation complexity is k · k′ · (P+ Hgt′).
Fig. 6(a) shows that given the trapdoor of a single query key-
word (k′ = 1), the matching time in SEMEKS and APTM
increases linearly with the number of keyword ciphertexts (k),
while MSDE and MuED are both insensitive. Fig. 6(b) shows
that given the requirement ciphertext of a single keyword
(k = 1), the matching time in all the schemes increases with
the increasing number of keyword trapdoors (k′). Although the
APTM is more time-consuming than MSDE and MuED, it is
much more efficient than SEMEKS. Moreover, the matching
time on a more powerful cloud-based crowdsourcing platform
would be largely reduced for practical use.

VII. CONCLUSION

In this paper, we systematically studied the privacy issues
in the task matching for crowdsourcing and defined a set of
privacy requirements against the crowd-server, dishonest work-
ers, and revoked workers. Then we designed a single-keyword
task matching scheme in the multirequester/multiworker
environment. Compared with the existing proxy-based and

broadcast-based solutions, the proposed scheme achieves iden-
tity anonymity and efficient revocation, meanwhile can be
adapted to realize various matching functions. Finally, we
analyzed the performance of the proposed scheme from both
theoretical and experimental aspects. The detailed performance
evaluation shows that the proposed scheme is feasible for
practical use.

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired Mag., vol. 14, no. 6,
pp. 1–4, 2006.

[2] V. Ambati, S. Vogel, and J. G. Carbonell, “Towards task recommendation
in micro-task markets,” in Proc. Human Comput., 2011, pp. 1–4.

[3] M.-C. Yuen, I. King, and K.-S. Leung, “Task recommendation in crowd-
sourcing systems,” in Proc. 1st Int. Workshop Crowdsourcing Data Min.,
2012, pp. 22–26.

[4] D. E. Difallah, G. Demartini, and P. Cudré-Maduro, “Pick-a-crowd: Tell
me what you like, and i’ll tell you what to do,” in Proc. 22nd Int. Conf.
World Wide Web, 2013, pp. 367–377.

[5] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting worker
location privacy in spatial crowdsourcing,” Proc. VLDB Endowment,
vol. 7, no. 10, pp. 919–930, 2014.

[6] Y. Shen et al., “Towards preserving worker location privacy in spatial
crowdsourcing,” in Proc. IEEE GLOBECOM, San Diego, CA, USA,
2015, pp. 1–6.

[7] Y. Gong, L. Wei, Y. Guo, C. Zhang, and Y. Fang, “Optimal task rec-
ommendation for mobile crowdsourcing with privacy control,” IEEE
Internet Things J., vol. 3, no. 5, pp. 745–756, Oct. 2016.

[8] J. Shu and X. Jia, “Secure task recommendation in crowdsourcing,” in
Proc. IEEE GLOBECOM, Washington, DC, USA, 2016, pp. 1–6.

[9] J. Shu, X. Jia, K. Yang, and H. Wang, “Privacy-preserving task recom-
mendation services for crowdsourcing,” IEEE Trans. Services Comput.,
to be published, doi: 10.1109/TSC.2018.2791601.

[10] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Signal Process., Berkeley, CA, USA,
2000, pp. 588–593.

[11] J. Li et al., “Fuzzy keyword search over encrypted data in cloud
computing,” in Proc. IEEE INFOCOM, San Diego, CA, USA, 2010,
pp. 1–5.

[12] C. Wang, N. Cao, J. Li, K. Ren, and W. J. Lou, “Secure ranked key-
word search over encrypted cloud data,” in Proc. IEEE ICDCS, 2010,
pp. 253–262.

[13] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling personalized
search over encrypted outsourced data with efficiency improvement,”
IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 9, pp. 2546–2559,
Sep. 2016.

[14] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,”
in Proc. 8th ACM SIGSAC Symp. Inf. Comput. Commun. Security, 2013,
pp. 265–276.

[15] D. Wang et al., “Generalized pattern matching string search on encrypted
data in cloud systems,” in Proc. IEEE INFOCOM, 2015, pp. 2101–2109.

[16] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Proc. Adv. Cryptol. Eurocrypt,
2004, pp. 506–522.

[17] D. Boneh and B. Waters, “Conjunctive, subset, and range queries
on encrypted data,” in Proc. Theory Cryptography Conf., 2007,
pp. 535–554.

[18] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proc. IEEE Signal
Process., 2007, pp. 350–364.

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable sym-
metric encryption: Improved definitions and efficient constructions,” J.
Comput. Security, vol. 19, no. 5, pp. 895–934, 2011.

[20] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean
queries,” in Proc. Adv. Cryptol. CRYPTO, 2013, pp. 353–373.

[21] S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Outsourced
symmetric private information retrieval,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2013, pp. 875–888.

[22] S. Faber et al., “Rich queries on encrypted data: Beyond exact matches,”
in Proc. Eur. Symp. Res. Comput. Security, 2015, pp. 123–145.

http://dx.doi.org/10.1109/TSC.2018.2791601

3078 IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 4, AUGUST 2018

[23] S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with support
for boolean queries,” in Proc. Eur. Symp. Res. Comput. Security, 2016,
pp. 154–172.

[24] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” J. Comput. Security, vol. 19, no. 3,
pp. 367–397, 2011.

[25] F. Bao, R. H. Deng, X. Ding, and Y. Yang, “Private query on encrypted
data in multi-user settings,” in Proc. Int. Conf. Inf. Security Pract. Exp.,
2008, pp. 71–85.

[26] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud comput-
ing,” IEEE Trans. Comput., vol. 65, no. 5, pp. 1566–1577, May 2016.

[27] Y. Miao et al., “m2-ABKS: Attribute-based multi-keyword search over
encrypted personal health records in multi-owner setting,” J. Med. Syst.,
vol. 40, no. 11, p. 246, 2016.

[28] A. Kiayias, O. Oksuz, A. Russell, Q. Tang, and B. Wang, “Efficient
encrypted keyword search for multi-user data sharing,” in Proc. Eur.
Symp. Res. Comput. Security, 2016, pp. 173–195.

[29] Y. Zhang et al., “Ensuring attribute privacy protection and fast decryp-
tion for outsourced data security in mobile cloud computing,” Inf. Sci.,
vol. 379, pp. 42–61, Feb. 2017.

[30] Y. Zhang, D. Zheng, and R. H. Deng, “Security and privacy in smart
health: Efficient policy-hiding attribute-based access control,” IEEE
Internet Things J., to be published, doi: 10.1109/JIOT.2018.2825289.

[31] D. Chaum and E. Van Heyst, “Group signatures,” in Proc. Adv. Cryptol.
EUROCRYPT, 1991, pp. 257–265.

[32] D. Boneh and H. Shacham, “Group signatures with verifier-local revo-
cation,” in Proc. 11th ACM Conf. Comput. Commun. Security, 2004,
pp. 168–177.

[33] D. Boneh, X. Boyen, and H. Shacham, “Short group signa-
tures,” Advances in Cryptology—CRYPTO 2004, vol. 3152. Springer:
Heidelberg, Germany, 2004, pp. 41–55.

[34] D. Boneh and X. Boyen, “Short signatures without random oracles,” in
Proc. Int. Conf. Theory Appl. Cryptograph. Techn., 2004, pp. 56–73.

[35] D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,” J. Cryptol., vol. 13, no. 3, pp. 361–396, 2000.

[36] B. Lynn. The Pairing-Based Cryptography (PBC) Library. Accessed:
Jan. 10, 2017. [Online]. Available: https://crypto.stanford.edu/pbc

[37] J. A. Akinyele et al., “Charm: A framework for rapidly prototyping
cryptosystems,” J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128, 2013.

Jiangang Shu (GS’16) received the B.E. and M.S.
degrees from the Nanjing University of Information
Science and Technology, Nanjing, China, in 2012
and 2015, respectively. He is currently pursuing the
Ph.D. degree in computer science at the Department
of Computer Science, City University of Hong Kong,
Hong Kong.

He is currently a Visiting Postgraduate Research
Student with the School of Information System,
Singapore Management University, Singapore. His
current research interests include security and pri-

vacy in crowdsourcing, cloud computing security, and steganography.

Ximeng Liu (S’13–M’16) received the B.Sc. degree
in electronic engineering and Ph.D. degree in cryp-
tography from Xidian University, Xi’an, China, in
2010 and 2015, respectively.

He is currently a Research Fellow with the School
of Information System, Singapore Management
University, Singapore, and a Qishan Scholar with
the College of Mathematics and Computer Science,
Fuzhou University, Fuzhou, China. His current
research interests include cloud security, applied
cryptography, and big data security.

Xiaohua Jia (F’13) received the B.Sc. and
M.Eng. degrees from the University of Science
and Technology of China, Hefei, China, in 1984
and 1987, respectively, and the D.Sc. degree in
information science from the University of Tokyo,
Tokyo, Japan, in 1991.

He is currently the Chair Professor with
the Department of Computer Science, City
University of Hong Kong, Hong Kong. His current
research interests include cloud computing and
distributed systems, computer networks, and mobile

computing.
Prof. Jia is an Editor of the IEEE INTERNET OF THINGS, the IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS from 2006 to
2009, Wireless Networks, the Journal of World Wide Web, and the Journal of
Combinatorial Optimization. He was the General Chair of ACM MobiHoc in
2008, a TPC Co Chair of IEEE GlobeCom in 2010 and Ad Hoc and Sensor
Networking Symposium, and the Area-Chair of IEEE INFOCOM in 2010
and 2015.

Kan Yang (M’13) received the B.Eng. degree in
information security from the University of Science
and Technology of China, Hefei, China, in 2008,
and the Ph.D. degree in computer science from
the City University of Hong Kong, Hong Kong, in
2013.

He is currently a Tenure-Track Assistant
Professor with the Department of Computer
Science, University of Memphis, Memphis, TN,
USA. His current research interests include security
and privacy issues in cloud computing, big data,

crowdsourcing, and Internet of Things, applied cryptography, wireless
communication and networks, and distributed systems.

Robert H. Deng (F’16) is an AXA Chair Professor
of cybersecurity and the Director of Secure Mobile
Centre, School of Information Systems, Singapore
Management University, Singapore. His current
research interests include data security and privacy,
cloud security, and Internet of Things security.

Mr. Deng’s professional contributions include
an extensive list of positions in several indus-
try and public service Advisory Boards, Editorial
Boards, and conference committees. These include
the Editorial Boards of IEEE Security & Privacy

Magazine, the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING, and the IEEE TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, and the Steering Committee Chair of the ACM Asia
Conference on Computer and Communications Security.

http://dx.doi.org/10.1109/JIOT.2018.2825289

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2018

	Anonymous privacy-preserving task matching in crowdsourcing
	Jiangang SHU
	Ximeng LIU
	Xiaohua JIA
	Kan YANG
	Robert H. DENG
	Citation

	tmp.1540523865.pdf._k8vk

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

