3,090 research outputs found

    Shining Light On Shadow Stacks

    Full text link
    Control-Flow Hijacking attacks are the dominant attack vector against C/C++ programs. Control-Flow Integrity (CFI) solutions mitigate these attacks on the forward edge,i.e., indirect calls through function pointers and virtual calls. Protecting the backward edge is left to stack canaries, which are easily bypassed through information leaks. Shadow Stacks are a fully precise mechanism for protecting backwards edges, and should be deployed with CFI mitigations. We present a comprehensive analysis of all possible shadow stack mechanisms along three axes: performance, compatibility, and security. For performance comparisons we use SPEC CPU2006, while security and compatibility are qualitatively analyzed. Based on our study, we renew calls for a shadow stack design that leverages a dedicated register, resulting in low performance overhead, and minimal memory overhead, but sacrifices compatibility. We present case studies of our implementation of such a design, Shadesmar, on Phoronix and Apache to demonstrate the feasibility of dedicating a general purpose register to a security monitor on modern architectures, and the deployability of Shadesmar. Our comprehensive analysis, including detailed case studies for our novel design, allows compiler designers and practitioners to select the correct shadow stack design for different usage scenarios.Comment: To Appear in IEEE Security and Privacy 201

    From security to assurance in the cloud: a survey

    Get PDF
    The cloud computing paradigm has become a mainstream solution for the deployment of business processes and applications. In the public cloud vision, infrastructure, platform, and software services are provisioned to tenants (i.e., customers and service providers) on a pay-as-you-go basis. Cloud tenants can use cloud resources at lower prices, and higher performance and flexibility, than traditional on-premises resources, without having to care about infrastructure management. Still, cloud tenants remain concerned with the cloud's level of service and the nonfunctional properties their applications can count on. In the last few years, the research community has been focusing on the nonfunctional aspects of the cloud paradigm, among which cloud security stands out. Several approaches to security have been described and summarized in general surveys on cloud security techniques. The survey in this article focuses on the interface between cloud security and cloud security assurance. First, we provide an overview of the state of the art on cloud security. Then, we introduce the notion of cloud security assurance and analyze its growing impact on cloud security approaches. Finally, we present some recommendations for the development of next-generation cloud security and assurance solutions

    Privacy and Identity Management in a Layered Pervasive Service Platform

    Get PDF
    Making pervasive computing reality is a challenging task mainly due to the multitude of functional requirements and technological constraints. In parallel to the honourable research progress in specific technologies, the Daidalos project assessed that in future there will be the need for a pervasive service platform with open interfaces in order to simplify service development and provisioning. The success of such a platform depends on the balance of different aspects, e.g. operational costs with revenue potentials, collection of personal data for context-awareness with privacy protection, manual control and transparency with enhanced user experience and simplicity. In this paper we show the Daidalos approach to privacy protection and identity management for a future pervasive service platform and its architecture. We show how user identities are structured to support dynamic context information while following regulations for privacy protection in Europe. Special focus is put on the trade-off between access control for privacy protection and user experience. This is achieved by automated identity selection, automatic derivation of fine-grained access control policies and their deployment. We also present gathered performance data and implementation details of our ID Broker concept

    Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low Resolution Action Recognition

    Full text link
    A major emerging challenge is how to protect people's privacy as cameras and computer vision are increasingly integrated into our daily lives, including in smart devices inside homes. A potential solution is to capture and record just the minimum amount of information needed to perform a task of interest. In this paper, we propose a fully-coupled two-stream spatiotemporal architecture for reliable human action recognition on extremely low resolution (e.g., 12x16 pixel) videos. We provide an efficient method to extract spatial and temporal features and to aggregate them into a robust feature representation for an entire action video sequence. We also consider how to incorporate high resolution videos during training in order to build better low resolution action recognition models. We evaluate on two publicly-available datasets, showing significant improvements over the state-of-the-art.Comment: 9 pagers, 5 figures, published in WACV 201
    • …
    corecore