4,219 research outputs found

    Preserving designer input on concrete user interfaces using constraints while maintaining adaptive behavior

    Get PDF
    User interface (UI) adaptation is applied when a single UI design might not be adequate for maintaining usability in multiple contexts-of-use that can vary according to the user, platform, and environment. Fully-automated UI generation techniques have been criticized for not matching the ingenuity of human designers and manual UI adaptation has also been criticized for being time consuming especially when it is necessary to adapt the UI for a large number of contexts. This paper presents a work-in-progress approach that uses constraints for preserving designer input on concrete user interfaces upon applying adaptive behavior. The constraints can be assigned by the UI designer using our integrated development environment Cedar Studio

    RBUIS: simplifying enterprise application user interfaces through engineering role-based adaptive behavior

    Get PDF
    Enterprise applications such as customer relationship management (CRM) and enterprise resource planning (ERP) are very large scale, encompassing millions of lines-of-code and thousands of user interfaces (UI). These applications have to be sold as feature-bloated off-the-shelf products to be used by people with diverse needs in required feature-set and layout preferences based on aspects such as skills, culture, etc. Although several approaches have been proposed for adapting UIs to various contexts-of-use, little work has focused on simplifying enterprise application UIs through engineering adaptive behavior. We define UI simplification as a mechanism for increasing usability through adaptive behavior by providing users with a minimal feature-set and an optimal layout based on the context-of-use. In this paper we present Role-Based UI Simplification (RBUIS), a tool supported approach based on our CEDAR architecture for simplifying enterprise application UIs through engineering role-based adaptive behavior. RBUIS is integrated in our general-purpose platform for developing adaptive model-driven enterprise UIs. Our approach is validated from the technical and end-user perspectives by applying it to developing a prototype enterprise application and user-testing the outcome

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    Adaptive Process Management in Cyber-Physical Domains

    Get PDF
    The increasing application of process-oriented approaches in new challenging cyber-physical domains beyond business computing (e.g., personalized healthcare, emergency management, factories of the future, home automation, etc.) has led to reconsider the level of flexibility and support required to manage complex processes in such domains. A cyber-physical domain is characterized by the presence of a cyber-physical system coordinating heterogeneous ICT components (PCs, smartphones, sensors, actuators) and involving real world entities (humans, machines, agents, robots, etc.) that perform complex tasks in the “physical” real world to achieve a common goal. The physical world, however, is not entirely predictable, and processes enacted in cyber-physical domains must be robust to unexpected conditions and adaptable to unanticipated exceptions. This demands a more flexible approach in process design and enactment, recognizing that in real-world environments it is not adequate to assume that all possible recovery activities can be predefined for dealing with the exceptions that can ensue. In this chapter, we tackle the above issue and we propose a general approach, a concrete framework and a process management system implementation, called SmartPM, for automatically adapting processes enacted in cyber-physical domains in case of unanticipated exceptions and exogenous events. The adaptation mechanism provided by SmartPM is based on declarative task specifications, execution monitoring for detecting failures and context changes at run-time, and automated planning techniques to self-repair the running process, without requiring to predefine any specific adaptation policy or exception handler at design-time

    A methodology for the design and evaluation of user interfaces for interactive information systems

    Get PDF
    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information

    Multi-Device Design in Contexts of Interchange and Task Migration

    Get PDF
    Com a miniaturização dos componentes digitais e o vasto desenvolvimento tecnológico dos últimos anos, a sociedade tem presenciado a redefinição dos "computadores pessoais" pelo advento dos dispositivos móveis. Além da inovação, eles introduziram o desafio do design multi-dispositivo para as aplicações desktop. Enquanto algumas abordagens criaram interfaces móveis sem aproveitar qualquer modelo, outras buscaram adaptações automáticas visando reduzir a sobrecarga de designo Em ambas, o foco do design deixou de ser o usuário, tornando as interfaces tão diferentes ao ponto de comprometerem a usabilidade na realização de uma mesma tarefa em vários dispositivos. Esta tese afirma que não existe uma abordagem de design multi-dispositivo capaz de garantir boa usabilidade em todos os contextos porque o usuário pode escolher apenas uma forma de acesso à aplicação ou alternar seu uso por meio de vários dispositivos. No primeiro caso, o usuário aprende a usar a interface para realizar suas tarefas, sendo relevante uma abordagem que aproveite os recursos do dispositivo e trate suas limitações. No segundo, o usuário já conhece uma das interfaces, o que gera uma expectativa no uso das demais. Logo, é necessário combinar abordagens com objetivos diferentes para atender ao usuário de acordo com o seu contexto de uso. Neste sentido, propõe-se o design multi-dispositivo por meio da preservação de uma hierarquia de prioridades de consistência definida em três níveis. Enquanto os dois primeiros dão suporte à expectativa do usuário em contextos de uso alternado (propensos à execução de tarefas em dispositivos diferentes) e migração de tarefas (iniciando tarefas com um dispositivo e concluindo com outro), o terceiro nível garante a personalização das tarefas de maior interesse visando eficiência e satisfação de uso em um dispositivo específico. A avaliação desta metodologia foi feita por meio de um experimento com três interfaces de pocket PC construídas a partir de uma aplicação desktop do domínio de Educação a Distância: a primeira delas era uma réplica da original (Migração Direta), a segunda não mantinha consistência de layout e era baseada em um processo de design personalizado adequado ao dispositivo (Linear) e a terceira aplicava apenas os dois primeiros níveis da hierarquia de prioridades (Overview). Os resultados da avaliação subjetiva mostraram que a abordagem Overview foi capaz de manter o modelo mental do usuário com maior precisão por preservar os atributos de facilidade, eficiência e segurança de uso na interação inter-dispositivo. Além disso, os resultados medidos para a eficácia (exatidão das respostas) e eficiênciá (tempo médio de execução das tarefas) foram iguais ou melhores com essa abordagem. Por outro lado, os usuários revelaram uma preferência pela personalização de tarefas presente na abordagem Linear. Este resultado dá suporte à proposta desta tese, mostrando que a eficácia gerada pelos dois primeiros níveis da hierarquia de prioridades (percepção e execução das tarefas) deve ser combinada com o terceiro nível de personalização. Para isso, sugere-se a disponibilização de padrões de interface criados pelo designer para escolha do usuário durante a interação. Essa combinação deve garantir usabilidade no acesso a uma aplicação feito sempre por um mesmo dispositivo ou em contextos de uso alternado e migração de tarefasWith the miniaturization of digital components and the vast technological development of the past years, society has remarked the redefinition of "personal computers" by the advent of modern mobile devices. Besides the innovation, these handhelds also introduced the challenge to develop multi-device interfaces for today's desktop applications. While some created mobile interfaces from scratch to get the best from the devices, others looked for automatic adaptations to reduce the load imposed to the designeI. In both cases, the user wasn't the focus anymore, which resulted interfaces so different from each other to the point of compromising usability when peHorming one task on many devices. This thesis claims that there is no multi-device approach capable to provi de full usability in every context because the user may choose only one interface to access the application or interchange its use via many devices. In the first case, the user learns to perform tasks with the given device, which makes relevant an approach that takes advantage of its resources and solves its limitations. In the second, the user already knows one of the available interfaces, which generates an expectation for the others. Therefore, it is necessary to combine approaches with different goals and suit the user according to the appropriate context. In this sense, we propose multi-device design via maintenance of a consistency priorities hierarchy defined in three levels. The first two levels give support to the user's expectation in contexts of interchange (prone to task execution with different devices) and task migration (starting tasks with one device and finishing with other). On the other side, the third level provides task personalization according to the user's interest towards higher efficiency and satisfaction of use with a specific device. The evaluation of this methodology was conducted by an experiment with three pocket PC interfaces designed from an e-learning desktop application: the first interface was an exact replica of the original desktop version (Direct Migration), the second didn't maintain layout consistency and was based in a personalized design process adequate to the device (Linear) while the third applied only the first two levels of the consistency priorities hierarchy (Overview). The subjective evaluation results pointed the Overview approach as the best to maintain the user's mental model by preserving easiness, efficiency and safety of use on inter-device interaction. Additionally, both measured efficacy (task result accuracy) and efficiency (task execution mean time) were the same or even better with this approach. On the other hand, users revealed their preference for the task personalization present in the Linear approach. This result gives support to our proposal, corroborating that the efficacy generated by the first two levels of the consistency priorities hierarchy (task perception and execution) should be combined with the third level of personalization. This could be done by letting designers create interface patterns and make them available to users during interaction. Such combination should guarantee usability while constantly accessing one application through the same device or in contexts of alternated use and task migratio

    Embodied Interactions for Spatial Design Ideation: Symbolic, Geometric, and Tangible Approaches

    Get PDF
    Computer interfaces are evolving from mere aids for number crunching into active partners in creative processes such as art and design. This is, to a great extent, the result of mass availability of new interaction technology such as depth sensing, sensor integration in mobile devices, and increasing computational power. We are now witnessing the emergence of maker culture that can elevate art and design beyond the purview of enterprises and professionals such as trained engineers and artists. Materializing this transformation is not trivial; everyone has ideas but only a select few can bring them to reality. The challenge is the recognition and the subsequent interpretation of human actions into design intent

    How To Touch a Running System

    Get PDF
    The increasing importance of distributed and decentralized software architectures entails more and more attention for adaptive software. Obtaining adaptiveness, however, is a difficult task as the software design needs to foresee and cope with a variety of situations. Using reconfiguration of components facilitates this task, as the adaptivity is conducted on an architecture level instead of directly in the code. This results in a separation of concerns; the appropriate reconfiguration can be devised on a coarse level, while the implementation of the components can remain largely unaware of reconfiguration scenarios. We study reconfiguration in component frameworks based on formal theory. We first discuss programming with components, exemplified with the development of the cmc model checker. This highly efficient model checker is made of C++ components and serves as an example for component-based software development practice in general, and also provides insights into the principles of adaptivity. However, the component model focuses on high performance and is not geared towards using the structuring principle of components for controlled reconfiguration. We thus complement this highly optimized model by a message passing-based component model which takes reconfigurability to be its central principle. Supporting reconfiguration in a framework is about alleviating the programmer from caring about the peculiarities as much as possible. We utilize the formal description of the component model to provide an algorithm for reconfiguration that retains as much flexibility as possible, while avoiding most problems that arise due to concurrency. This algorithm is embedded in a general four-stage adaptivity model inspired by physical control loops. The reconfiguration is devised to work with stateful components, retaining their data and unprocessed messages. Reconfiguration plans, which are provided with a formal semantics, form the input of the reconfiguration algorithm. We show that the algorithm achieves perceived atomicity of the reconfiguration process for an important class of plans, i.e., the whole process of reconfiguration is perceived as one atomic step, while minimizing the use of blocking of components. We illustrate the applicability of our approach to reconfiguration by providing several examples like fault-tolerance and automated resource control
    corecore