326,561 research outputs found

    Crux: Locality-Preserving Distributed Services

    Full text link
    Distributed systems achieve scalability by distributing load across many machines, but wide-area deployments can introduce worst-case response latencies proportional to the network's diameter. Crux is a general framework to build locality-preserving distributed systems, by transforming an existing scalable distributed algorithm A into a new locality-preserving algorithm ALP, which guarantees for any two clients u and v interacting via ALP that their interactions exhibit worst-case response latencies proportional to the network latency between u and v. Crux builds on compact-routing theory, but generalizes these techniques beyond routing applications. Crux provides weak and strong consistency flavors, and shows latency improvements for localized interactions in both cases, specifically up to several orders of magnitude for weakly-consistent Crux (from roughly 900ms to 1ms). We deployed on PlanetLab locality-preserving versions of a Memcached distributed cache, a Bamboo distributed hash table, and a Redis publish/subscribe. Our results indicate that Crux is effective and applicable to a variety of existing distributed algorithms.Comment: 11 figure

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Horava-Lifshitz Cosmology: A Review

    Full text link
    This article reviews basic construction and cosmological implications of a power-counting renormalizable theory of gravitation recently proposed by Horava. We explain that (i) at low energy this theory does not exactly recover general relativity but instead mimic general relativity plus dark matter; that (ii) higher spatial curvature terms allow bouncing and cyclic universes as regular solutions; and that (iii) the anisotropic scaling with the dynamical critical exponent z=3 solves the horizon problem and leads to scale-invariant cosmological perturbations even without inflation. We also comment on issues related to an extra scalar degree of freedom called scalar graviton. In particular, for spherically-symmetric, static, vacuum configurations we prove non-perturbative continuity of the lambda->1+0 limit, where lambda is a parameter in the kinetic action and general relativity has the value lambda=1. We also derive the condition under which linear instability of the scalar graviton does not show up.Comment: 28 pages, invited review for CQG; version to be published (v2

    Random structures for partially ordered sets

    Get PDF
    This thesis is presented in two parts. In the first part, we study a family of models of random partial orders, called classical sequential growth models, introduced by Rideout and Sorkin as possible models of discrete space-time. We analyse a particular model, called a random binary growth model, and show that the random partial order produced by this model almost surely has infinite dimension. We also give estimates on the size of the largest vertex incomparable to a particular element of the partial order. We show that there is some positive probability that the random partial order does not contain a particular subposet. This contrasts with other existing models of partial orders. We also study "continuum limits" of sequences of classical sequential growth models. We prove results on the structure of these limits when they exist, highlighting a deficiency of these models as models of space-time. In the second part of the thesis, we prove some correlation inequalities for mappings of rooted trees into complete trees. For T a rooted tree we can define the proportion of the total number of embeddings of T into a complete binary tree that map the root of T to the root of the complete binary tree. A theorem of Kubicki, Lehel and Morayne states that, for two binary trees with one a subposet of the other, this proportion is larger for the larger tree. They conjecture that the same is true for two arbitrary trees with one a subposet of the other. We disprove this conjecture by analysing the asymptotics of this proportion for large complete binary trees. We show that the theorem of Kubicki, Lehel and Morayne can be thought of as a correlation inequality which enables us to generalise their result in other directions

    POPE: Partial Order Preserving Encoding

    Get PDF
    Recently there has been much interest in performing search queries over encrypted data to enable functionality while protecting sensitive data. One particularly efficient mechanism for executing such queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the relative order of the underlying plaintexts thus allowing range and comparison queries to be performed directly on ciphertexts. In this paper, we propose an alternative approach to range queries over encrypted data that is optimized to support insert-heavy workloads as are common in "big data" applications while still maintaining search functionality and achieving stronger security. Specifically, we propose a new primitive called partial order preserving encoding (POPE) that achieves ideal OPE security with frequency hiding and also leaves a sizable fraction of the data pairwise incomparable. Using only O(1) persistent and O(nϵ)O(n^\epsilon) non-persistent client storage for 0<ϵ<10<\epsilon<1, our POPE scheme provides extremely fast batch insertion consisting of a single round, and efficient search with O(1) amortized cost for up to O(n1ϵ)O(n^{1-\epsilon}) search queries. This improved security and performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding

    Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of l_1

    Get PDF
    Randomized dimensionality reduction has been recognized as one of the fundamental techniques in handling high-dimensional data. Starting with the celebrated Johnson-Lindenstrauss Lemma, such reductions have been studied in depth for the Euclidean (l_2) metric, but much less for the Manhattan (l_1) metric. Our primary motivation is the approximate nearest neighbor problem in l_1. We exploit its reduction to the decision-with-witness version, called approximate near neighbor, which incurs a roughly logarithmic overhead. In 2007, Indyk and Naor, in the context of approximate nearest neighbors, introduced the notion of nearest neighbor-preserving embeddings. These are randomized embeddings between two metric spaces with guaranteed bounded distortion only for the distances between a query point and a point set. Such embeddings are known to exist for both l_2 and l_1 metrics, as well as for doubling subsets of l_2. The case that remained open were doubling subsets of l_1. In this paper, we propose a dimension reduction by means of a near neighbor-preserving embedding for doubling subsets of l_1. Our approach is to represent the pointset with a carefully chosen covering set, then randomly project the latter. We study two types of covering sets: c-approximate r-nets and randomly shifted grids, and we discuss the tradeoff between them in terms of preprocessing time and target dimension. We employ Cauchy variables: certain concentration bounds derived should be of independent interest
    corecore