
Open Research Online
The Open University’s repository of research publications
and other research outputs

Engineering Adaptive Model-Driven User Interfaces for
Enterprise Applications
Thesis
How to cite:

Akiki, Pierre A. (2014). Engineering Adaptive Model-Driven User Interfaces for Enterprise Applications. PhD
thesis The Open University.

For guidance on citations see FAQs.

c© 2014 Pierre Akiki

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Department of Computing and Communications

Faculty of Mathematics, Computing and Technology

The Open University

Engineering Adaptive

Model-Driven User Interfaces

for Enterprise Applications

Pierre A. Akiki

A thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy in Computing

United Kingdom

May 2014

To my family:

My father Antoine and my mother Randa

My brother Paul and my sister Patricia

“Work is love made visible. And if you cannot work with love but only with

distaste, it is better that you should leave your work and sit at the gate of the

temple and take alms of those who work with joy.”

―Gibran Khalil Gibran, The Prophet

This thesis was created with love, and the joy of making a novel contribution to

the world of knowledge.

“The Cedars of Lebanon are the most famous natural monuments in the

universe. Religion, poetry and history have all celebrated them because of the

reputation for magnificence and holiness that these prodigies of vegetation have

enjoyed since the earliest antiquity… These ancient witnesses of past ages know

history better than does history itself …”

―Alphonse de Lamartine

Part of the contribution presented in this thesis is labelled with the word

“Cedar”, to honor the legacy of the Cedars of Lebanon.

 v

Abstract

Enterprise applications such as enterprise resource planning systems have

numerous complex user interfaces (UIs). Usability problems plague these UIs

because they are offered as a generic off-the-shelf solution to end-users with

diverse needs in terms of their required features and layout preferences.

Adaptive UIs can help in improving usability by tailoring the features and

layout based on the context-of-use. The model-driven UI development approach

offers the possibility of applying different types of adaptations on the various UI

levels of abstraction. This approach forms the basis for many works researching

the development of adaptive UIs. Yet, several gaps were identified in the state-

of-the-art adaptive model-driven UI development systems. To fill these gaps,

this thesis presents an approach that offers the following novel contributions:

 The Cedar Architecture serves as a reference for developing adaptive

model-driven enterprise application user interfaces.

 Role-Based User Interface Simplification (RBUIS) is a mechanism for

improving usability through adaptive behavior, by providing end-users with

a minimal feature-set and an optimal layout based on the context-of-use.

 Cedar Studio is an integrated development environment, which provides

tool support for building adaptive model-driven enterprise application UIs

using RBUIS based on the Cedar Architecture.

The contributions were evaluated from the technical and human

perspectives. Several metrics were established and applied to measure the

technical characteristics of the proposed approach after integrating it into an

open-source enterprise application. Additional insights about the approach were

obtained through the opinions of industry experts and data from real-life

projects. Usability studies showed the approach’s ability to significantly

improve usability in terms of end-user efficiency, effectiveness and satisfaction.

Keywords: Adaptive UIs, Model-Driven Engineering, Enterprise Applications

 vii

Author’s Declaration

The work presented in this thesis is an original contribution of the author.

Parts of this thesis were published in the following peer-reviewed papers:

Journal Article

 P. Akiki, A. Bandara, Y. Yu. Adaptive Model-Driven User Interface

Development Systems, ACM Computing Surveys, 47(1), ACM (2015)

Chapter 2 (Akiki et al. 2015)

Conference Proceedings

 P. Akiki, A. Bandara, Y. Yu. Integrating Adaptive User Interface

Capabilities in Enterprise Applications. Proceedings of the 36th

International Conference on Software Engineering (ICSE), IEEE/ACM

(2014), Hyderabad, India

Chapter 7 (Akiki et al. 2014)

 P. Akiki, A. Bandara, Y. Yu. RBUIS: Simplifying Enterprise Application

User Interfaces through Engineering Role-Based Adaptive Behavior.

Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS), ACM (2013), London, U.K. Best Paper Award

Chapter 5 (Akiki et al. 2013d)

 P. Akiki, A. Bandara, Y. Yu. Cedar Studio: An IDE Supporting

Adaptive Model-Driven User Interfaces for Enterprise Applications.

Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS), ACM (2013), London, U.K.

Chapter 6 (Akiki et al. 2013a)

viii

 P. Akiki, A. Bandara, Y. Yu. Crowdsourcing User Interface

Adaptations for Minimizing the Bloat in Enterprise Applications.

Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS), ACM (2013), London, U.K.

Chapter 8 (Akiki et al. 2013b)

 P. Akiki, A. Bandara, Y. Yu. Using Interpreted Runtime Models for

Devising Adaptive User Interfaces of Enterprise Applications.

Proceedings of the 14th International Conference on Enterprise Information

Systems (ICEIS), SciTePress (2012), Wroclaw, Poland

Chapter 4 (Akiki et al. 2012)

Book Chapter

 P. Akiki. Devising a New Model Driven Framework for Developing

GUI for Enterprise Applications. Information Systems Development –

Towards a Service Provision Society, Chapter 28, Springer (2010).

An early investigation of the research topic (before the PhD) (Akiki 2010)

Doctoral Consortium

 P. Akiki, A. Bandara, Y. Yu. Engineering Adaptive User Interfaces for

Enterprise Applications. Proceedings of the 5th ACM SIGCHI Symposium

on Engineering Interactive Comp. Systems (EICS), ACM (2013), London, U.K.

Chapter 3 (Akiki 2013)

Workshop Proceedings

 P. Akiki, A. Bandara, Y. Yu. Preserving Designer Input on Concrete

User Interfaces Using Constraints While Maintaining Adaptive

Behavior. Proceedings of the 2nd Workshop on Context-Aware Adaptation

of Service Front-Ends (CASFE), CEUR (2013), London, U.K.

Chapter 8 (Akiki et al. 2013c)

 ix

Acknowledgments

I would like to thank my supervisors Arosha Bandara and Yijun Yu for their

invaluable support and guidance. Their comments and advice helped in

improving the quality of this work.

I am grateful to: Sheep Dalton, Bashar Nuseibeh, Marian Petre, and Helen

Sharp, for taking the time to offer me comments on some of my papers. I would

also like to thank my mini-viva examiners Sheep Dalton and Michel Wermelinger

for their comments.

I owe thanks to Bashar Nuseibeh and my supervisors for involving me in the

ASAP project activities such as: the OU-NII-Lero workshop and the NII Shonan

meeting. I am also grateful for the funding, which I got from the ERC Advanced

Grant 291652, to support some of my trips to academic events.

A thank you goes to Robin Laney and all those who contributed to the

postgraduate student forum and conference, which serve as great means for

orienting and supporting postgraduate students during their research.

I am grateful to all the people who dedicated time to participate in my

studies. Your contribution was vital for the completion of this work.

Many thanks go to my family and The Open University community for their

support throughout the PhD process. A special thank you goes to the students of

the Computing and Communications department for the interesting discussions

and the fun that we had together.

Finally, I would like to thank The Open University and its Computing and

Communications Department for offering me funding and the opportunity to

pursue a PhD degree in a friendly and supportive environment.

 xi

Table of Contents

ABSTRACT .. V

AUTHOR’S DECLARATION .. VII

ACKNOWLEDGMENTS ... IX

TABLE OF CONTENTS ... XI

LIST OF FIGURES .. XVII

LIST OF TABLES ... XXI

LIST OF EQUATIONS .. XXIII

LIST OF CODE LISTINGS ... XXV

LIST OF ABBREVIATIONS ... XXVII

GLOSSARY ... XXIX

1 Introduction: Enterprise Application Usability Problems and

Solutions ... 1

1.1 Definitions: Enterprise Applications and Adaptive UIs 2

1.1.1 What is an Enterprise? .. 2

1.1.2 What are Enterprise Applications? .. 2

1.1.3 The Characteristics of Enterprise Application User Interfaces 3

1.1.4 What are Adaptive User Interfaces? .. 3

1.2 Problem Definition .. 4

1.3 Research Motivation ... 5

1.3.1 Enterprise Application Revenues and Adoption Rate 5

1.3.2 Usability Problems Reported in the Literature 6

1.3.3 The Impact of Usability Problems on ERP Implementation Success . 7

1.3.4 UI Adaptation can Improve Enterprise Application Usability 9

1.4 Research Objectives .. 13

1.5 Thesis Organization .. 14

2 Literature Review: Adaptive Model-Driven User Interface

Development Systems ... 17

2.1 Introduction .. 17

2.2 Approaches To User Interface Development and adaptation 21

2.2.1 Traditional Development : Programming, Event, and Markup

Languages .. 22

xii

2.2.2 Window Managers and Widget Toolkits .. 24

2.2.3 Model-Driven Engineering ... 25

2.2.4 Summary .. 27

2.3 Background ... 28

2.3.1 Model-Based User Interface Development .. 29

2.3.1.1 First and Second Generation MBUID Systems 29

2.3.1.2 Third Generation MBUID Systems ... 31

2.3.2 Reference Architectures for Adaptive Systems 33

2.3.3 Architectural Patterns and the Separation of Concerns 34

2.4 Criteria for Evaluating Adaptive Model-Driven User Interface

Development Systems .. 36

2.5 Reference Architectures for Adaptive User Interfaces 42

2.5.1 Review .. 42

2.5.2 Summary of the Review ... 44

2.6 Techniques for Devising Adaptive Model-Driven UIs 45

2.6.1 Feature-Set Adaptation Techniques .. 45

2.6.1.1 Review .. 46

2.6.1.2 Summary of the Review ... 47

2.6.2 Layout Optimization Techniques .. 48

2.6.2.1 Review .. 48

2.6.2.2 Summary of the Review ... 53

2.7 Tools Supporting Adaptive Model-Driven UI Development 54

2.7.1 Review .. 55

2.7.2 Summary of the Review ... 60

2.8 Chapter Summary .. 61

3 Research Design: Research Questions, Hypotheses, and

Methods ... 65

3.1 Research Questions .. 65

3.1.1 Technical Contribution Research Questions 66

3.1.2 Evaluation Research Questions ... 68

3.1.2.1 Software Engineering Perspective .. 68

3.1.2.2 Human-Computer Interaction Perspective 68

3.2 Hypotheses .. 69

3.3 Research Questions for Future Work (Partially Addressed) 70

3.4 Research Methods ... 70

3.4.1 Engineering Techniques .. 70

3.4.2 Empirical Methods ... 71

3.4.2.1 Surveys ... 71

3.4.2.2 Worked Examples and Software Metrics 71

3.4.2.3 Controlled Experiments ... 72

3.4.2.4 Interviews .. 72

 xiii

3.5 Building on Existing Research and Technologies 72

3.6 Chapter Summary .. 73

4 The Cedar Architecture: A Reference for Developing Adaptive

Model-Driven Enterprise Application User Interfaces 75

4.1 Introduction .. 75

4.2 The Cedar Architecture .. 77

4.2.1 Using Interpreted Runtime Models ... 78

4.2.2 Layers Comprising the Cedar Architecture 79

4.2.2.1 Client Components Layer .. 79

4.2.2.2 Decision Components Layer .. 81

4.2.2.3 Adaptation Components Layer .. 81

4.2.2.4 Adaptive Behavior and UI Models Layer 82

4.2.3 Adaptive Behavior Data: How Should the UI be Adapted? 82

4.2.4 Adaptation Procedure .. 83

4.3 General-Purpose Meta-Model ... 85

4.3.1 Multi-Aspect Adaptive User Interfaces Meta-Model 85

4.3.2 User Interface Levels of Abstraction Meta-Model 87

4.3.2.1 Task Models ... 88

4.3.2.2 Abstract User Interface Models ... 88

4.3.2.3 Concrete User Interface Models .. 89

4.4 Evaluating the Performance of Interpreted Runtime Models 91

4.5 Chapter Summary .. 92

5 RBUIS: Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior 95

5.1 Introduction .. 95

5.2 Role-Based User Interface Simplification (RBUIS) 98

5.3 Minimizing the User Interface’s Feature-Set .. 99

5.3.1 Feature-Set Minimization with RBUIS ... 100

5.3.2 Less Time Consuming Access Rights Allocation 100

5.3.3 Applying RBUIS to Task Models at Runtime 101

5.3.4 Model Checking Using SQL ... 103

5.3.5 Feature-Set Minimization Example .. 104

5.4 Optimizing the User Interface’s Layout ... 106

5.4.1 Layout Optimization with RBUIS and Workflows 107

5.4.2 Applying RBUIS at Runtime using Workflows 108

5.4.3 Layout Optimization Example ... 108

5.5 End-User Feedback for Refining the Adaptations 111

5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs 112

xiv

5.6.1 Trade-Off Analysis Technique ... 113

5.6.2 Multi-Aspect Trade-Off Analysis Example 120

5.7 Refitting the UI’s Layout After Adaptation ... 122

5.8 Discussion ... 124

5.9 Chapter Summary .. 127

6 Cedar Studio: An IDE Supporting the Development of Adaptive

Model-Driven User Interfaces for Enterprise Applications 129

6.1 Introduction .. 129

6.2 Design Tools for User Interface Models ... 132

6.2.1 Task Models ... 132

6.2.2 Abstract User Interface Models ... 136

6.2.3 Concrete User Interface Models .. 137

6.3 Design Tool for Adaptive Behavior Workflows 138

6.4 Design Tool for Goal Models ... 140

6.5 Testing the Adapted User Interfaces ... 141

6.6 Assessing Cedar Studio .. 143

6.7 Chapter Summary .. 146

7 Evaluating the Contributions from the Technical and Human

Perspectives ... 147

7.1 Introduction .. 147

7.2 Evaluation Based on Technical Metrics .. 149

7.2.1 How Does the State-of-the-Art Integrate in Existing Systems? 150

7.2.2 Integrating RBUIS in OFBiz ... 152

7.2.2.1 Integration Based on the Cedar Architecture 153

7.2.2.2 The Technique for Integrating RBUIS in OFBiz 154

7.2.3 Metric-Based Evaluation ... 157

7.2.3.1 Reverse-Engineering the User Interfaces 158

7.2.3.2 Integrating the Adaptive UI Capabilities 160

7.2.3.3 Level of Decoupling .. 164

7.2.3.4 Runtime Performance .. 166

7.2.4 Discussing the Results of the Technical Evaluation 169

7.2.4.1 Discussion .. 169

7.2.4.2 Threats to Validity and Limitations .. 170

7.3 Evaluation Based on Industrial Expertise and Data 171

7.3.1 Inquiring about our Approach’s Generality and Flexibility 171

7.3.2 Importance of the Feedback Loop in the UI Adaptation Process ... 172

7.3.3 Discussing the Results of Interviewing the Industry Expert 175

7.3.3.1 Discussion .. 175

 xv

7.3.3.2 Threats to Validity ... 176

7.4 Evaluation Based on Usability Studies .. 176

7.4.1 Online Study ... 177

7.4.1.1 Participant Recruitment and Demographics 179

7.4.1.2 Task Allocated to Participants... 180

7.4.1.3 Results .. 181

7.4.2 Lab-Based Study .. 182

7.4.2.1 Participant Recruitment and Demographics 188

7.4.2.2 Tasks Allocated to Participants ... 188

7.4.2.3 Satisfaction and Efficiency Results ... 190

7.4.2.4 Effectiveness Results ... 194

7.4.2.5 Eye-Tracking Results ... 196

7.4.2.6 Additional Insights .. 199

7.4.3 Discussing the Results of the Usability Studies 200

7.4.3.1 Discussion... 200

7.4.3.2 Threats to Validity ... 202

7.5 Chapter Summary .. 203

8 Conclusions and Future Work ... 205

8.1 Contributions .. 205

8.2 Future Work ... 208

8.2.1 Preserving Designer Input on the User Interface 208

8.2.2 Empowering New Design Participants .. 209

8.2.3 Applying Simplification to Multiple Related User Interfaces 209

8.3 Final Thoughts .. 210

BIBLIOGRAPHY .. 211

APPENDICES .. 229

A Algorithms ... 231

A.1 Feature-Set Minimization Algorithm .. 231

A.2 Layout Optimization Algorithm .. 236

A.3 Conflict Checking Based on Temporal Constraints 237

B Questionnaires .. 239

B.1 Demographics Questions Used in Usability Studies 239

B.2 System Usability Scale (SUS) .. 242

B.3 Microsoft Product Reaction Cards ... 243

 xvii

List of Figures

Figure 1.1: Enterprise Application Software Worldwide Revenue Forecast

Comparison by Segment between the Years 2011 and 2016 (Gartner 2013) 6

Figure 1.2: Example Question from Survey on Variations in Preferences among

End-Users with Different Levels of Computer Literacy 11

Figure 1.3: Variance in UI Preferences among the Different Computer Literacy

Groups .. 12

Figure 2.1: Self-* Properties of Adaptive User Interfaces 18

Figure 3.1: An Early Prototype of Our IDE (Akiki 2010) 67

Figure 3.2: Overview of the Research Steps ... 73

Figure 4.1: The Cedar Architecture .. 77

Figure 4.2: User Interface Adaptation Procedure ... 84

Figure 4.3: Meta-Model for Multi-Aspect Adaptive User Interfaces 86

Figure 4.4: Meta-Model for User Interface Levels of Abstraction 87

Figure 4.5: Task Model for Customer Maintenance UI 88

Figure 4.6: Abstract UI Model for Customer Maintenance UI 89

Figure 4.7: Concrete UI Model for Graphical Customer Maintenance UI 90

Figure 4.8: Performance Comparison between a UI based on Interpreted

Runtime Models and a Code-Based One ... 92

Figure 5.1: Cedar Architecture Components that are realized by RBUIS 97

Figure 5.2: Meta-Model of Applying RBUIS to the Task Model 99

Figure 5.3: Simplified Customer Maintenance Task Model 104

Figure 5.4: Feature-Set Minimization of Customer Maintenance UI 105

Figure 5.5: Meta-Model for Applying RBUIS to the CUI using Workflows 106

xviii

Figure 5.6: Layout Optimization Adaptive Behavior Workflow 109

Figure 5.7: Optimized Layout of Customer FUI ... 110

Figure 5.8: User Feedback Interface Showing Simplification Operations 111

Figure 5.9: Business Partners Mobile User Interface based on the SAP Business

One ERP Mobile Application ... 113

Figure 5.10: Multi-Aspect/Factor Adaptive UI Goal Model Example 114

Figure 5.11: Pareto Front for Multi-Aspect Trade-Off 117

Figure 5.12: Excerpt from a Bank Account Maintenance UI Example with

Layout Adaptation ... 122

Figure 5.13: UI Refitting Example Using Relative Positioning 123

Figure 6.1: Parts of Cedar Architecture and RBUIS Supported by Cedar Studio

 ... 130

Figure 6.2: Task Model Design Tool.. 132

Figure 6.3: Visual Role Allocation ... 133

Figure 6.4: RBUIS Rules Code Editor... 134

Figure 6.5: Model-Checking Constraints Code Editor 135

Figure 6.6: Mapping Task Model to AUI .. 135

Figure 6.7: Abstract User Interface Design Tool .. 136

Figure 6.8: Mapping AUI to CUI .. 137

Figure 6.9: Concrete User Interface Design Tool ... 138

Figure 6.10: Adaptive Behavior Workflow Design Tool.................................... 139

Figure 6.11: Dynamic Scripts Code Editor ... 140

Figure 6.12: Goal Model Design Tool .. 141

Figure 6.13: Sales Invoice UI Initial (a) and Simplified (b) Versions 142

Figure 6.14: Sales Invoice UI Simplified for the Sales Officer Role 144

Figure 7.1: An Example on Adapting the Product Store UI of OFBiz 150

 xix

Figure 7.2: Integrating Adaptive User Interface Capabilities (RBUIS) in OFBiz

based on the Cedar Architecture ... 154

Figure 7.3: Saturation Point for Mapping Rules .. 160

Figure 7.4: Results of the Efficiency Test on Three OFBiz UIs Using Four

Example Adaptations .. 167

Figure 7.5: Box-plot of Load-Testing Results (showing medians) 168

Figure 7.6: Curve of the Load-Testing Results (showing means) 169

Figure 7.7: UI Adaptation Process: Design-Time versus Runtime UI Adaptation

Cycles (based on interviewing an industry expert) ... 173

Figure 7.8: Mean Number of Days for One UI Adaptation Cycle from Three

Real-Life Enterprise Application Projects Running in Parallel 174

Figure 7.9: Customer Maintenance UI Initial (a) and Simplified (b) Versions 178

Figure 7.10: Participant Demographic Information for Online Usability Study

 .. 179

Figure 7.11: Online Usability Study Participant Instructions for the Initial

(Left) and Simplified (Right) User Interface Versions 180

Figure 7.12: End-User Satisfaction and Efficiency Results 181

Figure 7.13: Material UI Initial (a) and Simplified (b) Versions 185

Figure 7.14: Vendor UI Initial (a) and Simplified (b) Versions 186

Figure 7.15: Sales Transaction UI Initial (a) and Simplified (b) Versions 187

Figure 7.16: Participant Demographic Information for Lab-Based Usability

Study .. 188

Figure 7.17: Lab-Based Usability Study Participant Instructions of the Feature-

Set Minimization Part for the Material UI (Left) and Vendor UI (Right) 189

Figure 7.18: End-User Satisfaction Results for Lab-Based Usability Study ... 191

Figure 7.19: End-User Efficiency Results for Lab-Based Usability 192

Figure 7.20: Aggregated Product Reaction Card Results for Lab-Based Usability

Study .. 193

xx

Figure 7.21: Product Reaction Cards Selected More than Two Times by

Participants ... 194

Figure 7.22: Eye-Tracking Results of Fixation Duration and Fixation Count 197

Figure 7.23: Heat Maps Showing an Aggregation of the Participants’ Gazing 198

Figure 7.24: Gaze Plots of One Participant with Data Close to the Mean 199

 xxi

 List of Tables

Table 1.1: UI Related ERP Implementation Critical Success Factors 8

Table 2.1: Comparison between Approaches to User Interface Development ... 28

Table 2.2: Criteria for Evaluating Adaptive Model-Driven UI Development

Systems .. 37

Table 2.3: Visual Evaluation and Comparison of Adaptive Model-Driven User

Interface Reference Architectures ... 45

Table 2.4: Visual Evaluation and Comparison of Adaptive Model-Driven User

Interface Layout Optimization Techniques .. 54

Table 2.5: Visual Evaluation and Comparison of Adaptive Model-Driven User

Interface Development Tools ... 60

Table 5.1: Cost Matrix Example for Multi-Aspect Trade-Off Analysis 115

Table 5.2: Pareto Optimal Sets of Factors and their Costs for the Adaptation

Aspects ... 120

Table 5.3: Three Example Scenarios with Different Weights for the Adaptation

Aspects ... 121

Table 5.4: Pareto Optimal Sets of Factors and their Costs for Three Scenarios

 .. 121

Table 7.1: Some of the Characteristics of OFBiz .. 153

Table 7.2: Example User Interface Adaptation Operations 161

Table 7.3: Integration Time of Different Adaptation Approaches 163

Table 7.4: Results Obtained from Calculating the Change Impact Metric 164

Table 7.5: Backward Compatibility of UI Adaptation Approaches 164

Table 7.6: Improvement in End-User Satisfaction and Efficiency after UI

Simplification ... 182

xxii

Table 7.7: Results of Wilcoxon Signed Ranks Test for Satisfaction and Efficiency

 ... 190

Table 7.8: Improvement in End-User Satisfaction after UI Simplification 191

Table 7.9: Improvement in End-User Efficiency after UI Simplification 192

Table 7.10: Improvement in End-User Effectiveness after UI Simplification . 195

Table 7.11: Improvement in Fixation Data after Simplification 197

 xxiii

List of Equations

Equation 5.1: Cartesian Product in a General Form .. 115

Equation 5.2: Cartesian Product of Example Adaptation Factors 116

Equation 5.3: Cost as a Function of an Adaptation Aspect and a Set of Factors

 .. 116

Equation 5.4: Cost as a Function of a UI and an Element on the Pareto Front

 .. 117

Equation 7.1: Pareto Principle for Mapping Rule Detection Metric 159

Equation 7.2: Approximate Mapping Rule Detection Saturation Point Metric 159

Equation 7.3: Lines-of-Code Metric ... 161

Equation 7.4: Change Impact Metric .. 162

Equation 7.5: Backward Compatibility Metric ... 165

Equation 7.6: Runtime Efficiency Metric for UI Adaptation 166

 xxv

List of Code Listings

Listing 5.1: Feature-Set Minimization (Excerpt) .. 102

Listing 5.2: Task Model Constraint Example using SQL 103

Listing 5.3: Layout Optimization (Excerpt) .. 108

Listing 5.4: Iron Python Script for Changing the Accessibility of Functions ... 110

Listing 5.5: Analyze Multi-Aspect Trade-Offs and Adapt UI (Excerpt) 119

Listing 5.6: Algorithm for Refitting the Layout of an Adapted UI (Excerpt) ... 124

Listing 7.1: Code for Reverse Engineering HTML UI to a Model-Driven

Representation: Excerpt of HTML Table Example ... 155

Listing 7.2: Code for Enabling Adaptive UI Capabilities 156

Listing 7.3: API Code for Applying the Adapted UI: Excerpt of Widget Hiding

Example ... 157

 xxvii

List of Abbreviations

API Application Programming Interface

AUI Abstract User Interface

CRM Customer Relationship Management

CSF Critical Success Factor

CTT Concurrent Task Tree

CUI Concrete User Interface

ERP Enterprise Resource Planning

FUI Final User Interface

IDE Integrated Development Environment

IT Information Technology

MDA Model-Driven Architecture

MDE Model-Driven Engineering

RBUIS Role-Based User Interface Simplification

RIA Rich Internet Application

UI / GUI User Interface / Graphical User Interface

UIDL User Interface Description Language

UIML User Interface Markup Language

UsiXML USer Interface eXtensible Markup Language

WIMP Window Icon Menu Pointer

XSLT EXtensible Stylesheet Language Transformations

 xxix

Glossary

The following list includes definitions for key terms, which are frequently

used throughout this thesis:

 Abstract User Interface (AUI) Model: represents the UI independent of

any modality such as: graphical, voice, gesture, etc. The AUI model relates

to the Platform Independent Model (PIM) in the Model-Driven Architecture.

 Adaptive User Interface: is aware of its context-of-use and is capable of

providing an automatic response to the changes in this context (Fonseca

2010). Such responses could range from a simple layout adjustment to a

change in the UI’s functionality.

 Adaptable User Interface: allows interested stakeholders to manually

adapt the desired characteristics. A simple example of adaptable behavior is

a software application that supports the manual customization of its

toolbars by adding and removing buttons.

 Aspect (Adaptation): is used in this thesis for referring to context-of-use

facets, which can drive UI adaptations. Some examples include: computer

literacy, culture, motor-abilities, screen-size, etc. It is not related to Aspect

Oriented Programming unless explicitly specified otherwise.

 Cedar Architecture: is presented in this thesis as a reference for

developing adaptive model-driven enterprise application user interfaces.

 Cedar Studio: is presented in this thesis as an integrated development

environment that provides tool support for building adaptive model-driven

enterprise application UIs using RBUIS based on the Cedar Architecture.

 Concrete User Interface (CUI) Model: is a modality dependent

representation of the UI. For example, it can represent the UI in terms of

graphical widgets such as: buttons, labels, etc. The CUI model relates to the

Platform Specific Model (PSM) in the Model-Driven Architecture.

xxx

 Concurrent Task Trees (CTT): is a diagrammatic notation for specifying

task models (Paternò et al. 1997).

 Context-of-Use: in the field of context-aware computing, is composed of the

triplet: user who is using the system, platform on which the system is

running, and environment surrounding the system (Calvary et al. 2003).

 Crisp Goal: is satisfied with a Boolean constraint such as whether or not to

make a UI widget visible.

 Default Policy: In RBUIS, a fixed role called “All-Roles” is implicitly

allocated to all the software applications’ tasks in all the task models. This

role grants access by default to all the application’s tasks for all the roles and

can be revoked when necessary by explicitly allocating roles to tasks.

 Enterprise Application: generally serves various purposes in managing

what is known as an enterprise’s functional business areas such as:

accounting, finance, human resources, inventory, marketing, etc. (Oz 2008).

Common examples of enterprise applications include: enterprise resource

planning (ERP) and customer relationship management (CRM) systems.

 Factor (Adaptation): is a UI characteristic that can get affected by an

adaptation. For example factors can include: accessibility of functions, font-

size, information density, widget type, etc.

 Feature-Set: is the set of all the features in a user interface. Features are

represented as tasks in the task model.

 Feature-Set Minimization: is the process of reducing the feature-set of a

UI to contain the minimum number of features, which are required in a

certain context-of-use.

 Final User Interface (FUI): represents the actual UI rendered with a

presentation technology such as: HTML, Windows Forms, WPF, Swing, etc.

 Fuzzy Goal: is satisfied by a fuzzy constraint such as choosing whether a

selection widget should be represented as a: combo-box, list-box, or radio

buttons, based on different costs pertaining to the context-of-use.

 Goal: is used in this thesis to represent an objective that should be achieved

by adapting the UI. A goal can be either fuzzy or crisp.

 xxxi

 Integration (adaptive UI capabilities): is used in this thesis to indicate the

empowerment of legacy enterprise applications with adaptive UI capabilities

by incorporating our proposed UI adaption technique (RBUIS) within them.

 Layout Optimization: is the process of producing an optimal UI for a

particular context-of-use by adapting the properties of the widgets in the

concrete UI model. For example a layout optimization can adapt the:

accessibility of functions, font-size, information density, widget type, etc.

 Mapping Rules: are defined for linking the elements between one UI level

of abstraction and another. For example, mapping the tasks in a task model

to their respective AUI elements, and mapping the AUI elements to their

respective CUI elements.

 Operation (Goal Model): is part of the goal model notation. We use it in this

thesis for representing UI adaptation factors.

 Role: is used in this thesis as an instance of a role group, which represents

an adaptation aspect. A role is not necessarily related to the job, which the

employee performs in the enterprise. For example, we can have job title

roles such as: accountant, cashier, and manager, and we can also have

computer literacy roles such as: novice, intermediate, and expert.

 Role Based User Interface Simplification (RBUIS): is presented in this

thesis as a mechanism for improving usability through adaptive behavior,

by providing end-users with a minimal feature-set and an optimal layout

based on the context-of-use.

 Role Group: is used in this thesis as a technical representation of an

adaptation aspect, and can contain multiple roles. For example, a computer

literacy role group can contain the roles: novice, intermediate, and expert.

 Task: is a UI activity, which is represented as part of a task model. The

ConcurTaskTrees notation has the following task categories1: (1) user task “is

an internal cognitive activity, such as selecting a strategy to solve a problem”,

(2) system task “is performed by the application itself, such as generating the

1 Model-Based User Interface – Task Models: w3.org/TR/task-models

xxxii

results of a query”, (3), interaction task “is a user action that may result in

immediate system feedback, such as editing a diagram”, (4) abstract task

“has subtasks belonging to different categories, and thus cannot be allocated

uniquely using the previous three categories”.

 Task Model: is the highest level of abstraction that represents UI features

as tasks. A possible representation for task models is the ConcurTaskTrees

(Paterno 1999) notation. This level of abstraction relates to the

Computation Independent Model (CIM) in the Model-Driven Architecture.

 Workflow (Adaptive Behavior): is used in this thesis for representing

adaptive UI behavior through programming constructs such as: control

structures, error handling, etc. We apply workflows to the CUI model in

order to adapt the widgets’ properties. A simple example of a workflow could

be one that contains: (1) a “for” loop that iterates on the CUI widgets, (2) an

“if” statement nested in the “for” loop for checking whether a widget is a

combo-box, and (3) an assignment nested in the “if” statement to change the

type of combo-box widgets to “list-box”.

 1

1

Introduction: Enterprise Application

Usability Problems and Solutions

“The beginning is the most important part of the work.”

― Plato, The Republic

Modern businesses greatly depend on enterprise applications such as:

enterprise resource planning (ERP) and customer relationship management

(CRM) systems, for managing their daily business activities. This dependence

drives business owners to demand high quality software products, which allow

their employees (end-users) to work without being inhibited by usability or

other software-related problems. One would expect this demand is met

considering that enterprise applications form an industry with yearly revenues

in billions of United States (US) dollars. However, these applications are

plagued by usability problems that negatively impact end-user satisfaction and

hinder the efficient fulfillment of users’ daily tasks. One of the main causes

behind this problem is that enterprise applications contain many complex off-

the-shelf user interfaces (UIs), while there is a variation in the UI requirements

among the different enterprises and even end-users from the same enterprise. A

single UI design might be incapable of accommodating such variability. Yet,

enterprise applications can contain thousands of UIs making it challenging for

software companies to manually develop and maintain all the variations

required for improving the usability without increasing the development costs.

Furthermore, the scope of UI variability might not be known at design-time.

Adaptive user interfaces have been presented by many research works as a

solution for addressing some usability problems by adapting the UIs of software

systems to the context-of-use (user, platform, and environment). Adaptive UIs

2 1.1 Definitions: Enterprise Applications and Adaptive UIs

could offer an effective solution for addressing some context-related usability

problems in large-scale software systems such as enterprise applications.

This chapter starts by providing definitions for a few general terms that are

frequently used in this work. Afterwards, the research problem, motivation, and

objectives are explained. Finally, the thesis organization is given.

1.1 Definitions: Enterprise Applications and Adaptive UIs

We start by defining the terms enterprise, enterprise application, and

adaptive user interface (UI) since they are the target of our research.

1.1.1 What is an Enterprise?

Leon (2008) defines an enterprise as: “a group of people with a common

goal, which has certain resources at its disposal to achieve this goal” (p. 7).

By following this definition in our research, the term enterprise could refer

to small and medium-sized businesses such as retail stores or large corporations

such as multi-national financial institutions.

1.1.2 What are Enterprise Applications?

Enterprise applications generally serve various purposes in managing

what is known as an enterprise’s functional business areas such as: accounting,

finance, human resources, inventory, marketing, etc. (Oz 2008)

Enterprise Resource Planning (ERP) systems are a common example of

enterprise applications. Leon (2008) defines an ERP as: “a set of tools and

processes that integrates departments and functions across a company into a

common computer system” (p. 29). These systems can be very large-scale by

embodying millions of lines-of-code and thousands of user interfaces.

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 3

1.1.3 The Characteristics of Enterprise Application User Interfaces

Enterprise applications generally have box-like WIMP user interfaces, which

are mostly used for managing enterprise data. Some examples can be UIs for

managing: customer information, bank account information, sales invoices, etc.

The contributions made in this thesis can work for software systems other

than enterprise applications given that the same box-like WIMP UI paradigm is

used. However, we specifically target enterprise applications considering the

large number of complex UIs, which are present in these systems.

1.1.4 What are Adaptive User Interfaces?

Cheng et al. (2009) consider that as a consequence of the evolution towards

ultra-large-scale systems, “software systems must become more versatile, flexible,

resilient, dependable, robust, energy-efficient, recoverable, customizable,

configurable, and self-optimizing by adapting to changing operational contexts,

environments or system characteristics” (p. 1).

The context-of-use, in the field of context-aware computing, is composed of

the triplet: user, platform, and environment (Calvary et al. 2003).

Adaptive user interfaces are aware of their context-of-use and are capable

of providing an automatic response to the changes in this context (Fonseca

2010). Such responses could range from a simple layout adjustment to a change

in the UI’s functionality. After observing the existing literature we were able to

differentiate between the following types of UI adaptation solutions:

 Adaptable user interfaces allow interested stakeholders to manually

adapt the desired characteristics. A simple example of adaptable behavior is

a software application that supports the manual customization of its

toolbars by adding and removing buttons.

 Semi-automated adaptive user interfaces automatically react to a

change in the context-of-use by changing one or more of their characteristics

using a predefined set of adaptation rules. For example, an application can

use a sensor to measure the distance between the end-user and a display

4 1.2 Problem Definition

device, then trigger predefined adaptation rules to adjust the font-size

accordingly.

 Fully-automated adaptive user interfaces can also automatically react

to a change in the context-of-use. However, the adaptation would employ a

learning mechanism, which makes use of data that is logged over time. One

simple example could be a software application, which logs the number of

times each end-user clicks on its toolbar buttons and automatically reorders

these buttons differently for each end-user according to the usage frequency.

When used in this thesis, the term adaptive user interfaces refers to both the

semi-automated and fully-automated solutions.

1.2 Problem Definition

Among the various components of software applications, the user interface is

especially important since it connects the end-users to the functionality. A

software application’s usability is defined in terms of its end-users’ effectiveness,

efficiency, and satisfaction (ISO 9241 2008). Many software applications could

be well-tailored and robust but would eventually fail due to usability problems.

Enterprise applications are plagued by many usability problems (Topi et al.

2005). Some of these problems are due to their complex UIs, which are used in

different contexts-of-use. These applications are feature-bloated and are sold as

generic off-the-shelf products to be used by people whose diverse needs in the

required feature-set and layout preferences are affected by multiple aspects2

such as: computer literacy, culture, motor-abilities, screen-size, etc. For

example, different users could require a variable part of the software’s feature-

set. Therefore, displaying a significant subset of the UI could help the end-users

in fulfilling their daily tasks more efficiently. Another example is the case

where some novice users prefer the UI to be displayed as a step-by-step wizard,

2 The word “aspect” is used in this thesis for referring to context-of-use facets that can

drive UI adaptations. Some examples include: computer literacy, culture, motor-

abilities, screen-size, etc. It is not related to the concept of Aspect Oriented

Programming unless explicitly specified otherwise.

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 5

whereas advanced users feel more productive if all the UI widgets are displayed

on one page. However, the scope of variability might not be known at design-

time and it could be costly to develop the UI variations manually.

Adaptive UIs have been presented by many research works as a solution for

addressing some usability problems by adapting the UIs of software systems to

the context-of-use. Enterprise applications can directly benefit from adaptive

UIs for improving their usability. Since these applications could encompass

thousands of interfaces, adaptive UIs (i.e., semi/fully-automated adaptation)

could be a more feasible adaptation approach than adaptable (i.e., manual

adaptation) ones.

Furthermore, providing an approach for developing adaptive UIs is not

enough when considering mature legacy enterprise applications. The proposed

approach has to integrate within existing legacy systems, in order to empower

them with adaptive UI capabilities. Additionally, the integration method should

work without incurring a high development cost or significantly changing the

way the legacy systems function. This integration challenge must be overcome

to allow legacy enterprise applications to benefit from adaptive UIs at a

reasonable cost.

1.3 Research Motivation

This section discusses the motivation behind the research based on the

adoption rate and the revenues of enterprise applications, and the usability

problems that plague these systems.

1.3.1 Enterprise Application Revenues and Adoption Rate

One motivation for researching enterprise applications in general is their

wide adoption rate and importance in managing modern businesses, which is

reflected by their yearly revenues. For example, the worldwide yearly revenues

of enterprise applications are in billions of US dollars, and are expected to

increase further in the coming years as shown in Figure 1.1.

6 1.3 Research Motivation

Figure 1.1: Enterprise Application Software Worldwide Revenue Forecast
Comparison by Segment between the Years 2011 and 2016 (Gartner 2013)

1.3.2 Usability Problems Reported in the Literature

The existing literature, which includes both academic research and industry

reports, clearly indicates that enterprise applications suffer from numerous

usability problems.

A survey on enterprise application usability was carried out by the

International Data Corporation (IDC) in Denmark, Norway, and Sweden

(Lykkegaard & Elbak 2011). It involved 300 enterprise application users in

organizations with annual revenues exceeding 100 million US dollars. The

results showed that 40% of the participants find enterprise applications difficult

to use to a certain extent.

Topi et al. (2005) identified several usability problems that affect the

implementation of ERP systems. One of these problems is the overall

complexity of ERP UIs, which makes some end-users feel very intimidated

when trying to use these systems. Intimidating UIs create usability problems,

which could cause enterprise application implementations to fail.

The functionality of software applications tends to increase with every

release, thereby increasing the visual complexity (McGrenere et al. 2007). This

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 7

phenomenon is referred to as “bloated software” or “bloatware” (McGrenere

2000) and is highly applicable to feature-rich enterprise applications. The

presence of UI bloat could make end-users less efficient and frustrated due to

the time it takes to locate certain features. Additionally, end-users could become

less effective due to being lost when using a bloated UI.

Singh & Wesson (2009) conducted a study to assess the usability of ERP

systems and reported several problems mainly related to UI navigation and

presentation. One of these problems is the inability of enterprise application

UIs to support end-users with different levels of skill (e.g., novices, experts,

etc.). The researchers proposed the use of dynamic UI adaptation based on the

interactions of each end-user to solve such usability problems.

Commercial enterprise applications such as SAP (Synactive GmbH 2010)

attempt to handle UI bloat and variations in UI layout requirements by

providing tools, which support the manual development of multiple UI versions.

Alternatively, we are aiming towards devising an adaptive UI solution, which

applies adaptive behavior to tailor an individual UI design. Considering the

large number of UIs contained in enterprise applications, our approach could

help in reducing the adaptation cost.

1.3.3 The Impact of Usability Problems on ERP Implementation Success

In previous work, we conducted a study to assess the critical success factors

(CSFs) that could impact the success and failure of ERP system implementations

(Akiki et al. 2011). The implementation phase deals with the actual system

deployment and includes customizing the ERP for business needs, migrating

data, training end-users, etc. The factors were divided into four categories:

internal people, external people, process, and technology. The study presented

the participants with a questionnaire based on 63 CSFs and was conducted in

15 enterprises from various industries namely: retail, banking, manufacturing

(various products), healthcare, food and beverage (sales and restaurants), books,

insurance, and computer hardware and accessories. We used the collected data to

rank the CSFs according to their impact on the ERP implementation success.

8 1.3 Research Motivation

The 63 CSFs included several factors, which are interesting for this thesis

due to their relation to user interfaces whether directly or indirectly. The

technology acceptance factor, which ranked as the number one overall factor

affecting ERP implementations is correlated with the extent to which UIs

support the variable end-user needs (Panorama Consulting Group 2010). We

think that software systems could support this variability better with high

flexibility and less need to go back to the development house to conduct

necessary customization. Furthermore, by providing more tailored and easy to

use UIs, enterprises would require less intensive training programs. Such UIs

could keep the implementation costs realistic, and could allow end-users to be

more efficient hence providing enterprises with a better return on investment.

The usability (efficiency, effectiveness, and satisfaction), familiarity, and

multilingual factors, which are directly related to UIs, also contribute towards

making enterprise applications better software systems that are easier to use.

The CSFs related to user interfaces are presented in Table 1.1. The CSFs are

ranked both within their category and overall. For example, technology

acceptance is ranked as the primary factor influencing the success of ERP

systems. Its global rank is 1 out of 63 factors included in the study, and its

category rank is 1 out of 19 factors within the internal people category.

Table 1.1: UI Related ERP Implementation Critical Success Factors

Critical Success Factor Category Category Rank Overall Rank

Technology Acceptance Internal People 1 / 19 1 / 63

Flexibility Technology 1 / 16 3 / 63

Customization Process 1 / 16 5 / 63

Return on Investment Internal People 2 / 19 7 / 63

Training Programs Internal People 3 / 19 9 / 63

Usability Technology 4 / 16 14 / 63

Familiarity Technology 5 / 16 20 / 63

Realistic Costs Technology 6 / 16 24 / 63

Multilingual Technology 8 / 16 27 / 63

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 9

We should note that statistical significance cannot be claimed in that study

due to the small sample size (n=15). However, the results provide us with a

general idea on the negative impact that usability problems could have on the

success of the complex and expensive implementations of ERP systems. If we

combine these results with what is reported in the literature on enterprise

application usability problems (e.g., Section 1.3.2), we can say that there is a

good incentive for dedicating research effort to solve these problems.

1.3.4 UI Adaptation can Improve Enterprise Application Usability

Several research works, which do not directly target enterprise applications,

presented UI adaptation solutions that improve usability. These works

considered different UI adaptation aspects and factors. For example, the factors

accessibility of functions, information density, text versus graphics, and

navigation structure were tackled from a cultural perspective (Reinecke &

Bernstein 2011). Another research work adapts UI layout grouping and the type

of data selection widget to each end-user’s motor abilities (Gajos et al. 2010). In

order to investigate the effect of applying similar adaptations on enterprise

application UIs, we conducted a preliminary investigation study using an online

interactive survey.

We selected computer literacy as one example adaptation aspect, which could

affect the end-users’ UI preferences. We compiled a list of factors based on

which the UI could be adapted to different levels of computer literacy. The list

was formed from factors that were mentioned in the literature and others that

we considered relevant for enterprise applications. Although this list is not

comprehensive, it allows us to compare different adaptations of the same UI

and form an idea about whether such adaptations can improve usability. Since

this is a preliminary study, we only tested one component of usability namely

end-user satisfaction. We grouped the factors under presentation and

navigation, as shown below, due to the impact of these categories on enterprise

application usability (Singh & Wesson 2009).

10 1.3 Research Motivation

Presentation: Layout Grouping (tab-page, sub-window, group-box), Multi-

Record Visualization (grid, carousel, detailed form), Simple Selection

Widget (combo, slider, radio-buttons), Multi-Record Input (scrolling grid,

non-scrolling grid, form), Accessibility of Functions (high, medium, low),

Information Density (high, medium, low), Text versus Graphics (text only,

image only, image and text)

Navigation: Multi-Document UI (new window, new page, new tab),

Searching the UI (go to widget, filter, filter and re-layout), Navigation

Structure (menu, tree, panel)

To validate whether there is a variance in satisfaction among end-users with

different levels of computer literacy, we devised an online interactive survey to

test our factors. The survey had one independent variable namely computer

literacy with three values: novice, intermediate, and expert. The dependent

variables are the previously listed factors with their possible values in addition

to an open ended value called “other”, which allows participants to specify any

possible value, which was not included in the list.

One limitation of surveys inquiring about different versions of the same user

interface is the order in which the participant sees the various versions.

Participants generally tend to like the first option that they see hence creating

some bias in the survey’s outcome. To avoid this potential bias, we designed our

survey to display the different UI options as small randomized snippets all on

one page. One example question from the survey is illustrated in Figure 1.2.

The options are interactive hence allowing the participant to provide better

assessment. Participants were asked to rate each of the options on a seven point

Likert scale indicating their satisfaction.

The study was carried-out online. Most of the participants were recruited by

promoting the study within The Open University community. Some social

networks were also used for promoting the study to other communities.

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 11

Figure 1.2: Example Question from Survey on Variations in Preferences among End-
Users with Different Levels of Computer Literacy

In order to classify participants under one of the three computer literacy

categories, we have to inquire about their computer skills without giving the

impression that we are subjecting them to an intelligence test. Hence, we asked

the participants to evaluate themselves through a series of questions. We think

that the participants provided honest answers, since the survey is completely

anonymous and they volunteered to take part in it. We selected a set of eight

questions from a computer literacy test that was validated in the literature

(Kay 1993). These questions are presented as part of the demographics

questionnaire B.1 in Appendix B. The Likert scale ratings, which each

participant gave on the computer literacy questions, were averaged to determine

his or her level as follows: novice (1, 2, 3), intermediate (4, 5), and expert (6, 7).

We classified participants under three groups novice (n=22), intermediate

(n=22), and expert (n=45). A two-way ANOVA was performed to examine the

12 1.3 Research Motivation

effect of computer literacy on user interface preferences. There was

homogeneity of variance between the groups as assessed by Levene's test for

equality of error variances. We report measures that were significant (p < .05)

and partial eta-squared (η2) due to its significance in human-computer

interaction research (Landauer 1997). Partial eta-squared can be interpreted as

a small (.01), medium (.06), or large (.14) effect size (Cohen 1988) (pp. 283 and

355). We highlight the following factors, which showed a statistically significant

variance among the three computer literacy participant groups: multi-document

UI (F (4,288) = 4.507, p = .002, η2 = .059), navigation structure (F (4,228) =

4.526, p = .002, η2 = .074), UI layout grouping (F (4,234) = 3.824, p = .005, η2 =

.061). Upon observing the Quantile-Quantile plots we found the data to be

normally distributed with some occasional exceptions. Therefore, we also report

the outcome of the Kruskal-Wallis (non-parametric) ANOVA as a confirmation

to our results: multi-document UI (H (2) = 14.587, P = 0.01), navigation

structure (H (2) = 8.662, P = 0.013), UI layout grouping (H (2) = 6.447, P = 0.04).

Figure 1.3: Variance in UI Preferences among the Different Computer Literacy Groups

The graphs illustrated in Figure 1.3 show the means of the Likert scores

selected by the participants for rating the UI factors, which elicited a

statistically significant variance between the different computer literacy groups.

The results of this study, in addition to what is reported in the literature hint at

the promise of UI adaptation for improving enterprise application usability.

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 13

1.4 Research Objectives

This thesis addresses the following overarching research question:

How can adaptive user interfaces be leveraged for improving the

usability of enterprise applications?

The main objective of this research is to answer the abovementioned

research question by devising a general-purpose approach for supporting the

development of adaptive enterprise application UIs using runtime models.

Therefore, we can say that this thesis contributes a software engineering

solution for a human computer interaction (HCI) problem.

The literature review we conducted in Chapter 2 found gaps in the existing

state-of-the-art adaptive model-driven UI development systems, which we

classified as: reference architectures, adaptation techniques, and support tools.

Based on these gaps, the overarching question is divided into sub-questions

relevant to the technical characteristics of the contribution and its evaluation.

These questions are presented and explained in Chapter 3 alongside the

research methodology that is used to answer them.

The adaptive UI development approach contributed by this thesis is divided

into the following main parts:

 Cedar Architecture: This architecture serves as a reference for

stakeholders interested in developing adaptive enterprise application UIs

based on interpreted runtime models. We developed a generic service-

oriented implementation of this architecture, which could be consumed

through an API from different technologies.

 RBUIS: The Role-Based User Interface Simplification (RBUIS) mechanism

is based on the Cedar Architecture and adapts the UI by minimizing its

feature-set and optimizing its layout based on the context-of-use.

 Cedar Studio: This tool is an integrated development environment (IDE)

for supporting the different stakeholders such as: software developers and

IT personnel, interested in developing adaptive model-driven enterprise

application UIs using RBUIS and following the Cedar Architecture.

14 1.5 Thesis Organization

1.5 Thesis Organization

The rest of this thesis is organized into the following chapters:

Chapter 2 ― Literature Review: Adaptive Model-Driven User Interface

Development Systems: The advantages of the model-driven UI development

approach are highlighted. A list of criteria is established and used for

evaluating the state-of-the-art adaptive model-driven UI development systems,

which we classified into: reference architectures, UI adaptation techniques, and

support tools.

Chapter 3 ― Research Design: Research Questions, Hypotheses, and

Methods: The research questions are established with their hypotheses, and

the methods used for answering these questions are stated and justified.

Chapter 4 ― The Cedar Architecture: A Reference for Developing

Adaptive Model-Driven Enterprise Application User Interfaces: The

Cedar Architecture is presented as a reference alongside a general purpose

meta-model for supporting the development of adaptive model-driven enterprise

application user interfaces.

Chapter 5 ― RBUIS: Simplifying Enterprise Application User Interfaces

through Engineering Role-Based Adaptive Behavior: Role-Based UI

Simplification (RBUIS) is presented as mechanism for simplifying enterprise

application user interfaces through engineering role-based adaptive behavior.

RBUIS is based on the Cedar Architecture.

Chapter 6 ― Cedar Studio: An IDE Supporting the Development of

Adaptive Model-Driven User Interfaces for Enterprise Applications:

The Cedar Studio integrated development environment is described. It supports

the development of adaptive model-driven UIs using the RBUIS mechanism.

Chapter 7 ― Evaluating the Contributions from the Technical and

Human Perspectives: The evaluation of our approach is presented. It covers

the technical and human perspectives and uses different research methods.

Chapter 1 – Introduction: Enterprise Application Usability Problems and Solutions 15

Chapter 8 ― Conclusions and Future Work: The contributions made by this

thesis are summarized. Additionally, we provide an overview of possible future

work. Preliminary results pertaining to some areas of future work are

summarized.

 17

2

Literature Review: Adaptive Model-Driven

User Interface Development Systems

“It is what we know already that often prevents us from learning.”

― Claude Bernard

Adaptive user interfaces (UIs) were introduced to address some of the

usability problems that plague many software applications. Model-driven

engineering formed the basis for most of the systems targeting the development

of such UIs. An overview of these systems is presented and a set of criteria is

established to evaluate the strengths and shortcomings of the state-of-the-art,

which is categorized under architectures, techniques, and tools. A summary of

the evaluation is presented in tables that visually illustrate the fulfillment of

each criterion by each system. The evaluation identified several gaps in the

state-of-the-art and highlighted the areas that can be improved upon.

2.1 Introduction

The user interface (UI) layer is considered one of the key components of

software applications since it connects their end-users to the functionality.

Well-engineered and robust software applications could eventually fail to be

adopted due to a weak UI layer. Some user interface development techniques

such as: universal design (Mace et al. 1990), inclusive design (Keates et al.

2000), and design for all (Stephanidis 1997) promote the concept of making one

UI design fit as many people as possible. Yet, a UI is dependent on its context-

of-use, which is defined in terms of the user, platform, and environment

(Calvary et al. 2003). The “one design fits all” approach is unable to

accommodate all the cases of variability in the context-of-use, in many cases

18 2.1 Introduction

leading to a diminished user experience. Building multiple UIs for the same

functionality due to context variability is difficult since the scope of variability

cannot be completely known at design-time and there is a high cost incurred by

manually developing multiple versions of the UI. Adaptive UIs have been

promoted as a solution for context variability due to their ability to

automatically adapt to the context-of-use at runtime. User interfaces capable of

adapting to their context-of-use are also referred to as multi-context or multi-

target (Fonseca 2010). A key goal behind adaptive UIs is plasticity, denoting a

UI’s ability to preserve its usability across multiple contexts-of-use (Coutaz

2010). Norcio and Stanley (1989) consider that the idea of an adaptive UI is

straightforward since it simply means that: “The interface should adapt to the

user; rather than the user adapting to the system” (p. 399) but they note that in

spite of the simplicity of the definition, there are some difficult and complex

problems relating to adaptive UIs. In our study of the literature, we noticed

that some of these problems are technical and are related to devising systems

that can support the development of adaptive UIs, while others are related to

human factors such as the end-user acceptance of these UIs. Realizing the

abstract properties illustrated in Figure 2.1 could help in handling some of the

technical and human problems related to adaptive UIs.

Figure 2.1: Self-* Properties of Adaptive User Interfaces

Salehie and Tahvildari (2009) present a hierarchy of adaptability properties

for software systems, referred to as self-* properties. This hierarchy demonstrates

different complexity levels in software application adaptability. We consider the

following of its properties to be applicable to the domain of adaptive UIs:

 Context-awareness “indicates that a system is aware of its context, which is

its operating environment” (p. 5). If the UI is aware of its context and is able

Self-
optimizing

Self-configuring

Context-awareness

End-user

feedback loop

Monitoring

feedback loop

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 19

to detect context changes, then it can trigger adaptations (e.g., based on a

set of rules) in response to those changes in order to preserve its usability.

 Self-configuring “is the capability of reconfiguring automatically and

dynamically in response to changes” (p. 5). To keep the UI adaptation rules

up to date with an evolving context-of-use (e.g., if a user’s computer skills

improve), there is a need for a mechanism that can reconfigure these rules by

monitoring such changes. Another type of rule reconfiguration could be based

on the end-users’ feedback. For example, the end-user may choose to reverse a

UI adaptation or select an alternative. Keeping the end-users involved in the

adaptation process could help in increasing their awareness and control,

thereby improving their acceptance of the system.

 Self-optimizing “is the capability of managing performance and resource

allocation in order to satisfy the requirements of different users” (p. 5). To

adapt this definition to user interfaces, we can say that a UI can self-

optimize by adapting some of its properties. For example, adding or removing

features, changing layout properties (e.g., size, location, type, etc.), providing

new navigation help, etc.

The triplet (user, platform, and environment) forming the context-of-use can

be considered as categories of aspects that could promote adaptive UI behavior.

The user can have an impact on changing the context in terms of variable needs.

The needs could be monitored through each user’s behavior upon using the

system or be predefined through a set of dynamically configurable rules. For

example, the behavior of physically disabled users can be monitored through

the speed and accuracy of their mouse clicks and hovering, enabling the UI to

be adapted accordingly. On the other hand a user’s countries of birth and

residence could be used to adapt the UI according to predefined, dynamically

configurable rules based on cultural preferences. The definition of platform can

accommodate both physical devices (e.g., phone, tablet, laptop, etc.), operating

systems, and different types of application platforms (e.g., web, desktop, rich

internet application, etc.) (Aquino et al. 2010). Variability in screen size and the

available UI widgets are common examples of aspects that could spur platform

related adaptive UI behavior. Changes in the environment such as: distance

20 2.1 Introduction

from display devices and mobility, could also incur a change in the context

hence requiring the user interface to adapt.

Many applications have usability problems because their UIs do not cater for

context variability. Enterprise applications such as enterprise resource

planning systems are but one example of such applications (Topi et al. 2005).

Adaptive UI behavior has been suggested as a means for enhancing usability in

these applications by catering to the variable user needs (Singh & Wesson

2009). Many approaches have been suggested for developing adaptive UIs

targeting different types of software systems based on aspects such as:

accessibility (Gajos et al. 2010), concurrent tasks (Bihler & Mügge 2007),

culture (Reinecke & Bernstein 2011), natural context (Blumendorf et al. 2007),

platform (Demeure et al. 2008), etc.

This thesis primarily targets the topic of adaptive UI development systems

that adopt a model-driven approach. We mostly focus on the systems that adopt

model-driven engineering (MDE) since it offers several advantages and has

been receiving the most attention in the literature. Our main aim in this chapter

is to demonstrate the strengths and shortcomings of the state-of-the-art.

The scope of this chapter is narrowed down progressively in Sections 2.2 and

2.3. Section 2.2 discusses the different approaches to UI development and

adaptation and evaluates these approaches based on criteria from the literature

to justify our focus on the model-driven approach. Section 2.3 primarily provides

an overview of early model-based UI development systems and justifies why we

focused on the latest generation of systems. The evaluation criteria based on

which we assess the state-of-the-art is established in Section 2.4 either based on

direct recommendations from the literature or by combining features from

multiple existing systems.

Our evaluation of the state-of-the-art, which we classified into the dimensions

of architectures, techniques, and tools, is presented in Sections 2.5, 2.6, and 2.7

respectively. We believe that a comprehensive system targeting the development

of adaptive UIs should provide a reference architecture depicting the various

characteristics of the proposed approach, a practical technique to achieve the

sought after adaptive behavior based on this reference architecture, and a

support tool for stakeholders to develop UIs and adapt them with the proposed

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 21

adaptation technique. Finally, a chapter summary is given in Section 2.8 and an

overview of our plan for addressing some of the identified limitations is presented.

2.2 Approaches To User Interface Development and adaptation

The existing approaches for developing adaptive user interfaces could be

classified under two categories window managers and widget toolkits, and

model-driven engineering. Window managers provide a programming model to

control the UI’s appearance while widget toolkits are reusable code-based

libraries of UI components that can support adaptation capabilities. On the

other hand, the model-driven engineering (MDE) approach does not rely directly

on code for creating the UIs but on higher level specifications from which the UI

could be derived. In MDE, the adaptive behavior is usually applied to one of the

levels of abstraction before deriving the final UI gets presented to the end-user.

This section provides an overview of the traditional UI development

approach and compares the approaches undertaken for developing adaptive

UIs. We established the following criteria based on the existing literature and

will use them as a basis for evaluating and comparing the approaches:

 Checking the adaptive behavior is important to avoid conflicting outputs

since this behavior is defined by humans and is thereby error-prone. For

example, if a procedure is defined to eliminate part of the UI for a given

context-of-use, having the ability to check for a dependency between the

removed part and the rest of the UI is important to maintain the UI’s

functionality (Bergh et al. 2010).

 Completeness is defined in terms of the types of UIs that can be produced

using a certain UI development approach (Florins 2006). Some approaches

might be only suitable for developing a particular type of user interfaces

such as WIMP UIs. This criterion could be the same as generality, which is

the ability of applying the solution to a variety of cases (Myers et al. 2000).

 Control over the UI is related to the level of details that the designer can

manipulate and the predictability of the final outcome (Florins 2006). Some

automated approaches only allow high-level designer input, hence

decreasing the control and the predictability of the outcome; while others

22 2.2 Approaches To User Interface Development and adaptation

allow lower-level input such as control over the concrete widgets. Designer

input helps in providing different versions of the UI, one of which is

designed by a human and others adapted for a particular purpose. Fully-

mechanized UI construction has been criticized in favor of applying the

intelligence of human designers for achieving higher usability (Pleuss et al.

2010). It would be better if the designer could manipulate a concrete object

rather than its abstraction (Demeure et al. 2009).

 The cost of developing adaptive UIs is an important factor that could

affect the adoption of this approach. Cost is one of the factors affecting the

success of any interactive computer system from the vendor’s point of view

(Mayhew 1999).

 The learning curve is usually affected by how common an approach is in a

certain market or software-development company. It has also been related

to the threshold that indicates how difficult it is to use a certain system for

constructing user interfaces (Myers et al. 2000).

 Technology independence allows a UI development approach to cover a

wider range of existing technologies and to take into consideration new

technologies that could emerge in the future. One approach promoting

technology independence is UI description languages (UIDLs) such as:

UsiXML (Limbourg et al. 2004), UIML (Abrams et al. 1999), etc.

 Traceability “is the ability to establish degrees of relationship between two

or more products of a development process, especially products having a

predecessor-successor or master-subordinate relationship to one another”

(Galvao & Goknil 2007) (p. 314). In adaptive UI development, traceability

could provide the ability to trace the adaptation performed and be able to

revert back to the original user interface either partially or fully.

2.2.1 Traditional Development : Programming, Event, and Markup Languages

Using programming languages for user interface development has been

investigated for some time. The Mikey (Olsen,Jr. 1989) system and its

predecessor MIKE (Olsen,Jr. 1986) are early propositions for managing user

interfaces using programming languages. Mikey provided an example of

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 23

applying Pascal to develop UIs for the Apple Macintosh and MIKE was an

attempt towards a User Interface Management System (UIMS). Another

approach focused on using object-oriented languages (Schmucker 1987). The

first attempts in UI development at Xerox PARC used interpreted programming

languages such as: Smaltalk and Dlisp, which allow developers to easily make

changes and test the new UI version. Although this feature was lost with

compiled languages like C++, it persists in other languages such as those used

for hypertext markup (e.g., HTML).

Event languages allowed developers to control various UI related events (e.g.,

input and output). Early research work on these languages included the

Sassafras (Hill 1986) and the University of Alberta UI Management

System (Green 1985). These types of languages became popular with modern

commercial graphical user interface presentation technologies such: as Visual

Basic Forms, .NET Windows Forms, Java Swing, etc. Therefore, event

languages became part of the visual UI design tools in integrated development

environments (IDEs) such as: Visual Studio, Eclipse, etc. Modern languages like

the Windows Presentation Foundation (WPF) combine markup languages with

programming languages to separate the language used for designing the UI

from that used for coding the functionality behind it.

Today, the traditional approach to UI development uses one of the existing

presentation technologies. There is a variety of software applications types each

relying on different presentation technologies. The following are some examples:

 Desktop Applications: .NET Windows Forms / WPF, Java Swing / AWT, etc.

 Web Applications: HTML, XHTML, CSS, VRML, etc.

 Rich Internet Applications (RIA): Silverlight, XUL, Flex, etc.

Although the traditional development approach has a low learning curve,

high completeness, and control over the UI, it has several disadvantages when

developing adaptive UIs. The main disadvantages are technological dependency

and the high difficulty in adapting the UI to various contexts-of-use without

significantly increasing the development cost. Sections 2.2.2 and 2.2.3 present

two UI development approaches, namely window managers and widget toolkits,

and MDE, which were adopted by many systems for developing adaptive UIs.

24 2.2 Approaches To User Interface Development and adaptation

2.2.2 Window Managers and Widget Toolkits

Window managers provide developers with a programming model to control

the way the UI appears on the screen. However, a direct use of window managers

proved to be tedious hence toolkits were developed to make UI construction

easier. Toolkits provide a library of widgets and a framework for managing UI

creation using this library. Each widget is a component that can manage its

own appearance on the screen. Early efforts towards toolkits were the Apple

Macintosh Toolbox (Huxham et al. 1986) and Andrew Toolkit (Palay et al.

1989).

There are approaches that operate on the window level and could be

classified as being adaptable rather than adaptive, indicating that manual

adaptation is performed by the user. One approach allows HTML-based UIs to

be adapted by the end-users through a toolkit with predefined adaptation

operations that could store changes in a central repository as Cascading Style

Sheets (CSS) (Nebeling & Norrie 2011). UI Façades (Stuerzlinger et al. 2006)

were presented as a technique for allowing end-users to adapt UIs by dragging

and dropping any part of a window to a different location either inside the same

window or to another one.

Toolkit-based approaches for adaptive user interfaces have been explored

extensively in the literature and attempt to address specific UI adaptation

problems. A molecular architecture is offered alongside a toolkit called Ubit to

provide UI adaptation operations such as: magic lenses, transparent tools, and

semantic zooming (Lecolinet 2003). The caring, sharing widgets are presented

as part of a toolkit that offers widgets with multiple built-in output modalities

that can be swapped based on different aspects such as: screen-size, processing

power, etc. (Crease et al. 2000). A system called Fruit also focuses on multi-

modality to support the needs of users with disabilities and those operating in

special environments (Kawai et al. 1996). The selectors are semantic-based

controls that can be presented in a variety of ways in order to replace classical

widgets that have a fixed appearance (Johnson 1992). The ubiquitous

interactor targets device independent UIs by separating the presentation from

user interaction and services (Nylander et al. 2004). Widget-level adaptation is

also promoted by WAHID, which allows the incorporation of adaptive behavior

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 25

in new and legacy applications based on internal and external architectures

(Jabarin & Graham 2003). Both ICON (Dragicevic & Fekete 2001) and

SwingStates (Appert & Beaudouin-Lafon 2006) are toolkits based on Java

Swing. ICON provides an editor that supports the configuration of input devices

allowing them to be connected to graphical software interactions, whereas

SwingStates uses state-machines to extend existing Java Swing widgets with

new interaction techniques.

Widget toolkits reduce the cost of developing adaptive UIs when compared to

the traditional development approach and maintain completeness and control.

Yet, there are downsides to using this approach. Widget toolkits do not improve

technological independence since they are tightly coupled with a single

programming language or presentation technology (e.g., selectors with C++,

WAHID with MFC, ICON and SwingStates with Java Swing, etc.). Also, they

are in many cases hard to extend or non-extensible and do not support

traceability. As indicated by Demeure et al. (2008), toolkit-based approaches do

not support temporal operators on tasks (e.g., sequence, interleaving, etc.) in a

similar manner to MDE (e.g., ConcurTaskTrees (Paterno 1999)), which results in

losing the transformation that changes the UI. Another disadvantage of toolkit-

based approaches is their inability to perform checking of the overall adaptation

impact. One example of such checking is the dependency between UI tasks

when the adaptation eliminates certain tasks based on changes in the context-

of-use (Bergh et al. 2010).

2.2.3 Model-Driven Engineering

Model-driven development (MDD) is promoted by approaches such as the

Model-Driven Architecture (MDA), which provides a technology independent

means for absorbing the effect of constant changes in technology and business

requirements (Soley & OMG Staff Strategy Group 2000). MDA is about using

modeling languages as programming languages rather than merely as design

languages since this can improve the productivity, quality, and longevity

outlook (Frankel 2003). MDA unites the Object Management Group’s (OMG)

well-established modeling standards with past, present, and future middleware

technologies to integrate “what you have built, with what you are building and

26 2.2 Approaches To User Interface Development and adaptation

what you are going to build”. Rather than focusing on yet another “next best

thing”, MDA raises the bar and designs portability and interoperability into the

application at the model level (OMG 2013).

Model-driven engineering (MDE) has a wider scope than MDA’s development

activities and combines process and analysis with architectures (Kent 2002).

Since MDE aims to raise the level of abstraction of software applications, it can

serve as a basis for devising adaptive UIs due to the possibility of applying

different types of adaptations on the various levels of abstraction. This approach

has received the most attention in the literature. We differentiate between the

following model-driven approaches that can be used for developing UIs:

 Static modeling relies on models for UI design and eventually ends in a

phase before code generation. By definition, static models cannot change at

runtime hence are not useful beyond the development phase.

 Generative runtime modeling keeps the models alive at runtime to adapt

the code-based UI artifacts that were generated at design-time.

 Interpreted runtime modeling does not require code generation for creating

the UI. Instead, the models are interpreted at runtime to render the UI.

Runtime models constitute an important area of research in model-driven

engineering (France & Rumpe 2007). Also, runtime models are usually more

suited for supporting adaptive behavior. However, in certain scenarios using

runtime models while maintaining the generated code-based artifacts is

insufficient for achieving the required adaptations. Some adaptive scenarios

require support for actions such as: eliminating widgets; replacing a widget

with another; adding new widgets that did not exist during the development

phase; or composing a completely new UI from existing UIs. Performing such

actions at runtime could be difficult when the user interface is based on

generated artifacts. One problem, for example, is the inability to compose new

UIs at runtime since the application is expecting to render the UI from code

instead of models. Also, substituting a widget with another would be difficult

since the types are hard coded, whereas with runtime interpretation the types

could be switched in the model and the widget would be rendered accordingly. In

contrast, with interpreted runtime models code generation is not needed for

creating the UI but the models are interpreted and rendered at runtime thereby

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 27

allowing more advanced adaptations. Additionally, by adopting interpreted

runtime models, the adaptation could be delegated to a server hence the client

machine will be merely responsible for rendering the UI from the adapted

model. This method provides a clear separation of concerns. Another benefit of

adopting interpreted runtime models is the ability to deploy UI modifications

without recompiling the application.

When comparing the MDE approach for UI construction with traditional

techniques, Myers et al. (2000) indicate that this approach suffers from a high

learning curve. Yet, although the learning curve is generally higher for MDE

than traditional development techniques, developers could quickly get used to

MDE for devising UIs if the appropriate tool support is provided. Additionally,

when assessing whether this learning curve is justifiable we can see that MDE

adds value to traditional and toolkit-based approaches by enhancing traceability,

technology independence, and the ability to perform checking on the overall

outcome of the UI adaptation. We can say that MDE is a viable approach to use

and that other research works (e.g., (Florins 2006)) grade it positively in terms

of its development costs. Furthermore, Myers et al. (2000) consider that MDE

suffers from unpredictability and has a low ceiling indicating that it is incapable

of producing advanced UIs. Yet, this consideration is made with fully-automated

MDE-based approaches in mind. Nevertheless, other MDE-based approaches

apply semi-automated procedures that allow advanced and predictable UIs to

be produced by supporting designer input on all levels of abstraction, especially

on the concrete UI. Therefore, we consider the ability of MDE to provide good

completeness and control over the UI to be dependent on the implementation.

2.2.4 Summary

We can see that each of the previously discussed approaches has some

advantages and disadvantages based on the criteria that we established.

However, from our analysis of the approaches with respect to the criteria

outlined previously (Table 2.1), we think that model-driven engineering is

overall better suited for devising adaptive UIs.

28 2.3 Background

Table 2.1: Comparison between Approaches to User Interface Development

Due to the advantages provided by the model-driven approach in devising

adaptive user interfaces, and due to its wide discussion in the literature we

shall dedicate the remainder of the chapter to explore MDE-based adaptive UI

development systems. The next section covers early model-based UI

development systems in addition to general-purpose frameworks and

architectures, which could serve as a basis for modern adaptive model-driven

user interface development approaches. In the remainder of the chapter, we

explore, evaluate, and compare adaptive UI architectures, techniques and tools

that either partially or fully adopt the model-driven approach.

2.3 Background

Many early model-based UI development systems were presented in the

literature. We shall briefly discuss their strengths and shortcomings.

Additionally, some works have presented frameworks and architectures that

can serve as a basis for designing UIs and adaptive systems in general. We also

provide an overview of these works and explain the potential of using them for

devising adaptive model-driven UIs.

 Traditional

Development

Widget

Toolkits
MDE

Checking

Completeness

Control Over the UI

Development Cost of Adaptive UIs

Learning Curve

Technology Independence

Traceability

 Legend

 Good

 Average

 Poor

 Depends on the Implementation

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 29

2.3.1 Model-Based User Interface Development

Model-based UI development (MBUID) has been around since the 1980’s.

Meixner et al. (2011) differentiate between four generations of MBUID systems.

The first generation mainly focused on automatically generating UIs but did not

provide an integrated MBUID process while the second generation provided

developers with the ability to: specify, generate and execute UIs. The third

generation mainly focused on the challenge of developing UIs for a variety of

interaction platforms and the current (fourth) generation is focusing on the

development of context-sensitive UIs. In the current generation of MBUID

systems, models and transformations are at the heart of the development

process, making UI development model-driven instead of model-based. An

existing survey compared and analyzed 14 of the first and second generation

MBUID systems, which are mostly concerned with improving model-based UI

development or generating UIs from models (Da Silva 2001). Therefore, this

sub-section only provides an overview of these early MBUID systems and their

strengths and shortcomings while the rest of the chapter tackles recent (4th

generation) systems that target the development of adaptive UIs based on a

model-driven approach.

2.3.1.1 First and Second Generation MBUID Systems

A number of early systems were presented and primarily focused on

improving UI development by making it simpler for developers to devise and

maintain user interfaces.

Some systems simply focused on providing better means for UI development.

COUSIN (Hayes et al. 1985) is a UIMS that targets the development of better

quality UIs at a low cost by focusing on providing a level of abstraction in the

sequencing of the UI dialog (ordering of input/output events). ITS (Wiecha et al.

1990), a four-layer tool-supported architecture, was an early attempt to

represent UIs using multiple layers, primarily focused on separating the UI’s

implementation (actions layer), content (dialog layer), presentation (style rule

layer), and interaction (style program layer). The ITS system, allowed the same

UI to be presented with multiple styles.

30 2.3 Background

Enhancing the means by which we develop UIs is still an important problem.

Yet, the rapid change in the way UIs are developed made such early UIMSs fall

victim to the moving targets problem presented by Myers et al. (2000) to

indicate that rapid development of technology can make it difficult for tools to

keep up the pace.

Another group of systems mainly focused on leveraging MBUID for UI

generation. GUIDE (Foley et al. 1991) and HUMANOID (Szekely et al. 1992)

focus on automatic UI generation for allowing designers to experiment with

different design possibilities before producing the final user interface. TADEUS

(Elwert & Schlungbaum 1995) provides a methodology with a supporting

environment for generating graphical UIs from a model representing the

interactive system. GENIUS (Janssen et al. 1993) presented a tool supported

technique for generating UIs from data models (entity relationship diagrams)

and used a model called dialogue net (based on petri nets) as a visual

representation of the UI’s dynamics. Other systems supporting UI generation

include JANUS (Balzert et al. 1996) and FUSE (Lonczewski & Schreiber 1996).

JANUS also supported the generation of the code that links the UI to the data.

Most of the early MBUID systems targeting automatic UI generation

adopted a simple rule-based approach. One exception was TRIDENT, which

presented tools for automatically generating interactive business application

UIs (Vanderdonckt & Bodart 1993) and a generic architecture model for such

applications (Bodart et al. 1995). It considered more information for UI

generation such as ergonomic rules that are represented using a complex

hierarchy. Although such rules provide a more sophisticated generation

technique, they could be tedious to implement considering their possibly large

number (e.g., 3700 rules (Vanderdonckt & Bodart 1996)).

 Some systems worked on improving model-based UI representation.

ADEPT (Markopoulos et al. 1992) is a design environment that aims to

incorporate the theory of modeling (Jacob 1986) instead of just creating a fast

prototyping tool. MASTERMIND (Szekely et al. 1995) is a UI development

environment complementing HUMANOID and GUIDE and focuses on the

presentation model. MECANO (Puerta 1996) introduced an interface model

called MIM and its modeling language MIMIC.

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 31

A common shortcoming in early systems (e.g., COUSIN, GENIUS,

HUMANOID, GUIDE, etc.) is the lack of a high level description of the UI, which

was represented in different ways such as: application code (HUMANOID), ER

diagrams (GENIUS), etc. Such descriptions were later provided by the second

wave of systems such as: ADEPT, MASTERMIND, etc. Yet, it was only at the

end of the second generation of MBUID systems that task models were

introduced to represent UIs at the highest level of abstraction with notations

such as the ConcurTaskTrees (CTT) (Paternò et al. 1997). Other systems such

as MOBI-D (Puerta & Eisenstein 1998) investigated new techniques for

mapping the task models to lower level UI models. Also, at this stage technology

independent languages such as the User Interface Markup Language (UIML)

(Abrams et al. 1999) were introduced for defining technology independent UI

specifications from which technology specific UIs could be generated.

Developing multi-target UIs was considered at a basic level by this

generation of MBUID systems. AME (Märtin 1996) offered tool support for the

development of interactive systems by constructing UIs from object-oriented

analysis models and adapting them to user-specific requirements. AMULET

(Myers et al. 1997) is a framework aiming at making multi-operating system UI

development easier.

Some earlier systems such as ITS indicated the possibility of adapting UIs

for different uses such as: display size, resolution, and color-depth. Yet, UI

consistency among different applications is more emphasized than adaptation

(e.g., GENIUS, COUSIN, etc.). Even though some later systems support UI

adaptation to users and environments (e.g., AME using standardized object

classes), this support is more oriented towards manual development rather than

adaptive behavior. Therefore, we can say that the major shortcoming in the first

and second generations of MBUID systems is that they merely use the model-

based approach for UI construction rather than take it further for devising

adaptive behavior to support multi-context UIs.

2.3.1.2 Third Generation MBUID Systems

Some domain specific solutions were introduced in this generation such as

Teallach (Griffiths et al. 2001) that applies the MBUID approach to devise UIs

32 2.3 Background

for object databases. However, the major contribution of this generation was a

reference framework that provides guidance for model-driven UI development

using multiple levels of abstraction, in addition to the introduction of new UI

description languages (UIDLs). Our review does not discuss UIDLs in detail

because this is not a contribution of the thesis. A detailed survey of UIDLs can

be found in the work of Guerrero-Garcia et al. (2009).

CAMELEON (Calvary et al. 2003) is a unified UI reference framework that

is based on two principles (Fonseca 2010): a model-based approach, and the

coverage of both the design and runtime phases of multi-target UIs.

CAMELEON is a seminal research work in this generation of MBUID

systems. It provides abstraction guidance for devising UIs based on a model-

driven approach. As opposed to conventional UI development techniques that

merely construct a concrete level (e.g., buttons, text-boxes, etc.), MDE introduces

additional levels of abstraction that help in building multi-context UIs.

UIs are represented in CAMELEON on the following levels of abstraction:

 Tasks and Domain Models: The task model is the highest level of abstraction

that represents UI features as tasks. One possible representation for task

models is the ConcurTaskTrees (Paterno 1999) notation that allows tasks

to be connected with temporal operators. The domain model denotes the

application’s universe of discourse and can be represented using UML class

diagrams. This level of abstraction relates to the Computation Independent

Model (CIM) in MDA.

 Abstract User Interface (AUI) Model: This level represents the UI

independent of any modality such as: graphical, voice, gesture, etc. The AUI

model can be represented using UIDLs such as: TERESA XML (Berti et al.

2004), UsiXML (Limbourg et al. 2004) and MARIA (Paterno’ et al. 2009)

(4th generation). The AUI relates to the Platform Independent Model (PIM)

in MDA.

 Concrete User Interface (CUI) Model: This level is modality dependent. For

example, it can represent the UI in terms of graphical widgets such as:

buttons, labels, etc. Possible UIDLs for representing concrete user interfaces

include: TERESA XML, UIML (Abrams et al. 1999), XIML (Puerta &

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 33

Eisenstein 2002), UsiXML, and MARIA. The CUI relates to MDA’s Platform

Specific Model (PSM).

 Final User Interface (FUI): Represents the actual UI rendered with a

presentation technology such as: HTML, Windows Forms, WPF, Swing, etc.

CAMELEON is a suitable reference for approaches that adopt model-driven

engineering of interactive systems. MDE can provide a basis for devising adaptive

UIs since the levels of abstraction presented by CAMELEON allow different

types of adaptive behavior to be implemented such as: Using the task model to

adapt the feature-set and using the concrete UI model to adapt the layout.

2.3.2 Reference Architectures for Adaptive Systems

Some software architectures concerned with adaptive system layering can be

related to any part (not just the UI) of an adaptive software system. They form

a reference for autonomic (self-managing) software systems. We only give a

brief overview of these architectures since more details can be found in an

existing survey of autonomic software systems (Huebscher & McCann 2008).

The MAPE-K loop was created by IBM as a reference model for autonomic

computing (IBM 2006). MAPE-K considers software systems as a set of

managed resources that can range from an individual application to a more

complex cluster. The MAPE-K loop is composed out of four functions with

knowledge sharing:

 Monitor: In this phase, information is collected from the managed resources.

 Analyze: Analysis is performed to predict future errors in the system.

 Plan: The planning phase prepares the actions required for fulfilling a goal.

 Execute: The plan is executed and the dynamic updates are applied.

Rainbow is a framework that employs a control loop for managing self-

adaptive systems and provides components that fulfill the phases of the MAPE-

K loop (Garlan et al. 2004). Rainbow’s architecture layer is made out of the

following components:

 The Model Manager provides access to the system’s architectural model.

34 2.3 Background

 The Constraint Evaluator constantly checks the model to see if a constraint

has been violated in order to trigger an adaptation.

 The Adaptation Engine is responsible for executing the adaptation.

The Three Layer Architecture (Kramer & Magee 2007) is an architectural

approach and a conceptual reference for self-managing software systems. It

comprises the following layers:

 Component Control (bottom layer) is a self-managed set of interconnected

components capable of reporting its status to the higher levels.

 Change Management (middle layer) is responsible for executing actions

capable of handling new situations.

 Goal Management (highest layer) handles time consuming computations that

attempt to achieve an outcome relevant to the sought after goal.

Although these architectures do not particularly target UIs, when combined

with UI abstraction frameworks such as CAMELEON they could form the basis

for a comprehensive adaptive user interface architecture that can cover both

model-driven UI representation and adaptive behavior.

2.3.3 Architectural Patterns and the Separation of Concerns

The patterns discussed in this section are concerned with how the layers of a

software system, including the user interface, communicate with each other.

Several implementation architectural patterns, some more recent than

others, are available. A common trait between these patterns is the promotion

of reusability, and separation of concerns, and the following common tiers:

 View represents the user interface “Presentation Objects”

 Model represents the data “Domain Objects”

The following patterns offer different ways of linking the View and the Model.

The Model-View-Controller (MVC) architectural pattern is one of the

earliest (Xerox PARC late 1970’s) implementation patterns and the most widely

discussed in the literature (Krasner & Pope 1988). It provides the Controller as

a means for linking the view and the model. MVC could be configured in

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 35

different ways, which change the dependency between its components (Martin

Fowler 2006). For example in Passive MVC there are no dependencies between

the View and the Model hence the View becomes a slave of the Controller,

which will be responsible for updating the model and then reloading the view.

The Model-View-Presenter (MVP) was developed at IBM for its primary

development environments in the 1990’s. In MVP, the View relies on the

Presenter in order to pass the model data to it and react to user input.

In the Model-View-ViewModel (MVVM), the ViewModel acts as a middle

man between the View and the Model allowing the user interface to bind to the

Model. MVVM was introduced by Microsoft and is largely based on MVC.

Reference architectures for adaptive UIs provide general guidelines about

the components of the system. However, by introducing one of the architectural

patterns developers will gain more insight on the practical implementation of

the systems that intends to follow the proposed architecture.

Despite such patterns and the attempt to achieve a separation of concerns,

providing true decoupling between the different tiers in service-oriented

applications could be elusive. In such applications, a basic implementation

following a three tiered architecture could include the following layers: Server-

side (web-services, business logic layer, data access layer, domain model, and

data source), client-side (presentation layer, web-service adapters). The web-

service adapters on the client-side would act as a link between the client’s

presentation layer and the Web-Services on the server. Theoretically, by

applying such service-oriented architecture we should be obtaining a separation

of concerns in addition to decoupling between the client-side and server-side

components. Yet in case the UI requires binding to the domain model, which is

the case in data-oriented applications (e.g., enterprise applications), the client-

side components have to reference a layer similar to the ViewModel resulting in

a dependency between the client-side and server-side components. Although a

service-oriented architecture is used, whenever a change occurs on the server-

side domain model it has to be reflected on the client-side as well. This

mandates an upgrade of the presentation layer mainly in desktop applications

using presentation technologies such as: Windows Forms, Java Swing, etc.

36 2.4 Criteria for Evaluating Adaptive Model-Driven User Interface Development

Systems

The abovementioned issues identify a key point in selecting interpreted

runtime models for UI development instead of static or even generative runtime

models. In case both the interface and data models were based on interpreted

runtime models, the client-side components will have true decoupling from the

server-side ones. In case the server-side model changes and the UI requires an

upgrade, the changes get reflected at runtime without any recompilation or

redeployment. These features are already present in HTML-based web

applications, which are rendered at runtime. Yet, by using the model-driven

approach a general-purpose technology independent solution can be provided.

2.4 Criteria for Evaluating Adaptive Model-Driven User Interface

Development Systems

In order to conduct a sound and objective critical review of the existing

systems, we setup the following criteria, drawing on direct recommendations

from the literature and also by combining features from multiple existing systems.

The criteria we established are presented in Table 2.2 and each is classified

under one of the following five categories: UI development, adaptive behavior

development, general development support, engaging stakeholders, and output

quality. The existing literature on adaptive model-driven UI development

systems is quite diverse but we were able to classify each existing work under

one or more of the following categories: architectures, techniques, and tools.

Some of the criteria we established are implementation dependent and can

only be used to evaluate practical UI adaptation techniques or tools; whereas

others are also suitable for evaluating reference architectures as well.

Therefore, Table 2.2 indicates the categories (architecture, technique, and tool) to

which each criterion is applicable. Two of the criteria, namely completeness and

control over the UI, were established in Section 2.2 and are used again since we

considered their measure of capability in MDE to be implementation dependent.

We do not claim that our list of criteria is comprehensive. The literature

mentions other criteria such as: path of least resistance (Myers et al. 2000) and

power in combination (Olsen,Jr. 2007). However, we needed to limit our list to

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 37

criteria that we can uniformly apply across the surveyed works using publicly

available information.

Table 2.2: Criteria for Evaluating Adaptive Model-Driven UI Development Systems

 Architectures Techniques Tools

User Interface Development

Completeness X X

Control over the UI X X

Levels of abstraction X X X

Modeling approach X X

Preserving designer input on the UI X X

Adaptive Behavior Development

+Extensibility

-Adaptation types, aspects, and factors X X

-Adaptive behavior X X X

Direct and indirect adaptation X X

Trade-off analysis X X

Visual and code-based adaptive behavior X X

Multiple data sources X X

General Development Support

Modeling, generation, and synchronization X

IDE style UI X

+Reducing solution viscosity

-Flexibility X

-Expressive leverage X

-Expressive match X

Threshold and ceiling X

Integration in existing systems X X

Engaging Stakeholders

Empowering new design participants X X X

User feedback on the adapted UI X X

Output Quality

Scalability X

38 2.4 Criteria for Evaluating Adaptive Model-Driven User Interface Development

Systems

The criteria are listed below and explained. We included one or more of the

following codes after each criterion to indicate its applicability to architectures

(AR), techniques (TE) and/or tools (TL). These codes reflect the data shown in

Table 2.2.

— Completeness (refer to Section 2.2) (TE, TL)

— Control over the UI (refer to Section 2.2) (TE, TL)

— Supporting both direct and indirect adaptation could make an approach

fit for a wider variety of scenarios. User confusion can be reduced by providing

the adapted UI as an alternative version (indirect adaptation) while

maintaining access to the original UI version (McGrenere et al. 2002). Yet, in

some software systems such as ubiquitous applications it may be necessary to

adapt the UI while the user is working (direct adaptation). One example is

MASP, which adapts the UIs of smart home systems based on changes in the

environment (Feuerstack et al. 2006). (AR, TE)

— Extensibility is considered an important characteristic in any new UI

development approach (Demeure et al. 2008). We refined its meaning as follows:

— Extensibility of adaptation types, aspects, and factors indicates that

a UI adaptation approach is not restricted to a single type such as layout

optimization but can include a variety of adaptation types such as: feature

reduction, navigation help, etc. The approach should also be able to

accommodate multiple adaptation aspects such as: cognition, accessibility,

natural context, etc. It is also important to support the adaptation of any UI

related factor such as: level of access to functions, level of UI details, layout

grouping, widget type, font-size, etc. (TE, TL)

— Extensibility of adaptive behavior is the approach’s capability to add

new adaptive behavior at runtime as needed to support a variety of aspects

and factors. Contrary to this criterion some approaches might provide limited

non-extensible adaptive behavior that is integrated within the system. (AR,

TE, TL)

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 39

— Empowering new design participants by introducing new populations to

the design process (Olsen,Jr. 2007): In the case of adaptive user interfaces, new

design participants could be non-developers such as: end-users, IT personnel,

etc. For example, leveraging communities through crowdsourcing could prove

useful for applications that require a lot of effort for defining the adaptive

behavior. (AR, TE, TL)

— An integrated development environment (IDE) style UI (e.g., similar to

Visual Studio or Eclipse) could provide the necessary ease-of-use for managing

the UI and adaptive behavior artifacts of large-scale software systems. Developer

familiarity and efficiency could be maintained if the tools supporting adaptive

model-driven UI development adopt an interface style similar to that of the

commercial IDEs. (TL)

— An approach that can integrate in existing systems without incurring a

high integration cost or significantly changing the system could have a higher

adoption rate since many systems are at a mature stage in their development

life-cycle. Providing a new advance while maintaining legacy code is a good

thing (Olsen,Jr. 2007). (AR, TE)

— Supporting multiple levels of abstraction as suggested by CAMELEON

(Calvary et al. 2003) offers independence of the implementation (task model),

modality (abstract UI), and technology (concrete UI). Also, different levels may be

more suitable for certain types of adaptation. Features can be reduced by adapting

the highest level (e.g., product-line engineering (Pleuss et al. 2010)) and the

layout can be optimized using various levels (e.g., graceful degradation (Florins

& Vanderdonckt 2004)). (AR, TE, TL)

— The selected modeling approach is important. Supporting interpreted

runtime modeling allows more advanced adaptations to be conducted (Section

2.2.3). Additionally, one of the major drawbacks of generative modeling

approaches is that, over time, models may get out of sync with the running code

(Coutaz 2010). (AR, TE)

— Modeling, generation, and synchronization of all the levels of

abstraction: Model-driven UI development tools should offer developers easy-to-

40 2.4 Criteria for Evaluating Adaptive Model-Driven User Interface Development

Systems

use WYSIWYG editors and make transformations transparent to provide a

better understanding of their effects (Meixner et al. 2011). Tool-supported

automated approaches must provide predictability to the developers using it

(Myers et al. 2000), which in this case can be related to supporting WYSIWYG

editors and transformation transparency. (TL)

— Supporting multiple data sources allows adaptations to be carried out in

various situations. Adaptive behavior models can embody data based on

studies, which is the case of adapting UIs to cultural preferences by MOCCA

(Reinecke & Bernstein 2011). Also, monitoring the user’s behavior allows

models to evolve and can be beneficial in other situations (e.g., targeting

accessibility with MyUI (Peissner et al. 2012)). (AR, TE)

— Preserving designer input on the UI is important since automated

choices without a rationale make adaptive UIs unpredictable. The success of UI

development techniques could be negatively impacted by unpredictability

(Myers et al. 2000). UI adaptations will obviously override the input made by the

designer. Yet, in some cases designers might want to preserve some

characteristics (e.g., prioritizing the size of a widget over others), thereby

enhancing the predictability of the outcome. (TE, TL)

— Reducing solution viscosity is achieved if a tool reduces the effort

required to iterate on the possible solutions based on the following criteria

(Olsen,Jr. 2007):

— Flexibility denotes the ability to “make rapid design changes that can

then be evaluated by the users” (p. 255). The tools we are evaluating should

be flexible by providing the ability to devise both the UI models and the

adaptive behavior in a way that allows easy testing and refinement. (TL)

— Expressive leverage “is where the designer can accomplish more by

expressing less” (p. 255). We consider that expressive leverage can be

achieved by promoting the reusability of UI model parts (e.g., the same way

visual-components are reused in traditional IDEs) and the adaptive behavior

(e.g., visual-parts or scripts). (TL)

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 41

— Expressive match “is an estimate of how close the means for expressing

design choices are related to the problem being solved” (p. 255). One way to

improve expressive match is by supporting visual-design tools for the UI

models and innovative means for specifying adaptive behavior visually. (TL)

— Scalability is an important criterion that must be checked for every new

system (Olsen,Jr. 2007). If the scalability of an adaptation technique is not

demonstrated using real-life scenarios, its adoption for complex software

systems could decrease. (TE)

— An ideal tool would have low threshold and high ceiling (Myers et al.

2000). The “threshold” represents the difficulty in learning and using the tool,

and the “ceiling” relates to how advanced the tool’s outcome can be. (TL)

— Trade-off analysis between several potentially conflicting adaptations is

essential for producing an optimal UI, especially in systems that target multiple

adaptation aspects and factors. One example described in the literature is the

trade-off between the user’s vision and motor abilities (Gajos et al. 2007). (AR, TE)

— User feedback on the adapted UI keeps the end-users in the loop of the

adaptation process and provides awareness of automated adaptation decisions

and the ability to override them when necessary. Keeping humans in the loop is

considered one of the principles of adapting UIs based on MDE (Balme et al.

2004). It can increase the end-users’ UI control (McGrenere et al. 2002) and

feature-awareness (Findlater & McGrenere 2007) affected by adaptive/reduction

mechanisms. (AR, TE)

— Visual and code-based representations allow different stakeholders such

as: developers and IT personnel, to implement adaptive behavior. Some

techniques only support a textual representation such as cascading style sheets

in Comet(s) (Demeure et al. 2008) and behavior matrices in FAME (Duarte &

Carriço 2006). Yet, others indicate that a visual notation can greatly simplify the

creation of UI adaptation rules by hiding the complexity of programming

languages (López-Jaquero et al. 2009). (TE, TL)

42 2.5 Reference Architectures for Adaptive User Interfaces

We now use these criteria to evaluate the fourth (current) generation

adaptive model-driven UI development systems. The reference architectures,

practical techniques, and supporting tools are evaluated in Sections 2.5, 2.6,

and 2.7 respectively.

2.5 Reference Architectures for Adaptive User Interfaces

Architectures play a fundamental role in self-adaptive software systems

(Oreizy et al. 1999). An architecture-based approach is promoted for these

systems (Kramer & Magee 2007) since it could build on existing work and offer

generality, abstraction, scalability, etc. Following a reference architecture could

help in realizing adaptive UIs in complex systems. Several architectures have

been proposed as a reference for applications targeting adaptive UIs and other

UI related features such as: multimodality, distribution, etc. This section

focuses on evaluating and comparing existing research works related to

architectures of adaptive UIs. We briefly describe these architectures and argue

their strengths and shortcomings, and conclude with a comparison between

them. We should note that this section only evaluates reference architectures.

Existing adaptive UI techniques, whether based on a defined architecture or

not, are discussed and evaluated in Section 2.6.

2.5.1 Review

The 3-Layer architecture 3 was presented for devising adaptive smart

environment user interfaces (Lehmann et al. 2010). Due to the ubiquitous

nature of its target applications, this architecture only supports direct

adaptations. Information is read from sensors, and the environment context

pillar is targeted hence multiple data sources are not supported. The modeling

approach of this architecture is based on generative runtime models, which

could be less flexible than interpreted runtime models for performing advanced

3 In order to avoid confusion, we should note that this architecture is not related to the

Three Layer Architecture for self-managing software systems presented by Kramer &

Magee (2007).

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 43

adaptations. Additionally, the work does not specify whether the architecture is

meant to support all the levels of abstraction.

CAMELEON-RT is a reference architecture model for distributed, migratable,

and plastic user interfaces within interactive spaces (Balme et al. 2004). This

architecture targets all context-of-use pillars (user, platform, and environment),

and could be considered general-purpose due to its implementation neutrality. We

consider that it provides a good conceptual representation of the extensibility of

adaptive behavior through the use of open-adaptive components (Oreizy et al.

1999), which allow new adaptive behavior to be added at runtime. Also, both

direct and indirect adaptations could in theory be implemented using these

components. It follows the CAMELEON framework hence all the levels of

abstraction are supported. This architecture depicts observers that collect data

on the system, user, platform, and environment, and feed it to a situation

synthesizer thereby supporting multiple data sources. CAMELEON-RT serves

as a high-level reference but does not provide implementation specifications on

integrating in existing systems.

FAME is an architecture that targets adaptive multimodal UIs using a set of

context models in combination with user inputs (Duarte & Carriço 2006). It only

targets modality adaptation hence it is not meant to be a general-purpose

reference for adapting other UI characteristics. The adopted approach allows

designer input on the CUI hence providing good control over the UI. Adaptive

behavior can be extended using adaptive behavior matrices. FAME depicts

support for multiple data-sources including device changes, environmental

changes, and user inputs that feed into related models. A combination of the

multiple data sources and the adaptive behavior matrices should be able to

support both direct and indirect adaptations.

Malai is an architectural model for interactive systems (Blouin & Beaudoux

2010) and forms a basis for a technique that uses aspect-oriented modeling

(AOM) for adapting user interfaces (Blouin et al. 2011). The extensibility of

adaptive behavior is poor since multiple presentations have to be defined at

design-time by the developer, to be later switched at runtime. Although Malai

supports multiple levels of abstraction, the modeling approach relies on

generating code (e.g., Swing, .NET, etc.) to represent the UI. Also, it does not

44 2.5 Reference Architectures for Adaptive User Interfaces

describe multiple sources for acquiring adaptive behavior data. In theory, both

direct and indirect adaptations can be supported. In addition to being

technology dependent (a Java example is provided), UI adaptation in Malai is

not decoupled from the target software systems thereby requiring significant

code modification for adaptive behavior to be integrated in an existing system.

We noticed that several criteria were not addressed by any of the works

reviewed in this section. The architectures did not incorporate any components

for empowering new design participants and did not offer insights on managing

trade-offs between possibly conflicting adaptations. Although reference

architectures are not expected to provide an implementation for trade-off

analysis, depicting trade-off as part of the architecture could provide a

conceptual reference for those wishing to implement a technique based on the

architecture. Supporting user feedback on the adapted UI is neglected. The “3-

Layer Architecture” does not support user feedback but refers to another work

(Brdiczka et al. 2007) that does not offer an architecture but uses user-feedback

for refining initial situation models at runtime in order to improve the

reliability of detected situations. Malai allows developers to define feedback

that would help users to understand the state of the interactive system but the

user cannot provide feedback on the adaptations (e.g., reverse an unwanted

adaptation). In spite of the importance of integration in existing software

systems that are in a mature development stage, the evaluations were conducted

by building new prototypes.

2.5.2 Summary of the Review

After arguing the strengths and limitations of existing adaptive UI

architectures, we present a comparison in Table 2.3 that illustrates the extent to

which each of the architectures fulfills the criteria we established in Section 2.4.

The criteria that were not addressed by the existing architectures are: User

feedback on the adaptive UI, trade-off analysis, integrating in existing systems,

and empowering new design participants. The remaining criteria were

addressed to an extent but there is still room for improvement, especially for the

modeling approach.

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 45

Table 2.3: Visual Evaluation and Comparison of Adaptive Model-Driven User Interface
Reference Architectures

2.6 Techniques for Devising Adaptive Model-Driven UIs

Adaptive behavior can target a variety of UI characteristics. In order to

provide a boundary for this work, we shall focus on the techniques related to at

least one of the two UI adaptation types that are the most targeted in the

literature, namely feature-set adaptation and layout optimization. We define a

feature as a functionality of a software system and a minimal feature-set as the

set with the least features required by a user to perform a job. An optimal

layout is the one that maximizes the satisfaction of constraints imposed by a set

of adaptation aspects such as: physical impairments, computer literacy, etc. An

optimal layout is achieved by adapting the properties of concrete widgets such

as: type, grouping, size, location, etc.

2.6.1 Feature-Set Adaptation Techniques

The functionality of software applications tends to increase with every

release hence increasing the visual complexity. This phenomenon, referred to as

“bloatware” (McGrenere 2000), has a negative impact on usability especially for

users who do not require the complete feature-set. It could be helpful to provide

Legend

 Completely fulfills

 Partially fulfills

 Does not fulfill

◌ Not specified

D
ir

e
c
t

a
n

d
 i

n
d

ir
e

c
t

a
d

a
p

ta
ti

o
n

E
m

p
o

w
e

r
in

g
 n

e
w

d
e

s
ig

n
 p

a
r
ti

c
ip

a
n

ts

E
x

te
n

s
ib

il
it

y
 o

f

a
d

a
p

ti
v

e
 b

e
h

a
v

io
r

In
te

g
r
a

ti
n

g
 i

n

e
x

is
ti

n
g

 s
y

s
te

m
s

L
e

v
e

ls
 o

f
a

b
s
tr

a
c
ti

o
n

M
o

d
e

li
n

g
 a

p
p

r
o

a
c
h

M
u

lt
ip

le
 d

a
ta

 s
o

u
r
c
e

s

T
r
a

d
e

-o
ff

 a
n

a
ly

s
is

U
s
e

r
 f

e
e

d
b

a
c
k

 o
n

 t
h

e

a
d

a
p

te
d

 U
I

3-Layer Architecture ◌

CAMELEON-RT ◌

FAME ◌

Malai

46 2.6 Techniques for Devising Adaptive Model-Driven UIs

each end-user with a minimal feature-set that reduces unnecessary bloat

present in feature-rich UIs. Since the existing solutions that are related to UI

bloat mostly focus on design-time adaptation rather than runtime adaptive

behavior, we did not evaluate them according to the criteria established in

Section 2.4. Instead, we grouped them into categories and provided a general

evaluation of their strengths and shortcomings.

2.6.1.1 Review

Several theoretical propositions were made for reducing a UI’s feature-set

based on the context-of-use. Providing a multi-layered user interface design is

promoted for achieving universal usability (Shneiderman 2003). Other

researchers propose using two UI versions, one fully-featured and another

personalized, for taming the bloat in feature-rich applications (McGrenere et al.

2002). An early research work proposes the use of a “training wheels” UI that

blocks advanced functionality from novice users (Carroll & Carrithers 1984).

These works present a sound theoretical basis, useful for providing the users of

feature-bloated software applications with a minimal feature-set. Yet, the given

examples, a basic text editor (Shneiderman 2003) and the Word 2000 menu

(McGrenere et al. 2002), do not match the complexity of large-scale systems

such as enterprise applications. Also, these works do not provide or describe a

technical implementation.

Approaches from software product-line (SPL) engineering (Pleuss et al.

2010) are used to tailor software applications and some particularly address

tailoring user interfaces. MANTRA (Botterweck 2011) adapts UIs to multiple

platforms by generating code particular to each platform from an abstract UI

model. Although SPLs can be dynamic (Bencomo et al. 2008), the SPL-based

approaches for UI adaptation focus on design-time (product-based) adaptation

whereas runtime (role-based) adaptive behavior is not addressed.

Several commercial software applications use role-based tailoring of the

UI’s feature-set. Microsoft Dynamics CRM (Microsoft 2011) and SAP’s GuiXT

(Synactive GmbH 2010) offer such a mechanism, yet it is not generic enough to

be used with other applications and it requires developing and maintaining

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 47

multiple UI copies manually. An approach that operates at the model level could

be more general-purpose.

Some approaches relied on decomposition to break the UIs into smaller

fragments that fit the context-of-use better. Graceful degradation is used as a

method for supporting UIs on multiple devices (Florins & Vanderdonckt 2004)

and could be used for decomposing/recomposing UIs. An initial UI is

constructed for the platform with the least constraints, and then other versions

are generated for the platforms with more constraints based on designer

annotations. In concept, this method could be used for minimizing a UI’s

feature-set by decomposing it into smaller fragments. Yet, its main limitation

lies in its reliance on designer annotations that would not work when the

adaptations are only known at runtime. An interesting approach would be to

support runtime annotations combined with automated procedures that can

adapt the UI based on each user’s behavior. Another approach called

(de)composition complements some aspects of graceful degradation (Lepreux et

al. 2007). It aims towards supporting reusability at a high-level design without

the need for applying constant copy/paste operations. Similar to the graceful

degradation approach, (de)composition could be in concept used for reducing the

UI’s feature-set. The authors mention the applicability of this approach both at

design-time and runtime but no significant demonstration is made towards

runtime scenarios since all the examples were restricted to design-time.

Decomposing/composing UIs at runtime while maintaining functionality would

require work that does not merely adjust the UI’s layout but maintains and

adapts the functionality behind it.

2.6.1.2 Summary of the Review

The main limitations in approaches attempting to target feature-set

adaptation are: lack of a practical implementation mechanism, lack of

generality of the solutions, or restriction to design-time adaptation without

offering a runtime adaptive solution. Based on these limitations, we can say

that more work is needed to provide a general-purpose, model-driven, and tool

supported adaptive UI mechanism capable of reducing UI bloat at runtime by

adapting the UI’s feature-set based on the context-of-use.

48 2.6 Techniques for Devising Adaptive Model-Driven UIs

2.6.2 Layout Optimization Techniques

Providing an optimal layout based on the context-of-use could improve

usability by catering for the diverse end-user needs. For example the usability

of SAP, the world’s leading ERP system (Jacobson et al. 2007), is mostly affected

by navigation and presentation (Singh & Wesson 2009) and its UI does not

adapt to each end-user’s skills (Uflacker & Busse 2007). Many existing works

use different approaches to target the adaptation of the UI layout. In this sub-

section, we shall provide a brief description of each of these works and argue

their strengths and shortcomings using the criteria we established in Section 2.4.

2.6.2.1 Review

The COntext Mouldable widgeT (Comet(s)) was introduced as a set of

widgets that support UI plasticity (Calvary et al. 2005). It provides an

architectural style for plastic UIs by combining the toolkit and model-based

approaches (Demeure et al. 2008). A “Comet” is capable of self-adapting or

being adapted to the context-of-use.

Comet(s) target the adaptation of individual widgets but does not focus on

the entire layout. Centralizing the adaptive mechanism could be more scalable

than defining it in each widget and could make Comets a more interesting

solution for adaptive UI functionality. Using a widget toolkit to represent the

CUI provides good control over the UI and could theoretically be used to develop

different types of UIs that can adapt to any context pillar, therefore providing

good completeness. The extensibility of the adaptive behavior is claimed to be

supported through style-sheets but the adaptation types are not extensible since

each Comet can only adjust its own shape, whereas different types of adaptation

(e.g., feature-set, navigation, etc.), which might be more related to the overall

user interface design, cannot be supported by this architectural-style. One of

the goals of Comet(s) is to sustain UI adaptation at any level of abstraction:

tasks and concepts, abstract, concrete, and final UI as elicited in model-driven

approaches (Calvary et al. 2003). Therefore, the levels of abstraction are

embodied in what are referred to as the Logical Consistency (LC), Logical Model

(LM), Physical Model (PM), and technology primitives. Comet(s) does not

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 49

present a means for reading adaptation data from multiple data sources as

presented by CAMELEON-RT for example. We consider the modeling approach

to be poor since it is necessary to have a code-based implementation as opposed

to the possibility of using interpreted runtime models. Although it is not

explicitly described, the use of style-sheets can support both direct and indirect

adaptations.

DYNAmic MOdel-bAsed user Interface Development (DynaMo-AID) is a:

design-process and runtime architecture for devising context-aware UIs and is

part of the Dygimes UI framework (Coninx et al. 2003). Its runtime architecture

includes three major modules namely context monitoring, functional core, and

presentation that are linked by a dialog controller (Clerckx et al. 2005). The

final UI is rendered from task models after adapting them to the operating

environment and device.

DynaMo-AID is limited to WIMP-style UIs and only targets the environment

context hence has low completeness. The levels of abstraction supported by

DynaMo-AID are restricted to the task model from which the final UI is

generated. The support of interpreted runtime models provides a good modeling

approach but since designer input is not supported on the CUI the control over

the UI could be negatively affected. Adaptive behavior is extensible but is

restricted to one type of adaptation, namely, the UI dialog. Due to the pervasive

nature of its target applications (e.g., tourist guide mobile application called

Imogl for an open air museum (Clerckx et al. 2006)), DynaMo-AID only

supports direct adaptations and environment sensors as a data source. This

architecture is particularly criticized for using what is referred to as a “Task

Tree Forest” (Blouin et al. 2011). The critics note that since each tree

corresponds to the tasks possible in a given context, the combinatorial explosion

would affect the approach’s scalability when it is applied to complex systems.

Supple supports automatic generation of UIs adapted to each user’s abilities

(e.g., motor and vision), devices, tasks, and preferences (Gajos et al. 2010). It

relies on a high-level interface specification, device model, and user traces to

generate the UI.

In terms of completeness Supple’s approach is particularly well suited for

box-like UIs due to the existence of a vocabulary of interactions for this UI type.

50 2.6 Techniques for Devising Adaptive Model-Driven UIs

However, although not tested, its creators indicate that it is not limited to such

UI types especially if new vocabularies of interactions could be identified (Gajos

et al. 2010). Supple interprets and renders UI models at runtime hence making

the fulfillment of more advanced adaptations easier. Yet, the adopted technique

generates the UI from a high-level model (one level of abstraction), which

prevents designer input from being made especially at the CUI level hence

provides less control over the UI. The inability to have human input at the

different levels of abstraction, at least at design-time, makes the approach

difficult to adopt for large-scale systems such as enterprise applications. Supple

has built-in algorithms for adapting the UI and does not provide a means for

extending the adaptive behavior through either a visual or code-based

representation. The only adaptation type supported by Supple is layout

optimization. Vision and motor capabilities are the primary supported

adaptation aspects, and 40 UI factors (e.g., font size, widget size, etc.) are

supported. Supple does not provide a means for extending adaptation types,

aspects, and factors. Also, it has been criticized (Peissner et al. 2012) for

exceeding acceptable performance times. This criticism could be justified by

observing some of its worst-case scenarios that could span over 30 seconds when

computing the most appropriate UI layout. This timing is not appropriate for

software systems looking for high efficiency. One advantage that Supple has

over other systems lies in performing true layout optimization due to its ability

to quantify UI quality. The quantification is achieved by using a cost function to

compare UI versions in order to determine the most optimal one. This approach

also allows Supple to support trade-off analysis, which was demonstrated for a

fixed number of adaptation aspects, namely motor and vision capabilities (Gajos

et al. 2007). Supple is complemented by a system called Arnauld (Gajos &

Weld 2005), which is responsible for eliciting user preferences in order to adapt

the UI at runtime. This process could serve as a feedback mechanism but the

sole reliance on runtime elicitation can be time consuming and might not

provide sufficient data in comparison to leveraging multiple data sources.

Supple primarily targets indirect adaptation since it builds up a user-model

over time based on preference elicitation.

The Multi-Access Service Platform (MASP) is a UI management system

targeting ubiquitous UIs for smart homes (Feuerstack, et al. 2006). MASP uses

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 51

a model-driven approach to support: multimodality (Blumendorf et al. 2008),

distribution (Blumendorf et al. 2007), synchronization (Blumendorf et al. 2006),

and adaptation (Schwartze et al. 2009). Although it demonstrates powerful

capabilities in UI distribution and multimodality, we focus on its adaptation

capabilities to stay within our scope.

Adopting a box-based layout (Feuerstack et al. 2008) for repositioning

different UI segments at runtime using content scaling prevents widget level

feature-adaptation and decreases completeness. The modeling approach bases

the final UI on generated code or markup (apache velocity templates)

(Blumendorf et al. 2008) hence allowing less advanced adaptations to be

performed at runtime as opposed to a fully-dynamic approach. MASP uses

direct adaptation whenever a context change is detected due to the ubiquitous

nature of the target smart home systems. The primary adaptation type

supported by MASP is layouting based on the several environment-related

aspects such as distance and spots (e.g., distance from particular physical

objects). Also, a limited number of UI adaptation factors are supported (e.g.,

orientation, size, rearrangement of predefined UI groups, etc.) and no means is

provided for extending the adaptation types, aspects, and factors. As described in

its UI construction technique (Feuerstack 2008), MASP supports all the levels of

abstraction suggested by CAMELEON. It also supports designer input on the

CUI to provide control over the UI. Since it targets ubiquitous applications,

MASP’s data sources are restricted to environment sensors as indicated by the

3-Layer architecture (Lehmann et al. 2010). MASP provides a tool to visually

divide the layout into boxes but does not support the definition of visual and

code-based adaptation rules, which could cover a variety of layout optimization

factors that go beyond changing the font-size, and layout grouping.

One technique uses aspect-oriented modeling (AOM) for adapting UIs (Blouin

et al. 2011) based on the Malai architecture (reviewed in Section 2.5).

This approach requires several UI presentations to be defined at design-time

and a weaver is used to associate these presentations to instrument classes that

handle the way the UI functions at runtime. It provides completeness because it

targets post-WIMP UIs and could logically target others as well since the UI is

generated to code, hence also providing good control over the UI. The adaptive

52 2.6 Techniques for Devising Adaptive Model-Driven UIs

behavior could be extended but this can only be done at design-time since the

modeling approach relies on code. Hence, the UI variations have to be manually

defined by the developer. Scalability is demonstrated by taming the

combinatorial explosion of complex interactive system adaptations. The meta-

model does not support the addition of adaptation types, aspects, and factors.

Also, no mechanism is provided for adding adaptive behavior visually.

MyUI is a user interface development infrastructure for improving

accessibility through adaptive UIs (Peissner et al. 2012). It uses an open

pattern repository for defining adaptation rules. User interfaces are specified as

an abstract model that is represented using a notation based on state charts.

MyUI is presented as a general-purpose infrastructure but it was only

demonstrated with basic interactive television UIs. It does not support all the

levels of abstraction suggested by CAMELEON but only relies on an abstract

model to automatically generate the final UI. Hence, the designer’s control over

the UI is reduced due to the lack of designer input on the concrete UI. MyUI

supports both direct and indirect adaptations since the users can swipe a card

to let the system identify who they are and customize the UI based on their

profile; sensors are also able to detect gestures (e.g., leaning towards the screen

due to poor vision) and perform direct UI adaptations accordingly. It is possible

to extend the adaptive behavior by modifying the state-chart models; however

this extension is performed at development-time and could require a

redeployment of the application. MyUI shows the possibility of supporting

multiple adaptation data sources since the patterns it uses for defining the

adaptation rules can embody expert knowledge and the system has the ability

to acquire environment data using sensors. Although MyUI allows the end-

users to reverse the adaptations, its feedback mechanism can be enhanced

further by offering users an explanation of the reason behind the adaptation.

The adaptive behavior (adaptation rules) in MyUI are defined visually using a

state-chart model; however the basic accessibility adaptation examples (e.g.,

changing font-size) that were presented do not demonstrate whether the state-

chart notation has the potential for defining more advanced usability related

adaptations such as: changing the layout grouping, widget types, etc.

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 53

We noticed that several criteria were not addressed by any of the works

reviewed in this section. None of the works suggest a mechanism for preserving

designer input on the UI after the adaptive behavior has been applied. Also, no

ideas are presented for empowering new design participants such as engaging

and leveraging end-user communities to participate in UI adaptation through

the means of crowdsourcing. Aside from Supple, most techniques do not offer

any insight on managing trade-offs between possibly conflicting adaptations.

Supporting user feedback on the adapted UI is also neglected. For example,

Comet(s) should in concept allow end-users to explore possible design

alternatives but this point was left for future work. The techniques we reviewed

were evaluated by developing new prototype systems instead of showing the

possibility of integrating in existing software systems. For example, MASP was

evaluated by (re)building home automation applications such as: energy,

cooking, and health assistants; Supple was evaluated by developing a variety of

simple UI dialogs such as: email client, ribbon and print dialogs, etc. The

existing techniques did not offer any mechanisms for extending adaptation

types, aspect, and factors but merely supported a limited number of them. For

example, Supple supports 40 factors and targets a limited number of adaptation

aspects related to physical impairments.

2.6.2.2 Summary of the Review

We present a comparison of the layout optimization techniques in Table 2.4.

The criteria that were not supported by the state-of-the-art are: preserving

designer input on the concrete UI, integrating in existing systems, empowering

new design participants, and extensibility of adaptation types, aspects, and

factors. Also, significant improvement could be made on trade-off analysis, user

feedback, and supporting visual and code-based adaptive behavior

representations. We noticed that very few works conducted scalability tests,

which are important to demonstrate if the technique works with large-scale and

complex UIs. The remaining criteria were addressed to different extents and

some have room for improvement.

54 2.7 Tools Supporting Adaptive Model-Driven UI Development

Table 2.4: Visual Evaluation and Comparison of Adaptive Model-Driven User Interface

Layout Optimization Techniques

2.7 Tools Supporting Adaptive Model-Driven UI Development

The adoption of a technique depends largely on giving researchers and

practitioners the means of applying ideas without resorting to low level

implementation (Cheng et al. 2009). The model-driven approach to UI

development can serve as a basis for devising adaptive UIs due to the

possibility of applying different types of adaptations onto various levels of

abstraction. Yet, implementing adaptive model-driven UIs requires the tools

that support a definition of the necessary UI models and adaptive behavior. In

this regard, existing tools still lack many features required for supporting

adaptive model-driven UIs. This section provides an overview of the state-of-

the-art tools for developing (adaptive) model-driven UIs and evaluates them

according to their support of the criteria established in Section 2.4. The

evaluation is based on the published research work, together with demonstration

videos when available, and the associated tools publicly available.

Legend

 Completely fulfills

 Partially fulfills

 Does not fulfill

◌ Not specified

C
o

m
p

le
te

n
e

s
s

C
o

n
tr

o
l

o
v

e
r
 t

h
e

 U
I

D
ir

e
c
t

a
n

d
 i

n
d

ir
e

c
t

a
d

a
p

ta
ti

o
n

E
x

te
n

s
ib

il
it

y
 o

f
a

d
a

p
ti

v
e

 b
e

h
a

v
io

r

E
x

te
n

s
ib

il
it

y
 o

f
a

d
a

p
ta

ti
o

n

ty
p

e
s
,
a

s
p

e
c
t,

 f
a

c
to

r
s

E
m

p
o

w
e

r
in

g
 n

e
w

 d
e

s
ig

n
 p

a
r
ti

c
ip

a
n

ts

In
te

g
r
a

ti
n

g
 i

n
 e

x
is

ti
n

g
 s

y
s
te

m
s

L
e

v
e

ls
 o

f
a

b
s
tr

a
c
ti

o
n

M
o

d
e

li
n

g
 a

p
p

r
o

a
c
h

M
u

lt
ip

le
 d

a
ta

 s
o

u
r
c
e
s

P
r
e

s
e

r
v

in
g

 d
e
s
ig

n
e
r
 i

n
p

u
t

S
c
a

la
b

il
it

y

T
r
a

d
e

-o
ff

 a
n

a
ly

s
is

U
s
e

r
 f

e
e

d
b

a
c
k

 o
n

 t
h

e
 a

d
a

p
te

d
 U

I

V
is

u
a

l
a

n
d

 c
o

d
e

-b
a

s
e

d

a
d

a
p

ti
v

e
 b

e
h

a
v

io
r

Supple

MASP ◌

Comet(s) ◌

DynaMo-AID

AOM (Malai)

MyUI ◌

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 55

2.7.1 Review

A survey on model-driven engineering tools for developing UIs (Pérez-

Medina et al. 2007) covered many existing tools including: ACCELEO,

AndroMDA, ADT, AToM3, DSL Tools, Kermeta, ModFact, Merlin, MDA

Workbench, MOFLON, OptimalJ, QVT Partners, SmartQVT, and UMLX. One

of the conclusions made was that these tools are centered on MOF hence

support the creation of domain-specific models. However, since these tools are

not directly meant for supporting (adaptive) model-driven UIs we shall not

consider them as part of our review.

There are some commercial tools that partially support MDE in UI

development. However, these tools were not intended for developing adaptive

UIs. Leonardi is one example; it provides free4 and commercial5 versions of its

application composer. This composer allows designers to visually define the UIs

that could be interpreted at runtime. The creators of Leonardi (W4) specify

three challenges for business applications: offering high quality user experience,

developing software at low cost with minimum technical experience, and

providing scalable applications that can accommodate constant business and

technological changes.

They claim to face these challenges by supporting MDE agile in Leonardi.

This is practically achieved by not generating code from the UI design. Instead,

the UI is interpreted at runtime through an application engine. We should note

that MDE agile is plausible but we noticed some limitations in the way it is

applied in Leonardi. Since it is a rapid application development (RAD) tool,

Leonardi only supports the concrete UI model and ignores the other levels of

abstraction. Also, this tool is coupled to a certain extent with Java and does not

provide specifications for developing application engines for other technologies.

Leonardi is not intended for developing adaptive UIs hence it does not offer any

tool support for adaptive UI behavior. Other frameworks and tools with fewer

4 Leonardi Free: www.leonardi-free.org
5 Leonardi Commercial: www.w4.eu

56 2.7 Tools Supporting Adaptive Model-Driven UI Development

features such as: OpenXava 6 and Himalia 7 , provide different model-driven

approaches for developing UIs. Yet, the tight coupling of these tools with

programming languages (e.g., Java, .NET, etc.) discourages their adoption as a

general purpose solution.

Supple (Gajos et al. 2010) partially adopts model-driven UI development

hence its tools do not support all the levels of abstraction. Basic information on

the supporting tools is available in the published work but the tools are not

available for the public. According to Gajos8, Supple is still a research prototype

and he hopes it could be made available for the public in the future.

The ConcurTaskTrees Environment (CTTE) (Mori et al. 2002) (version

2.6.3) is a tool for developing and analyzing task models using the CTT

notation. CTTE provides a mature UI for designers to devise task models. Yet,

it does not provide visual-design tools for all the levels of abstraction but it

supports the generation of the AUI and CUI models in the MARIA (Paterno’ et

al. 2009) language from the CTT task model. The CUI model can be generated

as a desktop, mobile, or vocal UI and the final UI can be generated to HTML or

Voice XML. However, synchronization is not supported in case the CUI changes;

also, the generation rules cannot be modified from the tool hence providing a low

predictability of the generated CUI. MARIA also has a separate authoring

environment to separate several levels of abstraction. Users can define

transformation rules to map the AUI models to CUI models. These rules can be

defined through a visual mapping between the AUI and CUI model elements.

The ability to do so provides a better predictability of the generated outcome.

Several tools were presented for supporting the UIDL UsiXML (Limbourg et

al. 2004). Some of these tools such as: UsiComp (García Frey et al. 2012) and

Xplain (García Frey et al. 2010), are early-stage research prototypes that

provide a limited number of features. The UI models representing the different

levels of abstraction are designed in UsiComp inside a single document-style

panel. This approach negatively affects the tool’s flexibility and could prove to

6 OpenXava: www.openxava.org
7 Himalia: www.bit.ly/HimaliaDotNet
8 Krzysztof Gajos on Supple as a Research Prototype: www.bit.ly/SuppleSystem

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 57

be tedious when designing UIs for large-scale complex systems. A multi-

document IDE style UI could be more helpful for developers and IT personnel in

managing a large number of artifacts (e.g., UI models, code files, etc.) in real-life

software projects.

Similar tools such as: SketchiXML (Coyette & Vanderdonckt 2005),

IdealXML (Montero & López-Jaquero 2007) and GraphiXML (Michotte &

Vanderdonckt 2008), only target specific phases of the UI construction process

hence do not support all the levels of abstraction. SketchiXML focuses on

transforming manually drawn sketches to concrete UI models. This tool can

generate a predictable CUI model from the drawn sketches especially if

predefined widget sketches were loaded into the system. IdealXML is concerned

with modeling task models and generating the abstract UI from them.

GraphiXML provides a graphical-design tool for concrete UIs. Even though these

tools do not support all the levels of abstraction, we consider that they provide a

good control over the UI since the designer can control the supported models.

Although it is still a limited prototype, UsiComp is the only one of these tools

that supports all the levels of abstraction and directly targets UI adaptation by

applying rules written in the Atlas Transformation Language (ATL) to the UI

models. A demonstration showed how these rules could adapt the same UI

models to different platforms (web and mobile). The extensibility of the adaptive

behavior is limited since no clear demonstration is given on how these rules can

be extended using the tool. A visual representation of these rules is not

supported, and the automated generation and synchronization between the

different levels of abstraction was not demonstrated.

A few supporting tools were presented as part of MASP (Feuerstack et al.

2008) including: a task tree editor as an Eclipse plugin, in addition to a layouting

tool and a task tree simulator that were offered as standalone tools. The task

tree editor can be used in order to model the various tasks, which are required

to be supported by a segment of the application being developed. The layouting

tool is used for generating layout models. This tool is provided with design

models and context-of-use scenarios (device properties and user preferences) as

input. The tool provides a box-based layout allowing the designer to specify

properties related to containment, order, orientation, and size. However, MASP

58 2.7 Tools Supporting Adaptive Model-Driven UI Development

lacks a canvas-style visual-design tool for concrete UIs; this could have a

negative impact on its flexibility. Feuerstack et al. (2006) suggested an HTML

WYSIWYG editor to alter the UI; this could prove less useful than a technology

independent concrete UI editing tool when targeting multiple presentation

technologies. Also, MASP’s tools only support adding basic adaptations that are

applied to a layout with predefined box-based groupings.

Gummy supports multi-platform graphical UI development (Meskens et al.

2008). It can generate an initial design for each new platform using a

combination of features from existing user interfaces. A key objective of Gummy

is providing an environment that resembles traditional GUI development tools

in order to allow designers to target new platforms without giving up their

current work practices. Additionally, Gummy hides the high levels of

abstraction from the designers, thereby allowing them to operate on the level of

abstraction that they are the most familiar with, namely the CUI. Having such

designer input on the CUI provides more control over the UIs. Predictable

generation and synchronization is less required because Gummy hides the

upper levels of abstraction from the designers. However, some characteristics of

the high-level models, such as the temporal operations on CTT tasks models,

are not easy to deduce from the CUI. Therefore, it is our belief that it would be

better to expose these upper-level models for advanced designers who choose to

modify them.

Damask (Lin & Landay 2008) is a tool for prototyping cross-device UIs. It is

not intended for developing adaptive UIs but for supporting design-time

automatic UI generation. Designers can define a UI layout for one device from

which Damask can create an abstract model that it uses to generate the UI

layouts for other devices. The employment of patterns in designing the initial

UI helps Damask in generating more predictable UIs for other devices. The

designers can refine the generated UI layouts if necessary, hence providing good

control over the UI. Both web-style and voice UIs are supported for PCs and

mobile phones.

Several criteria were not addressed by the existing tools that we surveyed.

Some of these criteria were also not addressed by the techniques we evaluated

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 59

in Section 2.6 and include: extensibility of adaptation types, aspect, and factors,

empowering new design participants, and preserving designer input on the UI.

We should note that most of the surveyed tools are intended for developing

model-driven UIs but do not support adaptation capabilities. Therefore, the

extensibility of the adaptive behavior and the definition of visual and code-based

adaptive behavior are only partially supported by MASP, UsiComp, and

MARIA. Also, apart from Leonardi, the tools do not provide a mature IDE style

UI that could ease the development process.

In spite of the heterogeneity in the types of platforms (e.g., desktop, web,

mobile) for which UIs can be generated by some tools such as: Damask and

MARIA, the generated UIs only follow the WIMP style. Therefore, the tools we

surveyed do not demonstrate a high level of completeness since their ability to

support other UI types such as multi-touch tabletop UIs was not demonstrated.

Most of the tools we surveyed provide a visual-design canvas for the models

they support. Therefore, we considered that they fulfill the expressive match

criterion. We considered tools such as: Damask, Gummy, and Leonardi, which

support a form of integrated testing to fulfill the flexibility criterion. Besides

Leonardi, the tools we surveyed do not support reusability of UI model parts

(e.g., in the same way visual components are reused in traditional IDEs). Also,

reusability of adaptive behavior is not demonstrated although it could be

possible in principle in tools such as: MARIA, MASP, and UsiComp, which

support transformation rules. Hence, we only considered these few tools to

partially fulfill the expressive leverage criterion.

Achieving a low threshold and a high ceiling is noted to be one of the major

criticisms regarding tools supporting model-driven UI development. Therefore,

building models graphically was suggested to achieve a lower threshold

(Vanderdonckt 2008). We can say that Damask, Gummy, and Leonardi

potentially have a lower threshold than other tools since they promote a

development technique that starts with the CUI similar to the techniques

adopted by classic IDEs, which are more familiar to designers. In terms of

achieving a high ceiling, since most of the tools are research prototypes, it is

hard to consider them as alternatives for commercial IDEs (e.g., Visual Studio,

Eclipse, etc.) that can be used to develop real-life working commercial software

60 2.7 Tools Supporting Adaptive Model-Driven UI Development

applications. One exception is Leonardi, which is already a commercial IDE that

is used for developing working software applications. Yet, Leonardi does not

support adaptive behavior. Hence, we considered the surveyed tools to partially

fulfill the threshold and ceiling criterion.

2.7.2 Summary of the Review

We present a comparison of the tools we reviewed in Table 2.5. The criteria

that were not addressed by the existing techniques are: preserving designer

input on the UI, empowering new design participants, and extensibility of

adaptation types, aspects, and factors. Other criteria that have major gaps

include providing the ability to define and extend adaptive behavior both

visually and through code, better expressive leverage, an IDE style UI, more

completeness, and improving the threshold and ceiling.

Table 2.5: Visual Evaluation and Comparison of Adaptive Model-Driven User Interface
Development Tools

Legend

 Completely fulfills

 Partially fulfills

 Does not fulfill

C
o

m
p

le
te

n
e
s
s

C
o

n
tr

o
l

o
v

e
r
 t

h
e
 U

I

E
x

te
n

s
ib

il
it

y
 o

f

a
d

a
p

ti
v

e
 b

e
h

a
v

io
r

E
x

t.
 o

f
a

d
a

p
ta

ti
o

n

ty
p

e
s
,
a

s
p

e
c
t,

 f
a

c
to

r
s

E
m

p
o

w
e
r
in

g
 n

e
w

d
e
s
ig

n
 p

a
r
ti

c
ip

a
n

ts

ID
E

 s
ty

le
 U

I

L
e
v

e
ls

 o
f

a
b

s
tr

a
c
ti

o
n

P
r
e
d

ic
ta

b
le

 m
o

d
e
li

n
g

,

g
e
n

e
r
a

ti
o

n
,
a

n
d

 s
y

n
c
.

P
r
e
s
e
r
v

in
g

 d
e
s
ig

n
e
r
 i

n
p

u
t

F
le

x
ib

il
it

y

E
x

p
r
e
s
s
iv

e
 l

e
v

e
r
a

g
e

E
x

p
r
e
s
s
iv

e
 m

a
tc

h

T
h

r
e
s
h

o
ld

 a
n

d
 c

e
il

in
g

V
is

u
a

l
a

n
d

 c
o

d
e

-b
a

s
e
d

a
d

a
p

ti
v

e
 b

e
h

a
v

io
r

CTTE (HIIS Lab)

Damask

GraphiXML

Gummy

IdealXML

Leonardi

MARIA (Tools)

MASP (Tools)

SketchiXML

UsiComp

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 61

2.8 Chapter Summary

The literature includes many systems that offer solutions for developing

adaptive UIs in an attempt to address software usability problems. The model-

driven approach formed the basis of most of these systems. This review

presented an overview and evaluation of existing adaptive model-driven UI

development systems. We established a set of criteria by either directly drawing

on recommendations from the literature or indirectly from features dispersed in

multiple existing systems. We classified the related systems under reference

architectures, practical techniques, and supporting tools, and evaluated them

according to the criteria we established. We tabulated the result to illustrate the

level to which each criterion is fulfilled by each of the surveyed systems.

After reviewing the reference architectures for developing adaptive model-

driven UIs, we found that there are still gaps and room for improvement in the

following criteria: user feedback on the adapted UI, trade-off analysis,

integrating in existing systems, empowering new design participants, and

adopting a modeling approach that uses interpreted runtime models. We offer

improvements in our Cedar Architecture (Chapter 4), which promotes the use

of interpreted runtime models for handling more advanced adaptations. It also

provides a high level description for supporting user feedback and trade-off

management. The Cedar Architecture also supports the integration in existing

enterprise applications and empowers non-technical stakeholders to participate

in the adaptation process.

We found a major gap in feature-set adaptation techniques that suffer

from one or more of the following problems: lack of a practical implementation

mechanism, lack of generality, or restriction to design-time adaptation without

offering a runtime adaptive solution. Our attempt to fill this gap is presented by

the Role-Based User Interface Simplification (RBUIS) mechanism (Chapter 5).

RBUIS is a general-purpose, model-driven, and tool supported adaptive UI

mechanism capable of reducing UI bloat at runtime by adapting the UI’s

feature-set based on the context-of-use.

We found several gaps in layout optimization techniques including:

preserving designer input on the UI, empowering new design participants,

62 2.8 Chapter Summary

integrating in existing systems, and extensibility of adaptation types, aspects,

and factors.

Some approaches attempted to address the need of preserving designer input

on the UI. Smart templates were proposed for improving automatic generation

of ubiquitous remote control UIs on mobile devices (Nichols et al. 2004).

Although these templates improve the ability to preserve designer input,

specifying the various template variations could be time consuming and would

be classified under adaptable rather than adaptive behavior. Raneburger et al.

(2012), attempt to enhance the quality of generated UIs by using a graphical

tree editor to add hints to model transformations (e.g., the alignment of a

widget). However, UI designers might only work on the CUI level and leave the

model transformations to the developers. Also, the authors state that a

graphical WYSIWYG editor would improve on their approach. Hence, we

present a technique (Akiki et al. 2013c) for preserving designer input by

allowing UI designers to add constraints on the CUI model. However, this point

is only partially addressed by the research that we have done so far and its

completion is left for future work.

A few approaches have tried to empower new design participants in the UI

adaptation process through the means of crowdsourcing. Adaptable Gimp

(Lafreniere et al. 2011) was presented as a socially adaptable alternative of the

GNU image manipulation tool, Gimp. It allows the community to customize its

UI by creating task-sets in a wiki. Another approach (Nebeling et al. 2012)

allows HTML-based UIs to be adapted by end-users through a toolkit with a

predefined set of adaptations. The changes are stored in a central repository as

Cascading Style Sheets (CSS), which could be applied for other end-users with

similar needs. However, these approaches are not model-driven hence making

them technology-dependent and only focus on end-user manual adaptation.

Therefore, we presented an approach that complements our RBUIS mechanism

by engaging end-users to help technical stakeholders in defining the adaptive

UI behavior using a simple online tool (Akiki et al. 2013b). In order to set a

boundary for this thesis, we only partially addressed this point in our research

and left its completion for future work.

Chapter 2 - Literature Review: Adaptive Model-Driven UI Development Systems 63

As far as integrating in existing systems and extensibility of adaptation

types, aspects, and factors, no works were presented to thoroughly target these

points. We demonstrate the ability of our approach to address these points in

Chapter 5 and Chapter 7. Other criteria such as: trade-off analysis, user

feedback on the adapted UI, and visual and code-based adaptive behavior

representation were partially addressed by the existing art and could be

improved upon. Some techniques exist for improving the visual representation of

adaptive UI behavior (adaptation rules). A graphical tool was suggested for

hiding the complexity of defining UI adaptation rules (López-Jaquero et al.

2009). However, this tool might not be able to handle all possible scenarios due

to the limited use of a high level visual representation. As part of our RBUIS

mechanism (Chapter 5), we presented a technique that supports the definition

of visual and code-based adaptive behavior by employing workflows. These

workflows support visual programming constructs that can be extended as

needed such as: control structures, error handling, etc. Also, it is possible to

define code-based adaptation operations in scripts that integrate in the workflows.

We consider tool support to be crucial for the adoption of adaptive model-

driven UI development by the software industry. However, the present tools

still require a lot of work before they can become comparable to existing

industrial quality integrated development environments such as: Visual

Studio.NET and Eclipse. In addition to the gaps they share with adaptive UI

techniques, there are several points in the existing tools that need to be

improved such as: the extensibility of the adaptive behavior, expressive leverage,

and threshold and ceiling. Several of the existing tools such as: Damask and

Gummy, have a good starting point. Separate tools coming from the same

research groups could be merged together such as: GraphiXML, IdealXML, and

SketchiXML on one hand, and MARIA and CTTE on the other hand. This

merger will make these tools more comprehensive before new enhancements

can be added. We presented our own tool called Cedar Studio (Chapter 6) to

provide a unified IDE, which supports the development of adaptive model-

driven UIs. It supports visual-design tools for: task models, domain models, AUI

models, CUI models, and workflows that represent the adaptive behavior. It

also supports code-editing tools for adaptive behavior scripts and model

checking constraints. Furthermore, Cedar Studio supports automatic generation

64 2.8 Chapter Summary

and synchronization between the various levels of abstraction (task, AUI, and

CUI models) with the possibility to make manual changes at any of these levels.

The next chapter establishes the research questions and hypotheses based on

the gaps determined by the literature review presented here. Furthermore, the

research methods for answering the questions are discussed and justified.

 65

3

Research Design: Research Questions,

Hypotheses, and Methods

“If we knew what it was we were doing, it would not be called research.”

― Albert Einstein

This chapter starts by dividing the overarching research question it into sub-

questions and explains them. Afterwards, the hypotheses statements are

established based on the research questions. Then, the selected research

methods are discussed and justified. An overview is presented of the existing

research and technologies that were used as a basis for parts of our work. Finally,

the chapter is summarized and an overview of the research steps is given.

3.1 Research Questions

Easterbrook et al. (2008) differentiate between “knowledge” and “design”

questions in software engineering research. They note that knowledge questions

focus on “the way the world is”, whereas design questions tend to focus on

establishing “better ways to do software engineering”. Empirical research is

usually the path chosen by researchers posing knowledge questions as opposed

to an engineering approach taken by researchers with design questions.

Our research follows an engineering approach with a mixture of both design

and knowledge questions. The design questions are answered by devising an

approach that supports the development of adaptive enterprise application UIs.

On the other hand, the knowledge questions are answered by evaluating this

approach empirically from the technical and human perspectives.

In Chapter 1, we identified the following overarching research question:

66 3.1 Research Questions

How can adaptive user interfaces be leveraged for improving the

usability of enterprise applications?

In this chapter, we shall divide the overarching question into sub-questions

related to the novel technical contributions and their evaluation. These sub-

questions are based on the results of the gap analysis, which we conducted as

part of the literature review in Chapter 2.

3.1.1 Technical Contribution Research Questions

We define the following sub-questions that are related to the novel technical

contributions of this thesis:

Q1: What reference architecture can guide the development of adaptive

enterprise application UIs based on a runtime model-driven approach, while

supporting: user feedback, trade-off analysis, integration in existing systems,

and the empowerment of non-technical design participants?

The proposed reference architecture includes a high level description of the

architectural components, their distribution among the architecture’s layers,

and the way they communicate with each other.

Q2: What UI adaptation technique, based on the proposed reference

architecture (Q1), can minimize the feature-set and optimize the layout of

enterprise application UIs according to the context-of-use for an extensible

number of adaptation aspects and factors, and support the addition of both

visual and code-based adaptive behavior as needed?

To answer this question, we provide design specifications for the adaptation

technique. These specifications include meta-models, algorithms, and a means

for representing the adaptive behavior visually and through code. To make the

offered solution general purpose, an application programming interface (API) is

devised to support building enterprise application UIs, which can use the

adaptation technique.

Q3: What trade-off management mechanism can support multi-aspect trade-

off analysis that works with the devised UI adaptation technique (Q2)?

Chapter 3 – Research Design: Research Questions, Hypotheses, and Methods 67

The proposed trade-off management mechanism is able to analyze the trade-

offs among multiple conflicting adaptation aspects (e.g., screen-size, physical

impairments, etc.) by using a quantitative measure that determines the quality

of each UI design. Furthermore, this mechanism is able to accommodate

multiple adaptation aspects that can be extended as needed.

Q4: What integrated development environment can help software developers

and IT personnel in developing and maintaining model-driven enterprise

application UIs and adapting them with the devised adaptation technique (Q2)?

The IDE in question provides the necessary visual-design and code-editing

tools for supporting the creation and maintenance of the artifacts required for

developing adaptive model-driven enterprise application UIs. These artifacts

primarily include the UI models and adaptive behavior (adaptation rules). A

basic early prototype of this IDE supporting a visual-design tool for a single

type of UI model (concrete UI) is demonstrated in Figure 3.1. We built this

prototype as part of an early exploration of this research work (Akiki 2010).

Figure 3.1: An Early Prototype of Our IDE (Akiki 2010)

68 3.1 Research Questions

3.1.2 Evaluation Research Questions

We define the sub-questions related to the evaluation of the novel technical

contributions of this thesis as follows:

3.1.2.1 Software Engineering Perspective

Q5: Does the devised UI adaptation approach (Q1 and Q2) integrate in

existing enterprise applications without causing major changes to the way they

function or incurring a high integration cost?

To answer this question, we measure the cost of reverse-engineering existing

non-model driven enterprise application UIs into a model-driven representation.

We also measure the integration change impact in terms of the lines-of-code,

which have to be added or changed.

Q6: Does the proposed UI adaptation technique (Q2) provide a real-time

runtime performance and is it scalable?

Runtime performance is measured using a metric that is composed out of

multiple time components, which represent the efficiency of different parts of

the UI adaptation technique. The scalability of this technique is determined

through a complexity analysis of its algorithms, and by load-testing its

implementation to simulate a real-life enterprise application workload.

Q7: What is the perspective of industry experts on the generality and

flexibility of the devised UI adaptation technique (Q2)?

This question can be answered by obtaining the perspectives of industry

experts after showing them videos of our adaptation technique in operation, the

way it integrates into existing systems, and its supporting tool.

3.1.2.2 Human-Computer Interaction Perspective

Q8: Does feature-set minimization and layout optimization significantly

improve the usability (efficiency, effectiveness, and satisfaction) of enterprise

application user interfaces?

Chapter 3 – Research Design: Research Questions, Hypotheses, and Methods 69

Usability studies are conducted to answer this question. The participants are

asked to perform tasks using two versions of the same UI, an initial version and

an adapted one. Several measurements are used to evaluate whether the

adapted UIs significantly improves usability. The time taken by each

participant to complete the tasks is recorded to measure the efficiency. Eye-

tracking is used to measure how lost the participants are when using complex

UIs versus the simplified ones. The effectiveness is evaluated by measuring the

number of mistakes each participant made when completing the task in the

different UI versions. Participants are asked to provide feedback on their

satisfaction (perceived usability) by answering a set of questions.

3.2 Hypotheses

We do not define any hypotheses for the technical contribution research

questions from Section 3.1.1 since these questions will be answered by devising

novel solutions (architecture, technique, and tool). However, we define the

following four null hypotheses for the evaluation research questions from

Section 3.1.2, since these questions are answered through empirical studies:

H0-1: The devised UI adaptation approach cannot integrate in existing

enterprise applications without causing major changes to the way they function

or incurring a high integration cost.

H0-2: The proposed UI adaptation technique does not provide real-time

performance (milliseconds) and is not scalable for complex problems.

H0-3: Industry experts will not find our approach general and flexible enough

to be used in real-life projects.

H0-4: Minimizing the feature-set and optimizing the layout of enterprise

application UIs based on the context-of-use, does not significantly improve their

usability (efficiency, effectiveness, and satisfaction).

70 3.3 Research Questions for Future Work (Partially Addressed)

3.3 Research Questions for Future Work (Partially Addressed)

The literature review we conducted in Chapter 2 identified several gaps in

the state-of-the-art. However, completely addressing all these gaps is out of the

scope of one thesis. Therefore, we only address the following two sub-questions

partially and leave the remaining parts for future work.

Q9: What technique can empower non-technical stakeholders such as end-

users to contribute to the UI adaptation process?

The proposed technique should allow non-technical stakeholders to contribute

to the UI adaptation process by defining adaptive behavior using tools that

were particularly developed for people with basic or no technical skills.

Q10: What can be added to the UI adaptation technique (Q2), for allowing UI

designers to preserve some of their input on the UI after it is adapted?

To answer this question, a technique must be devised to allow UI designers

to add design-time input, on the UI models, which gets preserved even after the

UI is adapted. The added input would embody the characteristics of the UI that

require human ingenuity and are not met by automated adaptation techniques.

3.4 Research Methods

Several methods can be applied for conducting and evaluating software

engineering and human computer interaction research. For example, the most

common kinds of validation in software engineering research (based on

submissions to the international conference on software engineering) are:

systematic analysis and experience in actual use (Shaw 2002). This section

discusses both the engineering techniques and the empirical research methods,

which we applied to answer the research questions.

3.4.1 Engineering Techniques

Several engineering techniques are employed in this thesis to answer the

technical contribution (design) research questions listed in Section 3.1.1. The

outcome is evaluated empirically by answering the evaluation questions listed

Chapter 3 – Research Design: Research Questions, Hypotheses, and Methods 71

in Section 3.1.2. The engineering techniques include meta-modeling, devising

algorithms, and implementing support tools and prototypes. Such techniques

are not uncommon when researching a topic that offers a software engineering

solution for a human computer interaction problem. Other researchers working

in a similar area, for example Blumendorf (2009), Feuerstack (2008), and

Florins (2006), contributed meta-models, support tools, and prototypes that

were evaluated using worked examples.

3.4.2 Empirical Methods

The empirical methods are employed for both exploratory and confirmatory

purposes. A survey is used for an initial exploration, whereas worked examples

and software metrics, interviews, and controlled experiments were used for

evaluating the outcome.

3.4.2.1 Surveys

We used a survey in the form of an online interactive questionnaire for the

initial investigation study, which we presented in Section 1.3.4. A survey could

identify the characteristics of a broad population of individuals if a clear

research question inquiring about the nature of the target population is present

(Easterbrook et al. 2008). This precondition is available in the study that we

conducted. By depending on a representative sample we were able to test for

statistical significance. Furthermore, when compared to other data collection

techniques, questionnaires can reach many people by employing a low amount

of resources (Sharp et al. 2007).

3.4.2.2 Worked Examples and Software Metrics

Easterbrook et al. (2008) identify several research methods, which include

case studies. The authors mention that there is confusion about this term by

using it in the sense of a worked example, whereas as an empirical method it

should be used as an inquiry. We use worked examples in the form of enterprise

application prototype UIs, which adapt to the context-of-use.

72 3.5 Building on Existing Research and Technologies

By defining and applying software engineering metrics to the worked

example prototypes, we can evaluate how well our approach integrates in

existing systems (Q5) and whether it is scalable and provides real-time runtime

performance (Q6).

3.4.2.3 Controlled Experiments

A controlled experiment can be used to test a hypothesis by manipulating

one or more dependent variables and measuring their effects on one or more

independent variables (Easterbrook et al. 2008).

Usability studies are common in human computer interaction research. They

can be used to measure the difference in usability between one UI design and

another. Participants can be asked to perform the same task using two different

adaptations of the same interface. The participants’ efficiency, effectiveness,

and satisfaction can be measured for each UI version. A comparison between

the measurements validates if feature-set minimization and layout optimization

can significantly improve the usability of enterprise applications (Q8).

3.4.2.4 Interviews

Interviews are a form of survey research. However, we do not intend to use

this method with a broad population but with a limited number of industry

experts in order to answer research question Q7. We rely on a semi-structured

interview to ask about the generality and flexibility of our adaptation

technique, while allowing the interviewees to maintain a broader scope that

allows us to explore additional insights.

3.5 Building on Existing Research and Technologies

Our research provides novel contributions. However, as a good practice it

makes use of the existing literature and technologies, which saves the time of

having to devise everything from scratch.

We build upon work presented in existing reference architectures and

frameworks such as: the CAMELEON reference framework and the Three

Chapter 3 – Research Design: Research Questions, Hypotheses, and Methods 73

Layer Architecture (Section 2.3.2). These research works provide a theoretical

basis for our proposed reference architecture.

We also make use of existing technologies. For example, the concrete UI

model visual-design tool offered by our IDE is based on the Windows Forms

visual-design component, which is part of the .NET framework. This component

saved us the effort of having to create the tool completely from scratch. In order

to represent the adaptive behavior for layout optimization, we rely on the

Windows Workflow Foundation (WF), which is provided as part of the .NET

framework. The visual-design tool for these workflows is incorporated in our

IDE and provides the means for defining the adaptive behavior.

Figure 3.2: Overview of the Research Steps

3.6 Chapter Summary

In this chapter, we divided the overarching research question into sub-

questions and provided an explanation for each one. These sub-questions

inquire about the thesis’ technical contributions and their evaluation. We

established our hypotheses and discussed the research methods, which we used

Evaluation

Technical Perspective Human Perspective

Technical Contributions

Cedar Architecture

(Reference Architecture)

RBUIS

(Adaptation Technique)

Cedar Studio
(Supporting IDE)

Initial Investigation

Survey (Questionnaire)

Basic IDE Prototype

Literature Review

(Gap Analysis)

74 3.6 Chapter Summary

to answer the research questions. We also presented an overview of the existing

research and technologies that are used as a basis for parts of our work.

An overview of the steps undertaken in this thesis, including the initial

investigation, technical contribution, and evaluation, are illustrated in Figure

3.2. As we mentioned in Section 1.4 of Chapter 1, this thesis makes the

following three novel contributions:

 Cedar Architecture: A reference-architecture for supporting the

development of adaptive model-driven enterprise application UIs.

 RBUIS: A UI adaptation mechanism based on the Cedar Architecture for

simplifying enterprise application UIs by minimizing their feature-set

optimizing their layout according to the context-of-use.

 Cedar Studio: An IDE for supporting different stakeholders such as:

software developers and IT personnel, wishing to use RBUIS.

These contributions are evaluated empirically from the technical and the

human perspectives. The evaluation covers both the software engineering and

human computer interaction areas.

 75

4

The Cedar Architecture: A Reference for

Developing Adaptive Model-Driven

Enterprise Application User Interfaces

“The greatest products of architecture are less the works of individuals than of society;

rather the offspring of a nation's effort, than the inspired flash of a man of genius...”

― Victor Hugo, The Hunchback of Notre-Dame

This chapter introduces the layers and components that constitute the Cedar

Architecture, which serves as a reference for stakeholders interested in

developing adaptive enterprise application UIs based on an interpreted runtime

model-driven approach. A general-purpose meta-model is also introduced as a

high-level design for supporting the development of adaptive UIs based on the

Cedar Architecture. Finally, we report the results of an experiment, which

demonstrated that user interfaces developed using interpreted runtime models,

can be loaded and rendered as efficiently as those based on compiled code.

4.1 Introduction

Kramer & Magee (2007) promote the use of an architecture-based approach

for devising adaptive software systems since it could build on existing work and

provides: generality, a level of abstraction, potential for scalability, and

potential for integrating work from multiple areas (e.g., modeling and

representation, analysis, etc.). The existence of reference architectures for

adaptive user interfaces could help in realizing these UIs in complex software

systems such as enterprise applications.

76 4.1 Introduction

In Chapter 2, we identified several gaps in the existing state-of-the-art

reference architectures. These architectures did not adopt a modeling approach

that uses interpreted runtime models for offering more flexibility in terms of

realizing advanced UI adaptations. Additionally, existing architectures do not

support end-user feedback on the adapted UI and trade-off analysis among a

varying number of conflicting adaptation aspects. Furthermore, the existing

works did not demonstrate how adaptive UI techniques, which are based on

their proposed architectures, can integrate in existing software systems. Finally,

the existing architectures do not offer a solution for empowering new design

participants such as end-users, by offering them the ability to take part in

defining the adaptive user interface behavior.

In this chapter, we introduce the Cedar Architecture, which serves as a

reference for stakeholders interested in developing adaptive enterprise

application UIs based on a model-driven approach. Our architecture was

designed to fill the gaps that were identified in Chapter 2. It promotes the use

of interpreted runtime models, which allow UIs to be loaded, adapted, and

rendered dynamically without resorting to code generation. Additionally, it

offers high-level components for supporting functionality such as: end-user

feedback and trade-off analysis. The Cedar Architecture is service-oriented

hence it promotes a separation of concerns between the enterprise applications

that require UI adaptation and the adaptive UI technique that provides this

capability. Our architecture’s client-side layer has an application programming

interface (API), which allows UI adaptation techniques to integrate in existing

enterprise applications. These applications would gain adaptive UI capabilities

by calling web-services through the API to access the UI adaptation technique

components on the server-side layers.

The Cedar Architecture is meant to answer research question Q1, which we

established in Chapter 3 as follows:

Q1: What reference architecture can guide the development of adaptive

enterprise application UIs based on a runtime model-driven approach, while

supporting: user feedback, trade-off analysis, integration in existing systems,

and the empowerment of non-technical design participants?

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 77

4.2 The Cedar Architecture

This section provides a high-level overview of the components comprising the

Cedar Architecture, which is based on the: CAMELEON reference framework

(UI abstraction), Three Layer Architecture (adaptive system layering), and

Model-View-Controller (MVC) paradigm (implementation). As we discussed in

Chapter 2, CAMELEON provides a reference for representing UIs on multiple

levels of abstraction and the Three Layer Architecture provides guidance for

layering adaptive software systems. Basing the Cedar Architecture on these

works, allows it to cover both model-driven UI representation and adaptive

behavior. Furthermore, MVC offers implementation guidelines that promote a

separation of concerns between the UI, the domain model, and the

implementation code. The layers and components comprising the Cedar

Architecture are illustrated in Figure 4.1 and explained in Sections 4.2.2 and

4.2.3. The steps of the adaptation procedure are shown sequentially (S1 to S5)

in Figure 4.1 and are explained in Section 4.2.4.

Figure 4.1: The Cedar Architecture

78 4.2 The Cedar Architecture

4.2.1 Using Interpreted Runtime Models

The Cedar Architecture adopts the model-driven approach for developing

adaptive user interfaces. Runtime models are usually more desirable for

developing adaptive UIs since they are dynamic in nature and hence can be

used to adapt the UI while the software application is running. However, in

certain scenarios, using runtime models while maintaining the generated code-

based artefacts is insufficient for achieving the required adaptive behavior.

One example scenario is an adaptation operation, which performs

elimination, substitution, and realignment of user interface widgets. The

adaptation could, for example, eliminate a subset of the functionality that is

unnecessary for a certain end-user. Then, the UI could be reshaped according to

this end-user’s computer literacy level as describe in the following hypothetical

example:

 Beginner: The user interface is presented in wizard form, since a series of

small steps are easier to interpret.

 Intermediate: The user interface is divided among several tabs.

 Expert: The user interface widgets are displayed on one page.

An adaptive UI approach that aims to fulfill the previously mentioned

example should provide runtime support for actions such as: eliminating

widgets, replacing a widget with another, or adding new widgets that did not

previously exist during the development phase. Performing such actions at

runtime would be difficult when the UI is based on generated artefacts. For

example, substituting a widget with another is difficult since the widget types

are hard-coded, whereas with runtime interpretation, the types could be

switched in the model and the widget would be rendered accordingly.

Our approach uses interpreted runtime models hence there is no need to

generate code for creating the UI. Instead, the models are interpreted at

runtime, adapted according to the context-of-use, and presented to the end-user

as a running user interface.

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 79

4.2.2 Layers Comprising the Cedar Architecture

The Cedar Architecture comprises a client-side layer called client

components, and three server-side (application / database servers) layers: decision

components, adaptation components, and adaptive behavior and UI models.

Following the Three Layer Architecture (Kramer & Magee 2007), the

adaptation components layer of the Cedar Architecture performs the Goal

Management, its decision components layer handles Change Management, and

its client components layer performs Component Control. Following the MVC

paradigm, models are represented on the adaptive behavior and UI models

layer, the Controller spans the adaptation components and decision components

layers, and the View is managed by the client components layer.

The server-side layers are accessed through web-services from the client

components layer, our IDE Cedar Studio (Chapter 6) and our crowdsourcing

portal (Akiki et al. 2013b). Cedar Studio supports stakeholders such as:

software developers and IT personnel, in defining and maintaining UI models

and adaptive behavior. The crowdsourcing portal on the other hand, empowers

non-technical stakeholders like end-users, by allowing them to participate in

defining adaptive UI behavior.

 This section provides a general explanation of the role of each of the

components comprising the client-side and server-side layers of the Cedar

Architecture. The coming chapters provide more implementation information. A

UI adaptation technique, based on the Cedar Architecture, is presented in

Chapter 5. It provides more details on the way we implemented the architectural

components. In this chapter, our IDE Cedar Studio and crowdsourcing portal are

merely illustrated as part of Figure 4.1 to show how they fit within the overall

architecture. Nonetheless, Cedar Studio is presented in Chapter 6 while details

on the crowdsourcing portal can be found in a separate paper (Akiki et al. 2013b).

4.2.2.1 Client Components Layer

The components in this layer are deployed to the client machine and are the

only technology-specific components in the Cedar Architecture. Since these

80 4.2 The Cedar Architecture

components are part of the application programming interface (API) and have

to be integrated in the enterprise application’s code, a different version is

required for each programming language and presentation technology.

The Context Monitor is responsible for monitoring any changes to the triplet

forming the context-of-use: user, platform, and environment. For example, it

can monitor if there is a change in the: end-user’s role(s), device’s screen-

resolution, distance between the end-user and the display presenting the UI, etc.

Adaptive mechanisms could affect an end-user’s UI control (McGrenere et al.

2002). End-users could feel loss of control if the adaptive mechanism makes

decisions they cannot understand or change. Reduction mechanisms could affect

feature-awareness (Findlater & McGrenere 2007). If a UI was adapted by

reducing functionality without providing a means of exploring the features that

were removed and possibly bring them back, the end-users could become

unaware of some features that they might want to use in certain contexts.

These negative effects could be overcome if the end-users are kept in the

adaptation loop by allowing them to provide feedback on the UI adaptation

operations performed by the system. The Feedback Monitor allows end-users to

report their feedback on the UI adaptations performed by the system and offers

the ability to reverse adaptations or choose other alternatives when possible.

An important part of any dynamic approach is data caching. The ability to

cache data on the client-side, allows UIs to be dynamically rendered more

efficiently. The Caching Engine is responsible for caching the UI models for

allowing interpreted runtime models to have the performance of compiled code.

Caching provides the robustness required by enterprise applications without

neglecting the ability to customize such applications at runtime.

The UI Presenter is responsible for interpreting the adapted UI models and

presenting a running UI to the end-users. In the case of graphical UIs, which are

the most common in enterprise applications, the UI Presenter renders the UI

model using an existing presentation technology (e.g., HTML). Theoretically,

this component is responsible for handling data-binding, event management,

and validation by linking the dynamically created UI to the application’s code-

behind and domain-model. However, we did not implement this part of the

component since our work is more concerned with UI adaptation and presentation.

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 81

4.2.2.2 Decision Components Layer

These components are deployed to the application server to handle decision

making in various adaptive UI scenarios.

The Context Evaluator handles the information submitted by the Context

Monitor, in order to evaluate whether the change requires the UI to be adapted.

For example, an end-user holding a mobile phone could suddenly start walking

at a faster pace. In this case, the Context Monitor can use the phone’s

accelerometer to detect this new pace and report it to the Context Evaluator,

which checks whether the walking speed requires the UI to be adapted.

The Caching Engine on the application server assumes a role similar to that

of its counterpart on the client machine. However, in this case, the caching is

not done on the session level for each individual end-user but on the application

level for all the end-users. The UI models cached at this level would have

already been adapted. Hence, in case the same adaptation is required by a

different end-user, the models would be loaded from the cache rather than re-

performing the adaptation, which could be more time consuming.

4.2.2.3 Adaptation Components Layer

The components in this layer are deployed to the application server in order

to handle the adaptation of the UI models.

The Adaptation Engine is responsible for adapting the UI models by executing

the appropriate (based on the context-of-use) adaptive behavior on them.

Enterprise application UIs can be adapted according to multiple adaptation

aspects. Hence, trade-off management is necessary in certain situations where

conflicting aspects make it impossible to fully meet all the constraints. In such

situations, the Trade-off Manager assumes the role of managing the trade-offs

between conflicting adaptation aspects that affect the same user interface.

The adapted UI is transmitted to the client machine in an XML format to

permit adaptation techniques based on the Cedar Architecture to be consumed

as a generic service through an API from different enterprise applications. The

82 4.2 The Cedar Architecture

format could be one of the known UI description languages such as: UsiXML,

UIML, etc. The UIDL Converter is responsible for handling the conversion

between the UI model (stored as relational data) and the selected UIDL format.

Alternatively, the UIDL Converter could simply convert the UI models into an

XML document based on our own representation. We chose the latter approach

because this work is concerned with UI adaptation more than representation.

4.2.2.4 Adaptive Behavior and UI Models Layer

This layer hosts the adaptive behavior and UI models, which are stored in a

relational database on a database server. The relational database serves as a

common repository and makes it easier to manage these artifacts at runtime

using Structured Query Language (SQL) operations.

The adaptive behavior is a generic set of rules according to which the UI can

be adapted when the context-of-use changes. Such rules could be based on

various adaptation aspects. The adaptive behavior can be applied on any of the

UI models representing the different levels of abstraction: task, domain, abstract

UI, and concrete UI. The way we represent the adaptive behavior is explained

in Chapter 5 as part of our UI adaptation technique. As for the UI models they

conform to the meta-model shown in Figure 4.4 and explained in Section 4.3.2.

4.2.3 Adaptive Behavior Data: How Should the UI be Adapted?

The data that is used for making decisions about the ways of adapting the UI

could be obtained from a variety of sources such as: context-models that are

based on empirical studies (e.g., Section 1.3.4) or expert knowledge, end-user

feedback that is obtained through the Feedback Monitor, and monitoring

behavior change that is performed by the Behavior Monitor(s).

Adaptive behavior data is defined in context-models that are stored in a

relational database on the database server. These models can represent

adaptive behavior for different adaptation aspects pertaining to any context-of-

use pillar. Empirical studies could be conducted within an enterprise to identify

how the UI should be adapted for particular adaptation aspects such as

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 83

computer literacy. On the other hand, expert knowledge could be enough to

define these models for other adaptation aspects such as different screen-sizes.

Context-models can be refined through end-user feedback that is collected on

the Client Components Layer through the Feedback Monitor. End-user feedback

is reported to the Decision Components Layer to be evaluated by the Feedback

Evaluator before it is stored in the database as a refinement for the context-

models. An example of end-user feedback could be: Choosing to show features

that were removed from the UI, or making alternative adaptation choices like

selecting to group the UI widgets using tab-pages rather than group-boxes. In

the example of showing removed features, the Feedback Evaluator could check

whether showing a removed feature requires other features to be shown as well

due to interdependency.

New situations and behavior changes are detected on the Client Components

Layer by the Behavior Monitor and are reported to the Decision Components

Layer in order to be evaluated by the Behavior Evaluator. Some examples of

what could be monitored include: the end-users’ usage rate of input fields, new

updates installed on the platform, information collected from the environment

through sensors, etc. For example, an end-user could be initially allocated

access to part of the UI’s features. Yet, the behavior change monitor could

detect that even in this part of the UI there are unused fields hence triggering

an update to the adaptive behavior data to indicate that these fields should be

removed as well. The Behavior Evaluator could evaluate, for example, whether

the usage rate of a certain field is low enough to exclude it from the UI.

4.2.4 Adaptation Procedure

Some systems such as: MASP (Blumendorf et al. 2010) and MyUI (Peissner

et al. 2012), directly adapt UIs while the end-user is working (direct adaptation)

due to the ubiquitous nature of their target applications. On the other hand,

McGrenere et al. (2002) promote offering the adapted UI as an alternative

version (indirect adaptation) because direct adaptation could confuse the end-

users. We think that both approaches are necessary to cater for a wider variety

of adaptations. For example, if an end-user is working on a mobile phone while

84 4.2 The Cedar Architecture

sitting down, and then suddenly stands up and begins to walk fast, the UI could

be adapted directly to cater for this change in the context-of-use. On the other

hand, if the UI requires adaptation to each end-user’s computer literacy level,

this level could be known and stored in the enterprise application database in

advance. Hence, when the end-users log into the application, they will be given

access to an adapted version of the UI that meets their particular profile.

Since enterprise applications mostly contain WIMP-style UIs, which are used

in an office environment, proposing the adapted UI version as an alternative

could be a better adaptation choice. However, our architecture supports both

direct and indirect adaptation to also cater for UIs, such as the ones running on

mobile phones, which have to directly adapt to an evolving context-of-use.

The adaptation procedure is shown as a part of the architecture in Figure 4.1

by steps S1 to S5. These steps could be mapped to the flow chart in Figure 4.2,

which illustrates them in more detail.

Figure 4.2: User Interface Adaptation Procedure

A direct UI adaptation could occur once a context-change is detected by the

Context Monitor (S1) and reported to the Context Evaluator in case the client-

side cache does not have the necessary UI. A decision is made on whether the

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 85

UI should be adapted. The server-side cache is checked for an existing version.

If the required UI version does not exist in the cache, the adaptation engine is

called (S2) for obtaining the new UI. The adaptive behavior and UI models are

loaded (S3) from the database server. The UI is then adapted (S4) and sent

back to the client-side in order to be presented to the end-user (S5). On the

other hand, with an indirect adaptation the UI is not adapted while the end-

user is working but rather when he or she launches a UI (S1’). However, the

adaptation procedure goes through the same steps but the UI is adapted based

on predefined parameters such as the end-user’s computer literacy level rather

than dynamic parameters that are detected by the Context Monitor such as data

collected from sensors.

The Behavior Change and Feedback monitor(s) constantly run in parallel

with the other functionality. Once a behavior change is detected, the new data

is stored on the database server. This data is collected over time and processed

in order to refine the adaptations. Feedback submitted by the end-users is also

stored on the database server in order to refine the adaptations. Since the end-

users are manually submitting the feedback, the adaptation engine is called

after storing the feedback data in order to directly reflect the change.

4.3 General-Purpose Meta-Model

This section presents and explains our general-purpose meta-model, which

offers a high-level design for supporting the development of adaptive UIs based

on the Cedar Architecture.

4.3.1 Multi-Aspect Adaptive User Interfaces Meta-Model

The class diagram illustrated in Figure 4.3 presents the part of our meta-

model, which supports extensible multi-aspect user interface adaptation with

trade-off management capabilities.

Our meta-model links Adaptation Aspects (e.g., computer literacy, device, job

title, etc.) with Goals (e.g., usability, security, etc.). Goals could be either crisp

or fuzzy and are represented in Goal Models.

86 4.3 General-Purpose Meta-Model

Figure 4.3: Meta-Model for Multi-Aspect Adaptive User Interfaces

Baresi et al. (2010) distinguish between Crisp Goals, whose satisfaction is

Boolean, and Fuzzy Goals, whose satisfaction is represented through fuzzy

constraints. The goals represented by our meta-model follow a similar definition.

For example, a “device” aspect could be linked to a fuzzy “usability goal”, which

dictates how the UI should be adapted to meet the device’s characteristics such

as the screen-size. A “job title” aspect could be linked to a crisp “security goal”,

which dictates the fields that can be viewed or edited by each user-role. Crisp

Goals are linked to Adaptation Aspects that are realized by Operations relevant

to Boolean-valued Adaptation Factors. An example of an Adaptation, which

realizes a crisp goal, is a feature-reduction that changes some Boolean properties

of UI widgets such as those related to whether the widget is: disabled, read-

only, visible, etc. On the other hand, Fuzzy Goals are linked to Adaptation

Aspects that are realized by Operations relevant to Adaptation Factors, which

are represented as numeric sets of values. A layout optimization is a type of

Adaptation that can realize a fuzzy goal. For example, the type of a selection

widget can be changed to: combo-box, radio-buttons, list-box, etc.

To support trade-off analysis, Crisp Goals have a priority whereas Fuzzy

Goals define a cost for each of their relevant Operations. The priority property is

used to sort goals for selecting the top one, whereas the cost could be used in a

cost function to determine the extent to which each goal can be fulfilled. The

change of an Adaptation Aspect is captured by monitoring a Context Element

such as: user-role, environment variable, platform type, etc. When a change

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 87

occurs, an Adaptation relevant to an Operation is executed on the appropriate

UI Model (e.g., task, abstract, concrete) in order to fulfill a goal. The adaptation

is implemented as an Adaptive Behavior. This behavior represents the different

actions (e.g., modifying the font-size, layout grouping, etc.) that are applied to a

UI model in order to adapt it to the context-of-use. User Feedback and Behavior

Monitoring data are used to refine the adaptations.

4.3.2 User Interface Levels of Abstraction Meta-Model

The class diagram shown in Figure 4.4 is part of our meta-model.

Figure 4.4: Meta-Model for User Interface Levels of Abstraction

This part of the meta-model represents the UI levels of abstraction suggested

by the CAMELEON reference framework, namely the task, abstract UI (AUI),

88 4.3 General-Purpose Meta-Model

and concrete UI (CUI) models. This part of the meta-model complements the

one shown in Figure 4.3.

4.3.2.1 Task Models

We adopted the ConcurTaskTrees (Paterno 1999) notation for representing

the Task Models, which are the highest level of abstraction focusing on the

activities that the UI is required to support. Following this notation, a Task Model

is composed of several Tasks each having a type from those enumerated by the

Task Type class. The Tasks are connected in a hierarchical manner to indicate

parent/child relationships. In addition to these hierarchical relationships, the

Tasks are connected to each other with logical temporal relationships (Task

Relation) since there could be interdependency among Tasks. For example, a

calculated field could depend on values from other fields for calculating its value.

Figure 4.5: Task Model for Customer Maintenance UI

The ConcurTaskTree shown in Figure 4.5 is an example of a task model for a

Customer Maintenance UI, which is based on the meta-model from Figure 4.4.

4.3.2.2 Abstract User Interface Models

The AUI Model is a modality-independent representation of the user interface.

It is composed of AUI Elements each of which has a type from those enumerated

by the AUI Element Type. These elements could be grouped inside the model

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 89

using container elements. Each AUI Element could be mapped to many Tasks in

the Task Model and vice-versa.

Figure 4.6: Abstract UI Model for Customer Maintenance UI

The Customer Maintenance UI is used again as an example in Figure 4.6 to

demonstrate an abstract UI model, which was created based on the meta-model

from Figure 4.4. The elements on this AUI model are mapped to the tasks of the

task model shown in Figure 4.5.

4.3.2.3 Concrete User Interface Models

The CUI Model is a modality-dependent representation of the user interface.

Therefore, the CUI Elements could be of different types each representing a

certain modality such as: graphical, character, voice, etc. However, since

enterprise applications rely mostly on graphical UIs (GUIs), we only define a

Graphical CUI Element (widget) class as a specialization of the CUI Element

class. Nevertheless, the meta-model could be extended in the future for

supporting other modalities. The Graphical CUI Element has standard properties

(e.g., height, width, etc.), which are common for all graphical UI widgets.

Additionally, these elements define Graphical CUI Element Properties, which

90 4.3 General-Purpose Meta-Model

depend on each element’s type. For example, a data-grid widget could have a

property called “alternating row color”, which is not present in other widgets.

Most enterprise application user interfaces are data entry forms. Therefore,

we adopted a relative positioning approach for the layout, whereby Graphical

CUI Elements could be embedded inside one another (e.g., text-boxes inside a

group-box) and positioned using the top and left position properties. Different

presentation technologies such: HTML, Java Swing, and Windows Forms, are

used in industry for developing enterprise application UIs. These technologies

can support the layout approach that we adopted. To support multi-lingual UIs,

Graphical CUI Elements are assigned a Multilingual Caption. Each Graphical

CUI Element has a type from the Graphical CUI Element Types such as: button,

combo-box, text-box, etc. These types define a Toolkit Path property, which

indicates where the UI Presenter (Section 4.2.2.1) component could locate the

relevant widget inside the toolkit. For example, if the Windows Forms toolkit is

adopted, the Toolkit Path property could store the assembly path of the widget

(e.g., “System.Windows.Forms.Button”). The end-users can access the UI by

activating Windows, which are presented as links with user-friendly captions

inside a navigation structure such as a menu.

Figure 4.7: Concrete UI Model for Graphical Customer Maintenance UI

The UI shown in Figure 4.7 is the Customer Maintenance graphical CUI

model, which maps to the AUI model shown in Figure 4.6 and is based on the

meta-model illustrated in Figure 4.4.

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 91

4.4 Evaluating the Performance of Interpreted Runtime Models

One might think that runtime performance could be a concern with UIs that

are interpreted and rendered dynamically. To check the validity of this concern,

we ran a preliminary experiment to compare the performance of dynamic UIs to

that of UIs represented as compiled code. For this experiment, we chose a

Medical Claims UI from an existing open-source dental practice management

system called OpenDental9. Although this software application is not as large-

scale as ERP systems, it was enough for this preliminary study because it uses

WIMP-style UIs that are common in enterprise applications, and it adopts a

compiled presentation technology namely, Windows Forms. A large-scale

enterprise application was used in the comprehensive evaluation discussed in

Chapter 7. The selected Medical Claims UI has 87 widgets of 9 different types.

We reverse-engineered it from code into a CUI model representation conforming

to the meta-model in Figure 4.4.

We tested the performance of the dynamic UI versus the code-based one. The

dynamic UI had to load all the widgets at runtime from a database, whereas the

code-based one is a compiled edition of which an instance can be created and

displayed on the screen. This test was conducted on a single machine running

Windows 7 with an Intel Core 2 Duo 2.93 GHz CPU and 4 GB of RAM. Here, we

should note that the initial code-based UI was developed in Windows Forms,

whereas the dynamic one uses the Windows Presentation Foundation (WPF).

We meant to use a different presentation technology in order to show the

portability of our approach.

Both the code-based and interpreted model-driven versions of the Claims UI

were sequentially loaded and closed 1000 times. The time, in milliseconds (ms),

was plotted on the graph illustrated in Figure 4.8.

The mean loading-time was 16.1 ms for the code-based UI and 12.46 ms for

the interpreted runtime model-driven one. We can notice that the dynamic UI

took slightly more time when it was loaded the first time (25 ms) then the effect

9 www.opendental.com

92 4.5 Chapter Summary

of the caching allowed a significant drop in the time. We noticed the

phenomenon of having a slightly faster (< 5 ms) loading time with dynamic UI.

We attribute this variation to the different rendering technology. Overall, we

can say that utilizing our dynamic approach does not incur any negative impact

on performance.

Figure 4.8: Performance Comparison between a UI based on Interpreted Runtime
Models and a Code-Based One

We did not perform any adaptation in this experiment in order to maintain

the same number of widgets when comparing the two user interfaces.

4.5 Chapter Summary

This chapter presented the Cedar Architecture for answering research

question Q1, which we established in Chapter 3. This architecture serves a

reference for stakeholders interested in developing adaptive model-driven user

interfaces for enterprise applications. It promotes the use of interpreted

runtime models and offers components for filling the gaps that we identified in

Chapter 2, such as: trade-off management, user-feedback, etc.

We provided a general explanation of the layers and components comprising

the Cedar Architecture. We also explained the steps it presents for adapting a

UI based on the context-of-use, either directly while the user is working, or

Chapter 4 – The Cedar Architecture: A Reference for Developing Adaptive Model-

Driven Enterprise Application User Interfaces 93

indirectly by proposing the adapted UI as an alternative. Furthermore, we

presented a general-purpose meta-model, which offers a high-level design for

supporting the development of adaptive model-driven UIs based on the Cedar

Architecture. The meta-model supports model-driven UI representation on

multiple levels of abstraction and multi-aspect adaptive behavior with trade-off

management capabilities for conflicting aspects.

Finally, we conducted an experiment, which showed that by employing data

caching, UIs that are based on interpreted runtime models can load as

efficiently as those that are based on compiled code. Therefore, runtime

performance is not a point of concern when using interpreted runtime models

for developing user interfaces.

In the next chapter, we present Role-Based User Interface Simplification

(RBUIS), an adaptation mechanism based on the Cedar Architecture. RBUIS

offers a technical realization for various high-level components of the Cedar

Architecture. It can be used for providing end-users with a minimal feature-set

and an optimal layout based on the context-of-use. We also presented a trade-off

analysis technique, which complements RBUIS and realizes the trade-off

management component of the Cedar Architecture.

 95

5

RBUIS: Simplifying Enterprise Application

User Interfaces through Engineering Role-

Based Adaptive Behavior

“Everything should be made as simple as possible, but not simpler.”

― Albert Einstein

This chapter presents the Role-Based UI Simplification (RBUIS) mechanism,

which is an adaptation method based on the Cedar Architecture. RBUIS can be

used for simplifying enterprise application UIs through engineering role-based

adaptive behavior. We define UI simplification as a mechanism for improving

usability through adaptive behavior by providing end-users with a minimal

feature-set and an optimal layout based on the context-of-use. RBUIS supports

UI simplification for an extensible number of adaptation aspects. Therefore,

trade-off analysis can help in managing conflicting adaptation choices when

multiple aspects simultaneously impact the same UI factors. Hence, this

chapter also presents an aspect-level trade-off analysis mechanism, which uses

goal models, Pareto optimality, and cost functions, complementing RBUIS.

5.1 Introduction

The functionality of software applications tends to increase with every

release thereby increasing the visual complexity. This phenomenon, referred to

as “bloatware” (McGrenere 2000), has a negative impact on usability especially

for end-users who do not require the complete UI feature-set. Also, end-users

can have different layout preferences. Both feature-set and layout related

choices, can be affected by several aspects such as: skills (Uflacker & Busse

96 5.1 Introduction

2007), culture (Reinecke & Bernstein 2011), etc. Although several approaches

have been proposed for adapting UIs to various contexts-of-use, little work has

focused on simplifying enterprise application UIs through engineering adaptive

behavior. This chapter presents Role-Based UI Simplification (RBUIS), a

mechanism for improving usability by providing end-users with a minimal

feature-set and an optimal layout based on the context-of-use. We define a

feature as a functionality of the software system and a minimal feature-set as

the UI sub-set with the least features required by an end-user to perform a job.

An optimal layout is the one that maximizes the satisfaction of the constraints

imposed by a set of aspects. An optimal layout is achieved by adapting concrete

widget properties such as: type, grouping, size, location, etc. RBUIS is based on

the Cedar Architecture, which we presented in Chapter 4, and implements

several of its high-level components.

Since multiple aspects can simultaneously impact the same UI factors, trade-

off analysis is vital for managing conflicting adaptation choices. Supple (Gajos

et al. 2010), for example, elicits a cost function for each end-user to select the

optimal UI factors (e.g., widget type). However, its trade-off analysis technique

only supports a fixed and limited number of adaptation aspects, namely vision

and motor impairment. Even though cost functions are essential for selecting

the optimal UI factors for each end-user, in some scenarios the end-users might

prefer certain aspects over others such as: mobility over detail or vision over

screen-size, depending on the changing context-of-use. Therefore, this chapter

also presents an aspect-level trade-off analysis technique, which complements

RBUIS, and supports an extensible number of adaptation aspects. This

technique can be parameterized with aspectual weights that are supplied by the

end-users through a feedback mechanism.

The contributions presented in this chapter, answer the following research

questions, which were established in Chapter 3:

Q2: What UI adaptation technique, based on the proposed reference

architecture (Cedar Architecture), can minimize the feature-set and optimize

the layout of enterprise application UIs according to the context-of-use for an

extensible number of adaptation aspects and factors, and support the addition

of both visual and code-based adaptive behavior as needed?

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 97

Q3: What trade-off management mechanism can support multi-aspect trade-off

analysis that works with the devised UI adaptation technique (Q2)?

Figure 5.1: Cedar Architecture Components that are realized by RBUIS

The parts of the Cedar Architecture (Chapter 4), which are labeled with

letters A to E in Figure 5.1, are realized by RBUIS as will be described in this

chapter. The database in the Adaptive Behavior and UI Models layer (A), stores

the UI models: task, AUI, and CUI. In RBUIS, this layer also stores role-task

assignments and RBUIS rules for feature-set minimization (Section 5.3), and

adaptive behavior workflows and scripts for layout optimization (Section 5.4).

The Adaptation Engine (B) minimizes the feature-set according to the task-role

assignments that were done on the task model (Section 5.3.3) and optimizes the

layout by executing the adaptive behavior workflows on the CUI model (Section

5.4.2). The Trade Off Manager (C) is realized by the trade-off analysis technique

presented in Section 5.6. The Feedback Evaluator (D1) and Feedback Monitor

(D2) are realized by RBUIS’s feedback mechanism, which is presented in

Section 5.5. In RBUIS, the Context Evaluator (E1) and Context Monitor (E2)

components simply check the roles of the logged-in user in order to offer the

98 1.1

relevant adaptations. The UIDL Converter, Caching Engine (client and server),

and UI Presenter components were realized in Chapter 4 to carry out the

performance evaluation that was presented in Section 4.4. The adaptation

procedure followed by RBUIS is as described in Section 4.2.4.

5.2 Role-Based User Interface Simplification (RBUIS)

To simplify UIs, we need to provide the end-users with a minimal feature-set

and an optimal layout based on the context-of-use. In the case of the feature-set,

the initial UI design contains all the features hence it is without constraints. Yet,

initial designer layout related choices such as: widget types and grouping have

to be the least constrained, for example in terms of the screen-size. The designers

devise the UI for the least constrained profile at design-time. Afterwards, a role-

based approach is used to simplify it at runtime based on the context-of-use.

Role-based modeling has been used for adapting the components of software

applications (Piechnick et al. 2012). However, our approach is oriented towards

merging access control with model-driven UIs to achieve UI simplification.

The standard for role-based access control (RBAC) can be used by enterprises

for protecting their digital resources (Ferraiolo et al. 2001). In RBAC, “users”

are assigned “roles”, which are in turn assigned permissions on “resources”. In

our case, the users are the enterprise employees logging into the system with

their accounts, and the resources that we want to apply roles to, are the UI

models and the adaptive behavior. We merged the role-based approach with UI

simplification to create Role-Based User Interface Simplification (RBUIS), in

the spirit of RBAC. In RBUIS, roles are divided into groups representing the

adaptation aspects based on which the UI will be simplified. RBUIS is applied

after deploying the software in the enterprise. Managing this process could be a

joint cooperation between personnel from the software company in charge of the

deployment process and the enterprise’s IT personnel.

RBUIS comprises the following elements, which support feature-set

minimization and layout optimization:

 Role-Based UI Models support feature-set minimization through role

assignment to task models for providing a minimal feature-set based on the

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 99

context-of-use. This approach allows a practical realization of the concept of

multi-layer interface design (Shneiderman 2003).

 Role-Based Adaptive Behavior supports layout optimization through role

assignment to workflows that represent adaptive UI behavior visually and

through code. The workflows are executed on the concrete user interface

(CUI) models in order to optimize the layout. The workflow-role assignment

specifies which workflows to execute for each group of end-users.

 User Feedback is supported for refining the adaptations if necessary, by

allowing the end-users to reverse feature-set minimizations and layout

optimizations, and to choose alternative layout optimizations when possible.

5.3 Minimizing the User Interface’s Feature-Set

The meta-model shown in Figure 5.2 depicts how RBUIS is applied to the task

model. The classes that have a white background color already appeared in the

general purpose meta-model illustrated by Figure 4.3 and Figure 4.4 in Chapter 4.

Figure 5.2: Meta-Model of Applying RBUIS to the Task Model

100 5.3 Minimizing the User Interface’s Feature-Set

We adopted the concept of multi-layer interface design for minimizing the

feature-set. This concept allows end-users to control different sub-sets of the UI

at any moment. For example, novice users could be given access to layer 1 and as

their expertise develops, they could gain access to the upper layers at any time.

RBUIS provides a practical approach for controlling the different UI layers.

5.3.1 Feature-Set Minimization with RBUIS

Applying RBUIS to task models can minimize the feature-set by revoking

access to Tasks based on Roles hence achieving a role-based multi-layer

interface design. Roles such as: novice/expert and cashier/accountant are allocated

to Role Groups such as: computer literacy level, job title, etc. Since we are initially

designing the UI for the least constrained profile, the default policy grants all

the Roles access to all the Tasks. This could be considered as a layer containing

all the features. Afterwards, access could be revoked by allocating roles to tasks,

thereby creating separate layers to which end-users could gain access based on

their roles. Since the End-Users can be allocated multiple Roles from the

existing Role Groups, priorities are used to provide enough flexibility for

specifying how roles override each other. Upon assigning the access rights to

block tasks based on roles, a property we call “concrete operation” can be used to

specify whether to make a task invisible, disable it, or fade it until first use. The

task model is mapped to the AUI model, which is in turn mapped to the CUI

model to hide, disable, or fade the relevant UI widgets.

As indicated in Chapter 4 (Section 4.3.2.1), we chose the ConcurTaskTrees

(Paterno 1999) notation for representing the task models. One advantage of

using this notation with RBUIS is its support of temporal constraints on the

task relationships. Bergh et al. (2010) indicated that these constraints can help

in determining the dependencies among tasks. To determine if simplifying a task

affects other tasks, we present the algorithm in Section A.3 of Appendix A.

5.3.2 Less Time Consuming Access Rights Allocation

Enterprise applications can encompass a large number of tasks, which are

used by hundreds of users. Therefore, we need to make the allocation of access

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 101

rights on the task models consume as little time as possible. Traditionally,

enterprise application users are allocated roles. This practice can be considered

as a positive starting point. We resort to the following points to minimize the

time taken to allocate roles to tasks in the task models:

 A default policy grants all the roles access on all the application’s task models,

hence making it only necessary to override this policy where access should

be revoked. Each task is implicitly allocated a fixed role called “All-Roles”,

which represents all the roles in the system and is granted access to execute

the task. Access to the task is revoked to all other explicitly assigned roles.

 Sub-tasks inherit the access rights of the parent tasks while maintaining the

ability to override these rights.

 In some cases, the same functionality is replicated in many places within the

application. Usually developers create visual components (CUI level), which

can be reused in different places. By making task models reusable within

one another, access rights allocated to a task model can roam with it

whenever it is used again, while maintaining the ability to override the

initial rights. This feature is illustrated in Figure 5.2 with the recursive

relationship “Is Embedded In” on the UI Model class.

 Rules can be defined and applied to multiple task models based on each

task’s properties such as: identifier, name, type, etc. RBUIS Rules (Figure

5.2) are defined in the form of conditions using SQL syntax. RBUIS Rules

are assigned the Task Models on which to execute, and the Roles for which

they apply. One basic example is revoking access of the role Cashier on all

interaction tasks containing the phrase “enter discount” in the task name.

5.3.3 Applying RBUIS to Task Models at Runtime

Based on the Cedar Architecture (Figure 4.1), the UI models are loaded on the

server and the adaptation engine applies RBUIS at runtime. To apply concrete

operations such as hide and disable on the CUI, the task model is mapped to

the AUI, which is in turn mapped to the CUI. A certain order should be followed

to perform the elimination since each end-user can be allocated multiple roles

102 5.3 Minimizing the User Interface’s Feature-Set

simultaneously. The meta-model, shown in Figure 5.2, allows the assignment of

priorities on different levels including: Role Group, Role, Task Role, and User

Role. Task-based assignments have a higher priority than rule-based ones

unless specified otherwise. The following example demonstrates the process of

managing priorities, assuming that they were set at the Task Role level:

 UserA: Novice, Manager

 TaskX: 1. All-Roles (Allow) 2. Accountant (Deny-Hide)

 3. Novice (Deny-Disable)

An excerpt of our algorithm is shown in Listing 5.1. The full version is

included in Section A.1 of Appendix A. Following this algorithm, UserA is

allowed to perform TaskX since the Manager role has the highest priority. In

contrast, if the Novice role had a higher priority than All-Roles, then UserA

would have been denied access to TaskX, hence disabling its CUI as indicated

by the concrete operation.

Listing 5.1: Feature-Set Minimization (Excerpt)

1. Simplify-Task (TaskID, UserRoles[], TaskRoles[], UIModel)

2. foreach ur in UserRoles // Determine the Primary Role

3. tr ← TaskRoles.GetRole(ur.RoleRef)

4. if tr = null then tr ← TaskRoles.GetRole(All-Roles)

5. ur.Priority ← tr.Priority;

6. UserRoles.OrderBy(Priority)

7. PrimaryRole ← UserRoles.First()

8. if PrimaryRole.RoleRef ≠ All-Roles

9. // Apply Concrete Operation to CUI

10. blkdAUI←GetBlckdAUI(TaskID, UIModel.TMToAUIMap)

11. blkdCUI←GetBlckdCUI(blkdAUI, UIModel.UIToCUIMap, UIModel.CUI)

12. foreach element in blkdCUI

13. switch PrimaryRole.ConcreteOperation

14. case Hide: element.Visible ← false; break;

15. case Disable: element.ReadOnly ← true; break;

16. case Protect: element.ReadOnly ← true;

17. element.MaskChar ← '*'; break;

18. case Fade: element.Opacity ← '30%'; break;

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 103

The running time of our algorithm is established to be polynomial: 𝑂 (𝑚 × (𝑛

× 𝑙 × 𝑝 × (2 × 𝑗 × log 𝑗 + 𝑘) + 𝑛)), where 𝑚 = number of task models, 𝑛 = num. of

tasks in a task model, 𝑗 = num. of user-roles, 𝑘 = num. of blocked CUI elements

for a task, 𝑝 = num. of parent tasks for a task, and 𝑙 = num. of task-roles.

5.3.4 Model Checking Using SQL

Since the access rights are being allocated by humans, model checking is

needed to ensure that critical constraints are not violated. This type of checking

allows our support tool to issue appropriate warnings and errors. Several

techniques exist for defining and evaluating constraints on models. For example,

the Object Constraint Language (OCL) can be used to define constraints on

UML diagrams. There are also several technologies that have been used for

model checking such as: Z3 (z3.codeplex.com), Formula (bit.ly/MSTFormula), etc. In our

case, we need to define constraints on task models represented by CTTs. Since

our approach is based on the Cedar Architecture, all the models are stored in a

relational database. Hence, model checking can be performed using SQL, which

is more familiar to many software developers and IT personnel than constraint

languages like OCL. The meta-model in Figure 5.2 supports model-checking using

Model Constraints, which are executed on Task Models. Following, is an example

of a constraint to which an SQL-based solution is provided in Listing 5.2.

Constraint: A sub-task should not be blocked for all the roles currently assigned

to end-users because it will not be accessible by any end-user in the system.

Listing 5.2: Task Model Constraint Example using SQL

With SelTasks as (Select TM.TaskModelID, TM.TaskModelName, TK.TaskID,

TK.TaskName From TaskModel as TM Inner Join TaskModelTask as TK On
TM.TaskModelID = TK.TaskModelID Where TaskModelID in (@ModelIDs)),

UserAccessOnTasks as (Select TaskModelID,TaskID, COUNT(case
UR.CanExecuteTask when 1 then 1 else null end) as CanExecuteCount From
SelTasks Cross Apply LoadSortedUserRoles(TaskModelID,TaskID) as UR Where
UR.UserRolePriority = 1 Group ByTaskModelID,TaskID)

Select SelTasks.* From SelTasks ST Inner Join UserAccessOnTasks UAT

On ST.TaskID = UAT.TaskID and ST. TaskModelID = UAT.TaskModelID Where
CanExecuteCount= 0

104 5.3 Minimizing the User Interface’s Feature-Set

Constraints are associated with task models through a system variable

(“@ModelIDs”). Predefined SQL functions such as “LoadSortedUserRoles” can

be used in model constraints and extended when necessary. In this case, the

function loads the user-identifiers and their assigned roles, and sorts them by

the priority of execution according to a certain task. The SQL statement returns

the tasks that are violating the constraint.

5.3.5 Feature-Set Minimization Example

The example shown in Figure 5.3 is part of a task model, which represents a

Customer Maintenance UI that is common in ERP systems.

Figure 5.3: Simplified Customer Maintenance Task Model

The lock-shaped buttons allow RBUIS to be applied on any task. In this case,

the tasks called Financial Information and Picture (encircled by a dashed line)

are marked as simplified, indicating that RBUIS has been applied. In the case

of the Financial Information task, the access rights will get inherited by its sub-

tasks. We considered a role called Cashier requiring a version of the UI showing

only the Name, Phone, and Address fields. This role allows end-users working

as cashiers, to enter the initial information for a new customer on the counter,

without having to handle additional details that can be added later. The initial

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 105

version of the FUI and the one simplified for the role Cashier are illustrated in

Figure 5.4a, and Figure 5.4b respectively. In this example, the concrete

operation in RBUIS was set to “Hide”, hence the widgets became invisible.

(a) Initial Fully-Featured UI Version

(b) Minimized Feature-Set UI Version for Role “Cashier”

Figure 5.4: Feature-Set Minimization of Customer Maintenance UI

106 5.4 Optimizing the User Interface’s Layout

5.4 Optimizing the User Interface’s Layout

In this section, we present our generic mechanism for devising adaptive

behavior that can be applied to the CUI model in order to optimize the layout.

Enterprise applications require an approach, which allows developers as well as

IT personnel to implement adaptive behavior. Our feature-set minimization

mechanism allows RBUIS to be applied by visually assigning roles to tasks in a

task model, and by composing code-based rules, which can be applied to

multiple task models. Similarly, our layout optimization mechanism allows the

definition of adaptive behavior using a mixture of visual and code-based

constructs embedded in Adaptive Behavior Workflows. The meta-model for

applying this mechanism on the CUI is illustrated in Figure 5.5. The classes

that have a white background color already appeared in the general purpose meta-

model illustrated by Figure 4.3 in Chapter 4.

Figure 5.5: Meta-Model for Applying RBUIS to the CUI using Workflows

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 107

5.4.1 Layout Optimization with RBUIS and Workflows

The representation of adaptive behavior has a great impact on the

extensibility of any adaptive system. Many adaptive UI state-of-the-art systems

employ an arbitrary design that hardcodes adaptation behavior within the

software application, thereby severely minimizing its reusability and

extensibility. A graphical tool was suggested for hiding the complexity of

defining UI adaptation rules (López-Jaquero et al. 2009). However, this tool

might not be able to handle all possible adaptation scenarios due to its limited

use of a high-level visual representation.

To balance between ease-of-use and flexibility, our approach combines high-

level adaptation operations and low level programming constructs by using both

visual and code-based representations. Workflows are not strange to enterprise

applications due to their use for devising customizable and reusable business

rules that can be separated from the software application’s code. With appropriate

tool support, workflows can also provide visual programming constructs such

as: control structures, error handling, etc. It is also possible to define code-based

adaptation operations, which can integrate within the visual workflows.

As depicted by the meta-model in Figure 5.5, our approach uses Adaptive

Behavior Workflows, which can encompass Adaptive Operations implemented

using both: (1) Visual Programming Constructs, and (2) Compiled Code Libraries

and Dynamic Scripts. The workflows are executed at runtime on the CUI Models

to perform the necessary adaptation.

To implement the workflows in practice, we are using the Windows Workflow

Foundation (WF), which is part of the .NET Framework. WF provides the

ability to visually design activity workflows using a rich set of constructs, which

can be saved in an XML-based format. The XML can be reloaded and executed

when an adaptation is needed. Furthermore, the supported constructs can be

extended through external compiled class libraries developed in C# or VB.NET.

We have used this capability to develop a construct that can be embedded in a

workflow for executing non-compiled script code. We currently support Iron

Python but it is possible to add other scripting or transformation languages

(e.g., XSLT) in the future.

108 5.4 Optimizing the User Interface’s Layout

5.4.2 Applying RBUIS at Runtime using Workflows

Layout optimization is also based on the Cedar Architecture (Figure 4.1).

After the feature-set is minimized, the adaptation engine executes the

workflows on the CUI. Afterwards, the FUI is transferred to the client machine

to be presented to the end-user. The process of selecting the workflows to be

applied on the CUI based on the end-user’s role is shown in Listing 5.3, through

an excerpt of our algorithm. The full version is included in Section A.2 of

Appendix A. In this excerpt, we assume that the priority is read from the Role

class (Figure 5.5). The running time of our algorithm is established to be

polynomial: 𝑂 (2 × 𝑚 × log 𝑚 + 2 × 𝑛 × log 𝑛), where 𝑚 = number of user-roles

and 𝑛 = number of workflows to be executed. This algorithm selects the

workflows to be applies merely based on a priority. A more advanced trade-off

management mechanism will be explained in the coming sections.

Listing 5.3: Layout Optimization (Excerpt)

1. Optimize-Layout (UserRoles[], Roles[], UIModel, LayoutID)

2. foreach ur in UserRoles // Determine the Primary Role

3. tr ← Roles.GetRole(ur.RoleRef)

4. if tr = null then tr ← Roles.GetRole(All-Roles)

5. ur.Priority ← tr.Priority;

6. UserRoles.OrderBy(Priority)

7. PrimaryRole ← UserRoles.First()

8. WorkflowsToExecute[] ← GetWorkflows(PrimaryRole, LayoutID)

9. WorkflowsToExecute.OrderBy(ExecutionOrder)

10. foreach workflow in WorkflowsToExecute // Execute Workflows

11. workflow.Execute(UIModel) // Execution Time Depends on Content

5.4.3 Layout Optimization Example

This example builds on the one presented in Section 5.3.5. We consider two

roles: Sales Officer and Novice. A Sales Officer end-user requires the fully-

featured UI illustrated in Figure 5.4a. On the other hand, a Novice end-user

requires layout optimizations, which make functions accessible through on-

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 109

screen buttons rather than a context-menu, and trading list-boxes for radio-

buttons to fit more items on the screen.

Figure 5.6: Layout Optimization Adaptive Behavior Workflow

The workflow illustrated in Figure 5.6, represents the adaptive behavior by

using the following three techniques:

 Visual programming constructs are used to substitute list-boxes with groups

of radio-buttons as shown in Figure 5.6a.

110 5.4 Optimizing the User Interface’s Layout

A “ForEach” loop is used to iterate around the UI widgets, which are

represented in a CUI model and accessed through a helper class called LMgr

(layout manager). An “If” condition checks whether a CUI element is a simple

selection widget (e.g., combo-box, list-box, etc.), in order to change its Control

Type ID property to Radio Group.

 An Iron Python script is called to set the accessibility of functions to High as

shown in Figure 5.6b.

The script name is selected in addition to the name of the method to be

triggered, which in this case is: Adapt UI. This method is passed a value of

High to its Accessibility parameter. The workflow internally triggers the Iron

Python script shown in Listing 5.4.

Listing 5.4: Iron Python Script for Changing the Accessibility of Functions

1. import sys

2. def AdaptUI(UIModelMgr, Accessibility):

3. UIModelMgr.SetPropertyValue("AccessibilityOfFunctions",
Accessibility)

 A C# algorithm is called for refitting the UI layout as shown in Figure 5.6c.

Figure 5.7: Optimized Layout of Customer FUI

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 111

The optimized UI shown in Figure 5.7, displays the functions for the image

picture-box (add, remove, etc.) and address text-area (bold, italic, etc.) as

buttons on the screen. In contrast, the version in Figure 5.4a provided these

functions through a context-menu. Also, the payment terms list-box was

substituted with a radio-button-group, which displays more items on the screen.

5.5 End-User Feedback for Refining the Adaptations

Keeping the end-users involved in the UI adaptation process, provides

awareness of the adaptation decisions made by the system and the ability to

override them when necessary. Therefore, RBUIS implements the feedback

components of the Cedar Architecture (Figure 4.1). The final UI is transmitted

to the client alongside a list of the applied simplification operations. We denote

such operations by the UML interface called Simplification shown in both meta-

models (Figure 5.2 and Figure 5.5). Our approach has two types of operations:

feature-set minimization and layout optimization, identified by the Role Ref and

Task ID / Workflow ID attributes respectively. The meta-model in Figure 5.2

shows Reason Message and Is Reversible by User as attributes of the Simplification

UML interface (same for Figure 5.5). These attributes indicate the reason

behind the simplification and whether it its reversible by the end-users.

Figure 5.8: User Feedback Interface Showing Simplification Operations

112 5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

Adapted UIs show a chameleon icon in their top right corner as illustrated in

Figure 5.4b, and Figure 5.7. The end-users can click this icon to display a list of

the applied adaptation operations similar to the one illustrated in Figure 5.8.

Afterwards, the end-users can uncheck any reversible operation (feature-set

minimization or layout optimization) and apply the changes for one time only or

for future use as well. Furthermore, with layout optimizations, the end-users

can choose from possible alternatives. This is achieved by assigning workflows

to Workflow Groups as shown by the meta-model in Figure 5.5. Workflows in

the same group could serve as alternatives. For example, a group can

encompass several workflows each of which adapts the selection widget to one

of the following types: combo-box, list-box, radio-buttons, etc.

After the end-user applies the changes, a request is sent to the server to re-

simplify the UI and exclude the operations that were unchecked. In case the

end-user decides to keep the changes for future use, the feedback would get

stored, and he or she will gain access to an alternative version of the UI. The

example operations illustrated in Figure 5.8 are related to the simplified UI in

Figure 5.4b. The operations inform the end-user that the UI parts pertaining to

the financial information and image were eliminated because they are unused

by his or her role (Cashier). In this example, if the end-user unchecks both

operations and applies the changes, the simplified UI in Figure 5.4b will revert

back to the original version in Figure 5.4a. If an operation is set to be

irreversible by users, for example due to security reasons, the check-box would

become disabled and a message provides a notification of the reason. If a

feature depends on other disabled features, the end-user is informed that these

features should be enabled as well. The dependency is determined from the CTT

temporal operators, and is defined in the meta-model shown in Figure 5.2

through the recursive relationship Depends On in the Task class.

5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

Supporting trade-off analysis among several potentially conflicting aspects

affecting the same UI factors helps in producing optimal UIs in an ever-changing

context-of-use. The trade-off analysis technique presented in this section is a

realization of the Cedar Architecture’s Trade-off Manager (Figure 4.1).

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 113

Figure 5.9: Business Partners Mobile User Interface based on the SAP Business One
ERP Mobile Application (a) (Detail > Mobility) = Low Accessibility of Functions,

Medium Font-Size, High Information Density (b) (Mobility > Detail) = High
Accessibility of Functions, Large Font-Size, Low Information Density

Enterprise applications contain many UIs, which can be adapted based on

multiple aspects. The example illustrated in Figure 5.9, presents two versions of

a business partner’s mobile UI. When the end-user is in a state of low mobility

such as: sitting or standing, the UI version shown in Figure 5.9a, provides more

details while maintaining readability. Yet, in a state of higher mobility such as:

walking or running, the UI version shown in Figure 5.9b, provides better

readability and easier control.

By supporting aspect-level trade-off, innovative feedback techniques such as

accelerometer-based gestures could be used on a mobile phone or a tablet for

augmenting the importance of one aspect over another hence prompting the UI

to adapt to the changing context-of-use. On a desktop computer, the end-users

can use sliders for changing the level of importance of each adaptation aspect.

5.6.1 Trade-Off Analysis Technique

Multi-aspect trade-off analysis is required when multiple adaptation aspects

simultaneously impact the same UI factors. We rely on goal models, as shown

by the meta-model in Figure 4.3 (Chapter 4), to represent aspects and factors as

goals and operations. Crisp goals are simply sorted by priority and the top goal

is fulfilled by applying the adaptations relevant to the operations associated

with it. This section focuses on fuzzy goals, for which a combination of Pareto

114 5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

analysis and cost functions is used to determine the adaptations to be applied.

Using preferences that compare situations under Pareto optimal conditions is

considered promising for performing trade-off analysis in self-adaptive systems

(Cheng et al. 2009). Pareto analysis and cost functions can compute trade-offs in

multi-dimensional optimization problems and have been used in domains such

as: economics and computer communications. The following example shows how

we apply these concepts to adaptive UIs.

Let us consider a basic enterprise application scenario where trade-off

analysis is required among three adaptation aspects: visual impairment,

computer literacy, and device. In this example, we shall use three sub-aspects:

medium vision user (MVU), novice user (NVU), and tablet user (TBU). We

consider these adaptation aspects to have an impact on four UI factors:

accessibility of functions (AF), widget grouping (WG), selection widget (SW),

and font-size (FS). We should note that our approach is capable of

accommodating more adaptation aspects and factors.

Figure 5.10: Multi-Aspect/Factor Adaptive UI Goal Model Example

This scenario can be represented by the goal model shown in Figure 5.10. We

should note that the goal models, which we adopted for representing UI

adaptation aspects and factors, are not meant to be used by UI designers. These

models will be used by technical stakeholders, for example IT personnel, in the

post deployment phase of enterprise applications.

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 115

The goal model in Figure 5.10 has costs associated with each fuzzy-

goal/operation as represented by the cost matrix in Table 5.1. This matrix is

populated with a cost for each adaptation aspect/factor combination. For

example, end-users with medium vision prefer larger font-sizes hence the costs

under the font-size factor were given the following values: Large = 1, Medium =

2, and Small = 3. Gajos & Weld (2005) suggested preference elicitation for

populating such costs. We think that by combining preference elicitation with

expert knowledge and data from studies, the time for populating the matrix

could be reduced and the quality of its values could improve. Yet, our focus here

is not on the means of populating the costs but rather on the technique for

performing the trade-off analysis.

Table 5.1: Cost Matrix Example for Multi-Aspect Trade-Off Analysis

The number of possible sets of factors resulting from the cost matrix is given

through a Cartesian product as follows:

| | ()

Equation 5.1: Cartesian Product in a General Form

 Medium Vision User

(MVU)

Novice User

(NVU)

Tablet User

(TBU)

Accessibility

of Functions

(AF)

Low 3 3 1

Medium 2 1 2

High 1 2 3

Widget

Grouping

(WG)

Tab-page 2 2 1

Group-box 1 1 2

Sub-window 3 3 3

Selection

Widget

(SW)

Combo 2 3 1

List 3 2 2

Radio 1 1 3

Font-Size

(FS)

Small 3 1 1

Medium 2 1 2

Large 1 1 3

116 5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

The Cartesian product of the factors shown in Table 5.1 is calculated as follows:

 | |

 | | | | | | | |

 Sets of Factors

Equation 5.2: Cartesian Product of Example Adaptation Factors

The cost: () is calculated per adaptation aspect and set-of-factors ,

 as follows, where 𝑛 is the number of factors in :

 () ∑

Equation 5.3: Cost as a Function of an Adaptation Aspect and a Set of Factors

For example, the set of adaptation factors: Accessibility of Functions =

Medium, Widget Grouping = Group-box, Selection Widget = Radio, and Font-

Size = Small, has the following costs per adaptation aspect: Cost (Medium-

Vision User) = 7, Cost (Novice User) = 4, Cost (Tablet User) = 8.

To find the optimal sets of factors from which one set can be selected, the

Pareto Front is calculated based on: (). We rely on an existing MATLAB

algorithm (Cao 2008), which works on the entire design space and performs the

calculation in r × n × m for an n × m problem, where r is the size of the final

Pareto Front. Other existing approaches that use machine-learning to calculate

the Pareto Front by sampling a fraction of the design space can also be employed

with significantly large problems. However, considering the number of aspects

and factors that could be encountered in enterprise application UIs, the algorithm

that we employed is efficient enough. Using the cost matrix from Table 5.1 as an

example, this algorithm determined the Pareto Front in a few milliseconds.

In our running example, the Pareto Front includes 11 Pareto optimal

elements (sets of factors) out of the initial 81 produced by the Cartesian

product. The result is illustrated in Figure 5.11, which depicts the elements on

the Pareto Front as squares and the ones outside it as circles.

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 117

Figure 5.11: Pareto Front for Multi-Aspect Trade-Off

The Pareto Front represents interesting alternatives. However, when it is time

to select one element (set of factors); additional information is given as a cost

function that could be applied to all the Pareto Optimal elements to determine

the one with the lowest cost. The cost function is given as follows, where is

the number of aspects, is an element on the Pareto Front, and is the

weight given by the end-user to an aspect :

 () ∑
 ()

Equation 5.4: Cost as a Function of a UI and an Element on the Pareto Front

A lower weight indicates that the aspect is more important. Hence, the

weights are used with a division operation to decrease the cost of a set of factors

 for the aspects with the lower importance in favor of those with the higher

one. Initial weights supplied to the cost function, can be specified on the

operations in the goal model. Each goal model will have a cost function for

calculating a UI’s cost with respect to a set of operations. End-users can augment

the preference of one aspect over another using a feedback mechanism, for

118 5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

example mobile gestures as shown in Figure 5.9. Alternatively, since the Pareto

analysis minimizes the number of interesting UIs, end-users can explore these

UIs visually and select the one that is the most satisfactory. Both approaches

allow the end-users to evaluate the fully-adapted UI instead of just one factor

against another. Such evaluation is considered useful for assessing adaptations

that affect the global UI design because it presents the end-users with a UI

showing the final and complete set of adaptations (Gajos & Weld 2005).

Determining the Pareto front before finding one optimal solution provides

end-users with the ability to explore a small set of Pareto optimal UIs. The cost

matrix can be populated with costs based on data from different sources such

as: user-models obtained from on studies, expert knowledge, etc. Exploring the

Pareto optimal UIs serves as a means of feedback for end-users to override

these costs. If the costs were to be applied as is, by directly providing the end-

users with the optimal UI, the Pareto front calculation can be skipped and the

second cost function in Equation 5.4 would be directly applied to the sets of

factors in the Cartesian product.

An excerpt from our algorithm for analyzing multi-aspect trade-offs before

adapting the UI, is presented as pseudo-code in Listing 5.5. The running time of

the algorithm is established to be polynomial: O((m × n) + j + (k × m × p) + (r ×

m × s) + (l × s) + l × log l), where m = number of aspects, n = number of

operations related to aspects, j = number of distinct factors, k = sets of operations

in Cartesian product, p = number of operations in a Cartesian product set of

operations, l = number of elements on the final Pareto Front, and s = number of

costs associated with an element on the Pareto Front.

The complexity of the user interface does not affect the scalability of this

algorithm (Listing 5.5) considering that it only operates on the goal model. The

part that is affected by the UI’s complexity is the execution of the workflows on

the CUI models. The performance and scalability of the workflows were

measured with complex real-life enterprise applications user interfaces and are

presented as part of the evaluation in Chapter 7.

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 119

Listing 5.5: Analyze Multi-Aspect Trade-Offs and Adapt UI (Excerpt)

1. AdaptUI(GoalModel, Aspects[], CUIModel) {

2. //Populate the Cost Matrix from the Goal Model

3. var costMatrix

4. foreach a in Aspects {

5. operations[] ← GetOperations(GoalModel, a)

6. foreach(o in operations) { costMatrix.Add(a, o, o.getCost(a)) }

7. }

8. //Group the Operations by Adaptation Factor

9. var operations ← costMatrix.getOperations()

10. distinctFactors[] ← operations.Select(o => o.Factor).Distinct()

11. List<[]> operationsByFactor

12. foreach(f in distinctFactors) {

13. operationsByFactor.Add(operations.Select().Where(

14. o => o.Factor = f)) }

15. //Compute the Cartesian Product

16. List<[]>cartesianProduct ← GetCartesianProduct(operationsByFactor)

17. //Compute Aspect Costs for each Set of Factors in Cartesian Product

18. var aspectCosts

19. foreach(setOfOperations in cartesianProduct) {

20. foreach a in Aspects {

21. aspectCost ← 0

22. foreach(o in setOfOperations) { aspectCost += o.GetCost(a) }

23. aspectCosts.Add(a,setOfFactors,aspectCost)

24. }

25. }

26. var optimalUI, setsOfFactors[] ← cartesianProduct

27. if (FeedbackIsRequired) { //Compute the Pareto Front

28. setsOfFactors ← GetParetoFront(aspectCosts) }

29. //Compute Costs of Pareto Optimal Elements using Aspect Weights

30. foreach(e in setsOfFactors) {

31. foreach(aspectCost in e.AspectCosts)

32. {e.Cost += aspectCost.Cost/Aspects.getWeight(aspectCost.Aspect)}

33. }

34. if (FeedbackIsRequired) { //Ask the User to Select an Optimal UI

35. optimalUI ← PresentUserWithUIVariations(setsOfFactors) }

120 5.6 Managing Trade-Offs in Multi-Aspect Adaptive UIs

36. else { //Get the Element with the Lowest Cost

37. optimalAdaptation ← setsOfFactors.OrderBy(e => e.Cost).First();

38. //Execute the Adaption Workflows on the CUI Model to Adapt the UI

39. adaptationWorkflows[] ← LoadWorkflows(optimalAdaptation.Factors)

40. optimalUI ← CUIModel

41. foreach(w in adaptationWorkflows) { w.Execute(optimalUI) } }

42. }

5.6.2 Multi-Aspect Trade-Off Analysis Example

The Pareto-optimal sets of factors, which we obtained from calculating the

Pareto Front depicted in Figure 5.11, are listed in Table 5.2. The costs in the

columns representing the aspects: Medium Vision User (MVU), Novice User

(NVU), and Tablet User (TBU), were calculated using Equation 5.3.

Table 5.2: Pareto Optimal Sets of Factors and their Costs for the Adaptation Aspects

Consider the three scenarios shown in Table 5.3 as an example. The cost

function from Equation 5.4 is applied to select the most optimal set of factors for

each one using the weights in Table 5.3 and the sets of factors from Table 5.2.

Selection

Widget

Widget

Grouping

Font-

Size

Access. of

Functions

Medium

Vision User

Novice

User

Tablet

User

(SW) (WG) (FS) (AF) (MVU) (NVU) (TBU)

1 Radio Group-box Small Medium 7 4 8

2 Radio Group-box Medium Medium 6 4 9

3 Radio Group-box Large Medium 5 4 10

4 Radio Tab-page Small Medium 8 5 7

5 Combo Group-box Small Medium 8 6 6

6 Combo Group-box Medium Medium 7 6 7

7 Combo Group-box Large Medium 6 6 8

8 Radio Group-box Large High 4 5 11

9 Combo Tab-page Small Medium 9 7 5

10 Combo Group-box Large High 5 7 9

11 Combo Tab-page Small Low 10 9 4

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 121

Table 5.3: Three Example Scenarios with Different Weights for the Adaptation Aspects

The costs of the sets of factors for each adaptation scenario are shown in

Table 5.4. We can see that set of factors 8 (radio, group-box, large, high) is the

most optimal for scenarios S1, as for scenario S2 both sets 9 (combo, tab-page,

small, medium) and 11 (combo, tab-page, small, low) provide optimal results,

and for scenario S3 set 3 (radio, group-box, large, medium) is optimal.

Table 5.4: Pareto Optimal Sets of Factors and their Costs for Three Scenarios
(Showing the Lowest Costs in Dark Grey)

Consider as an example a UI common in ERP systems, for maintaining bank

account information. The algorithm adapted this UI according to the optimal

sets of factors indicated in Table 5.4 for scenarios S1, S2, and S3. The adapted

 Weight of Adaptation (WAk from Equation 5.4)

Scenario
Medium Vision User

(MVU)

Novice User

(NVU)

Tablet User

(TBU)

S1 1 2 3

S2 3 3 1

S3 1.5 2.5 2

Selection

Widget

Widget

Grouping
Font-Size

Access. of

Functions

(SW) (WG) (FS) (AF) S1 S2 S3

1 Radio Group-box Small Medium 11.66 11.66 10.26

2 Radio Group-box Medium Medium 11 12.33 10.1

3 Radio Group-box Large Medium 10.33 13 9.93

4 Radio Tab-page Small Medium 12.83 11.33 10.83

5 Combo Group-box Small Medium 13 10.66 10.73

6 Combo Group-box Medium Medium 12.33 11.33 10.56

7 Combo Group-box Large Medium 11.66 12 10.4

8 Radio Group-box Large High 10.16 14 10.16

9 Combo Tab-page Small Medium 14.16 10.33 11.3

10 Combo Group-box Large High 11.5 13 10.63

11 Combo Tab-page Small Low 15.83 10.33 12.26

122 5.7 Refitting the UI’s Layout After Adaptation

UI versions are shown in Figure 5.12. One can see that changing the weights

can cause a small change (e.g., S1 versus S3) or a large one (e.g., S1 versus S2).

Figure 5.12: Excerpt from a Bank Account Maintenance UI Example with Layout
Adaptation Based on Multiple Aspects (Vision, Device, and Computer Literacy)

Affecting Several Factors (Accessibility of Functions, Widget Grouping, Selection
Widget, and Font-Size) with Multi-Aspect Trade-Off: (S1) Medium Vision > Novice >

Tablet, (S2) Tablet > (Medium Vision = Novice), (S3) Medium Vision > Tablet > Novice

5.7 Refitting the UI’s Layout After Adaptation

Adaptive UI behavior such as widget hiding and substitution could leave

gaps and deformations in the layout, which are not aesthetically desirable and

could increase the navigation time. We required a mechanism to maintain

plasticity, denoting the UI’s ability to adapt to the context-of-use while

preserving its usability (Coutaz 2010).

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 123

Figure 5.13: UI Refitting Example Using Relative Positioning
(a) Initial UI, (b) Minimized Feature-Set UI that Hides Widgets, and (c) Refitted Layout UI

We devised an algorithm for refitting the layout of an adapted UI based on

the initial design choices made by UI designer. This algorithm fills the gaps and

adjusts the widgets’ positions based on their new sizes and initial locations

chosen by the UI designer. For example, upon eliminating parts of the UI

shown in Figure 5.13a to minimize its feature-set for a particular context-of-use

as shown in Figure 5.13b, the layout refitting algorithm is responsible for

removing the gaps. The example illustrated in Figure 5.13c shows how the

widgets are pushed upwards beneath the closest widget.

124 5.8 Discussion

Listing 5.6: Algorithm for Refitting the Layout of an Adapted UI (Excerpt)

1. RefitTop(Controls [], StartingTop = 5) {

2. //Divide the user interface widgets into lines

3. List<[]> lines ← GetControlLines(Controls);

4. if (lines.Count() = 0) { return; }

5. //Set the top position of the widgets in the first line

6. foreach (control in lines[0]) { control.Top ← StartingTop; }

7. //Set the top position of the widgets in the remaining lines
 //based on the closest widgets in the line above

8. for (counter = 1; counter < lines.Count(); counter++) {

9. foreach (control in lines[counter]) {

10. reverseLineCounter ← counter -1, ctrsAbove [];

11. while (ctrsAbove.Count() = 0 && reverseLineCounter >= 0) {

12. ctrsAbove ← select l from lines[reverseLineCounter]

13. where (l.Left > control.Left - l.Width &&

14. l.Left < control.Left + l.Width)

15. orderby l.Height descending;

16. reverseLineCounter--;

17. }

18. if (ctrsAbove.Count() > 0) {

19. ctrAbove ← ctrsAbove.First();

20. control.Top ← ctrAbove.Bottom + widgetMargin; }

21. else { control.Top ← StartingTop; }

22. }
23. }
24. }

The part of our algorithm that pushes the widgets upwards is shown in

Listing 5.6. The CUI controls are split into ordered lines and each widget is

moved beneath the widget above it the previous line. We also created a similar

algorithm for pushing the widgets to the left-hand side in order to fill the gaps.

5.8 Discussion

The Role-Based User Interface Simplification (RBUIS) mechanism provides a

technical solution for minimizing the feature-set and optimizing the layout of

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 125

enterprise application UIs. It becomes part of a general purpose UI adaptation

solution, which can be accessed by enterprise applications using an API that

connects to a web-service. RBUIS answers research question Q2. It allows the

definition of adaptive UI behavior both visually, using role assignments and

workflows, and through code, using rules and scripts. Using the Cedar

Architecture as a reference allows RBUIS to benefit from interpreted runtime

models, which can support more advanced adaptations.

RBUIS fulfills the criteria we established in Chapter 2 (Table 2.2) for

evaluating the state-of-the-art. It supports direct and indirect adaptation,

adopts interpreted runtime models as a modeling approach, and supports the

levels of abstraction suggested by CAMELEON. RBUIS supports extensible

visual and code-based adaptive behavior. For example, layout optimization

adaptive behavior can be represented by dynamic workflows, which can

incorporate both visual and code-based programming constructs. RBUIS

implements the trade-off analysis and user-feedback components proposed by

the Cedar Architecture (Figure 4.1). It also supports the extension of adaptation

aspects and factors using goal models. The scalability of the algorithms behind

RBUIS was evaluated using a complexity analysis. In Chapter 7, we shall show

how RBUIS can be integrated into existing systems and further demonstrate its

scalability by applying it to real-life enterprise application UIs and load-testing

its web-service.

The trade-off management technique that we presented for managing multi-

aspect trade-offs answers research question Q3. As we mentioned in the

literature review conducted in Chapter 2, there are existing techniques for

adaptive UIs that do not consider trade-off management and others that

perform it using cost functions for a limited and fixed number of aspects. A

comparison between existing works and our trade-off management mechanism

gives our approach the following advantages:

 Allow the cost function to accommodate an extensible number of adaptation

aspects with weights that can be adjusted for specific tasks in evolving

contexts-of-use: The basic example shown in Figure 5.9 demonstrates how

the importance of certain aspects could change for the same end-user and UI

when the context-of-use changes.

126 5.8 Discussion

 Allow the end-users to explore a minimal set of interesting UIs: Applying a

cost function to the sets of factors could yield several possibilities with close

costs. We use Pareto analysis to give end-users the option of exploring a

small set of Pareto optimal UIs.

 Allow easier high-level adaptation especially on hand-held devices: This

ability is achieved by enabling the end-users to supply aspect weights through

innovative means such as accelerometer-based gestures (Figure 5.9).

 Support both crisp and fuzzy adaptation goals: For example, UI security can

be represented as a crisp goal fulfilled by a Boolean operation indicating

whether or not a widget is visible, and usability could be represented by a

set of fuzzy goals such as the ones depicted by the goal model in Figure 5.10.

Fully-automated UI generation, such as the approach used by Supple (Gajos

et al. 2010), can degrade performance due to the need to explore all possible

widget positions. On the other hand, manual approaches that require

developing and maintaining multiple CUI versions are adopted in some

commercial ERP systems such as SAP (Synactive GmbH 2010) but can be time

consuming in terms of both development and maintenance. Our adaptation

approach creates a balance between fully-automated UI generation and manual

adaptation. It allows the definition of adaptive behavior, such as workflows,

which can be applied to multiple UIs. Also, it automatically refits the adapted

UI layout based on information such as the widgets’ positions, from the initial

design created by the UI designer.

We should note that trade-off management does not provide optimal choices

for all UI factors. By nature trade-off management is a solution for a selecting

an optimal combination of UI factors. Hence, some UI factors will be the most

optimal while others are bound to be less optimal in case an end-user has

contradicting preferences. For example, if an end-user prefers to have a large

font-size and at the same time prefers the widgets to be grouped using group-

boxes on the same page, the UI might have to scroll.

A limitation in the trade-off management technique is that we did not

explore the various means for populating the cost matrix. However, the

literature already presents different methods such as: user studies, expert

knowledge, and preference elicitation, which could be used for obtaining such

Chapter 5 – RBUIS: Simplifying Enterprise Application User Interfaces through

Engineering Role-Based Adaptive Behavior 127

costs. We think that a combination of these methods could potentially make the

costs more accurate.

5.9 Chapter Summary

Role-Based UI Simplification (RBUIS) is a mechanism based on the Cedar

Architecture for improving usability by providing end-users with a minimal

feature-set and an optimal layout based on the context-of-use. RBUIS answers

research question Q2. It presents meta-models and algorithms for supporting

feature-set minimization and layout optimization for an extensible number of

adaptation aspects and factors. RBUIS also supports the addition of adaptive

behavior as needed visually in the form of role-assignments to task models and

adaptive-behavior-workflows, and through code by using rules and scripts. End-

users are given a feedback mechanism, which allows them to undo adaptations

that were presented by the system or choose alternative ones when possible.

A trade-off management technique was also presented to answer research

question Q3. This technique complements RBUIS by managing multi-aspect

trade-offs using a combination of goal models, Pareto optimality, and cost

functions. A detailed example was given to demonstrate the applicability of the

technique and its advantages over existing solutions were discussed.

The algorithms of RBUIS and its trade-off analysis technique were shown to

be polynomial through a complexity analysis. A layout refitting algorithm was

also presented for eliminating gaps, which might appear in the user interface

after it gets adapted.

In the next chapter, we present our integrated development environment

(IDE) Cedar Studio, which supports the development of adaptive model-driven

enterprise application UIs using RBUIS and following the Cedar Architecture.

Cedar Studio offers stakeholders like software developers and IT personnel,

with the necessary tools for creating and maintaining artifacts such as UI

models and adaptive behavior.

 129

6

Cedar Studio: An IDE Supporting the

Development of Adaptive Model-Driven

User Interfaces for Enterprise Applications

“If the only tool you have is a hammer, you tend to see every problem as a nail.”

―Abraham Maslow

Tools are necessary for supporting stakeholders interested in developing

adaptive model-driven user interfaces. Enterprise applications in particular,

require a tool that can be used by different stakeholders such as: software

developers and IT personnel, during the development and (post)deployment

phases. This chapter presents Cedar Studio, an integrated development

environment (IDE) for devising adaptive model-driven UIs using RBUIS, which

is based on the Cedar Architecture. Cedar Studio provides visual-design and

code-editing tools for creating and maintaining artifacts such as UI models and

adaptive behavior. It also provides the means for testing the UI adaptations.

6.1 Introduction

As we demonstrated in Chapters 4 and 5, the model-driven approach to UI

development can serve as a basis for devising adaptive enterprise application

UIs. This approach offers the possibility of applying different types of

adaptations on the various levels of abstraction. However, practically

implementing adaptive model-driven UIs requires tools that support the

creation and maintenance of UI models and adaptive behavior. Existing tools

lack many features required for supporting the development of adaptive model-

driven enterprise application UIs. From a model-driven engineering perspective,

130 6.1 Introduction

such tools should support the modeling, generation, and synchronization of all

the UI levels of abstraction. Providing the ability to devise the adaptive

behavior both visually and through code, allows such tools to support software

developers as well as IT personnel. Furthermore, offering an IDE style UI could

provide the necessary ease-of-use for managing the complex user interface and

adaptive behavior artifacts of large-scale enterprise applications.

Cedar Studio is an integrated development environment (IDE), which

supports the development of adaptive model-driven enterprise application user

interfaces using RBUIS and is based on the Cedar Architecture. As we

indicated in Chapter 4, UI adaptation techniques based on the Cedar

Architecture are offered as a service, which can be consumed by Cedar Studio

and technology specific APIs. Therefore, Cedar Studio can connect to the server-

side layers, through a web-service, for managing the artifacts stored in the

relational database on the UI Models and Adaptive Behavior layer (Figure 4.1).

The adaptations supported by Cedar Studio focus on UI simplification, which

is offered by the RBUIS mechanism presented in Chapter 5. Tool support is

offered for the parts of the Cedar Architecture and RBUIS, which are illustrated

by Figure 6.1.

Figure 6.1: Parts of Cedar Architecture and RBUIS Supported by Cedar Studio

Cedar
Architecture

(Chapter 4)

UI Models

Task Model

AUI

CUI

RBUIS
(Chapter 5)

Feature-Set
Minimization

Role-Task
Assignment

RBUIS Rules

Model
Checking

Layout
Optimization

Workflows

Scripts

Trade-Off
Management

Goal
Models

Cost
Matrices

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 131

Cedar Studio provides software developers and IT personnel access to all the

visual-design and code-editing tools in one place. It supports visual-design tools

for the following artifacts: (1) task models (Figure 4.5), (2) domain models, (3)

abstract UI (AUI) models (Figure 4.6), (4) concrete UI (CUI) models (Figure

4.7), and (5) goal models (Figure 5.10). It also supports automatic generation

and synchronization between various UI levels of abstraction, and offers the

possibility of making manual changes at any level. For example, the AUI can be

generated from the task model and the CUI can be generated from the AUI.

A set of visual-design and code-editing tools, which are necessary for

implementing adaptive UI behavior, are provided by Cedar Studio. These tools

support: (1) visual adaptive-behavior-workflows (Figure 5.6) and (2) dynamic

scripts for optimizing a UI’s layout (Listing 5.4); (3) visual role-assignments

(Section 5.3.2) and (4) code-based rules (Section 5.3.2) for minimizing a UI’s

feature-set to a particular context-of-use; and (5) SQL-based model-constraints

for verifying manually created models (Section 5.3.4).

Cedar Studio can be used during the development and (post)deployment

phases of a software application’s lifecycle. The UI models are created at

development time and the adaptive UI behavior is added at deployment time

and can be modified at a later stage according to the needs of each enterprise.

Cedar Studio answers research question Q4, which we established in

Chapter 3 as follows:

Q4: What integrated development environment can help software developers

and IT personnel in developing and maintaining model-driven enterprise

application UIs and adapting them with RBUIS?

132 1.1

6.2 Design Tools for User Interface Models

This section describes the design tools offered by Cedar Studio for supporting

the creation and maintenance of the different UI models (task, AUI, and CUI).

6.2.1 Task Models

The design tool shown in Figure 6.2 supports visual composition of task

models based on the ConcurTaskTrees (CTT) notation.

Figure 6.2: Task Model Design Tool

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 133

The importance of the task-model design tool is that it allows UI designers to

visually design task models and allocate roles to them using the dialog shown in

Figure 6.3, while maintaining the ability to allocate roles through more general

code-based rules using the code editor shown in Figure 6.4. This visual and

code-based combination for applying RBUIS in enterprise scenarios enhances

the expressive match denoting the closeness between the means for applying

design choices and the problem at hand (Olsen,Jr. 2007).

Figure 6.3: Visual Role Allocation

The task-model design-tool supports a tree layout algorithm, which can

automatically adjust the presentation of large task models. Visual and code-

based support is provided for the simplification process through role allocation

to tasks. The lock-shaped button next to each task (Figure 6.2), allows a visual

allocation of access rights using the UI shown in Figure 6.3. A default policy

(“All-Roles”) is implicitly assigned to grant access to all the roles on any given

task (Section 5.3.2). This policy can be overridden by explicitly assigning roles

from different groups (Figure 6.3a) to each task. The concrete operation (e.g.,

hide, disable, etc.) and the ability to reverse it by the end-user are specified for

each role (Figure 6.3b). A task can inherit or override roles assigned to its

134 6.2 Design Tools for User Interface Models

parent task (Figure 6.3c). The order of each role can be changed to indicate its

priority. The priority source can be explicitly indicated (Figure 6.3d).

The allocation of roles to tasks can also be done through SQL-based rules.

These rules are written in the form of an SQL condition (RBUIS Rules in Section

5.3.2) conforming to the meta-models we presented in Chapters 4 and 5. This

condition is assigned roles and allocated to the task models on which it should

be executed. Cedar Studio provides a code-editor for these rules and supports

the ability to validate the SQL syntax and display errors in an error list.

Figure 6.4: RBUIS Rules Code Editor

Model checking is required due to possible human errors in the allocation of

roles to tasks (Section 5.3.4). Cedar Studio provides the code-editor shown in

Figure 6.5 to support the composition of SQL-based model-checking constraints.

A checklist allows the visual-assignment of these constraints to the task models

on which they should execute by default. The erroneous tasks returned by the

SQL statement are displayed in the error list to permit the technical

stakeholders to identify them and fix the assignments in the appropriate task

model.

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 135

Figure 6.5: Model-Checking Constraints Code Editor

The second level of abstraction, namely AUI models, can be automatically

generated from the task model. It is possible to visually override the default

mapping using the UI shown in Figure 6.6, by allocating each task one or more

AUI elements. This option exempts the designers from having to individually

add, delete, or modify elements on the canvas after the generation is done.

Figure 6.6: Mapping Task Model to AUI

136 6.2 Design Tools for User Interface Models

6.2.2 Abstract User Interface Models

The generated AUI is easily modifiable through the visual-design tool shown

in Figure 6.7. Simplicity is the main advantage of this tool, which supports the

specification of AUIs with basic building blocks on a flow-style layout canvas

that could be used by stakeholders with a limited technical knowledge.

Figure 6.7: Abstract User Interface Design Tool

Since AUI models are a modality independent representation, the design

canvas shows the elements as boxes with different names, icons, and colors.

This tool allows AUI containers to be nested within one another and provides an

easy-to-use flow-style design surface for visually manipulating the AUI

elements. The properties box allows the modification of an element’s name and

type. As suggested by Pleuss et al. (2010), placeholder elements are used upon

deletion to maintain the mapping between two models. The type of the

placeholder can be switched to an AUI element type without affecting the

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 137

mapping. New elements can be added from the toolbar and then manually

mapped to their related tasks in the task model.

CUI models can be automatically generated from AUI models, similarly to

how AUI models are generated from task models. The interface shown in Figure

6.8 can be used for manually adjusting the default mappings.

Figure 6.8: Mapping AUI to CUI

6.2.3 Concrete User Interface Models

The input of the human designer is highly desirable for achieving higher

usability (Pleuss et al. 2010) through the manipulation of concrete objects

rather than just an abstract representation (Demeure et al. 2009). Offering a

robust CUI design tool to UI designers, helps them in providing their input on

the look on feel of the UI. Visual user interface builders provide a graphical

means for expressing graphical concepts, thereby maintaining a low threshold

due to the reduction of the learning curve (Myers et al. 2000).

138 6.3 Design Tool for Adaptive Behavior Workflows

Figure 6.9: Concrete User Interface Design Tool

Cedar Studio provides the feature-rich CUI design tool shown in Figure 6.9

by integrating and extending the Windows-Forms design component of Visual

Studio.NET. This component has been extensively tested through its usage in

developing UIs for many enterprise applications. Similar to that of the AUI, the

CUI design-tool supports placeholders upon deletion in addition to complete

deletion of elements, which can be manually replaced and mapped to the AUI

model. A rich toolbar of widgets is provided. It includes both basic widgets such

as the date-time-picker and advanced ones such as the data-grid, which are

required for devising enterprise application user interfaces.

6.3 Design Tool for Adaptive Behavior Workflows

Workflows are common in enterprise applications for representing business

rules. Our approach utilizes workflows to represent adaptive behavior visually

and through code (Sections 5.4.1 and 5.4.2). This approach provides both

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 139

developers and IT personnel the opportunity to implement this behavior using

the visual canvas shown in Figure 6.10a. Similar to the task-model-design and

role-assignment tools, the visual and code-based combination also enhances

expressive match. Furthermore, providing expressive leverage by promoting

reusability (Olsen,Jr. 2007) is achieved by supporting the integration of

reusable visual-components and scripts.

Figure 6.10: Adaptive Behavior Workflow Design Tool

Workflows are assigned roles and the CUI models to be executed on. We

integrated the Windows-Workflow design tool of Visual Studio.NET in Cedar

Studio. This tool provides a rich set of visual programming constructs (Figure

6.10b), which can be dynamically extended with custom activities (Figure 6.10c)

written in C# or VB.NET. One of the extensions we have built supports the

execution of adaptive behavior written in the Iron Python scripting language.

Cedar Studio stores the workflows in an XML format, which allows them to be

dynamically loaded and executed.

140 6.4 Design Tool for Goal Models

Figure 6.11: Dynamic Scripts Code Editor

The Iron Python script editor, illustrated in Figure 6.11, is supported by

Cedar Studio. Scripts are created separately and can be called from within any

workflow by selecting the script’s name, specifying the method to call, and

passing it the appropriate parameters. The entire process is done visually

through the workflow design tool shown in Figure 6.10.

6.4 Design Tool for Goal Models

Cedar Studio supports a visual-design tool for goal models, which is shown in

Figure 6.12. This tool allows stakeholders to define fuzzy and crisp goals, and

operations in goal models, which are used as part of our trade-off management

technique (Section 5.6, Chapter 5). As illustrated in Figure 6.12, each operation

(displayed as ovals) on the lowest level of operations in the goal model, has a

button above it. Upon clicking this button, Cedar Studio displays an interface

for assigning the cost of that operation for each of the goals. These costs are

used by our approach for populating the cost matrix, which is required for

managing the trade-offs among the conflicting adaptation aspects.

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 141

Figure 6.12: Goal Model Design Tool

6.5 Testing the Adapted User Interfaces

Developers can run the devised UIs with and without adaptations using the

“Run” and “Run As” commands respectively. The “Run” command simply

executes the initial version of the UI, whereas “Run As” issues a prompt for

entering a user-identifier and executes the UI version corresponding to that

user’s roles. This functionality allows stakeholders to test UIs and adaptive

behavior from within Cedar Studio. Combining this feature with the previously

described design tools, achieves flexibility in terms of supporting rapid design

changes, which can be performed and evaluated by the developers (Olsen,Jr.

2007).

142 6.5 Testing the Adapted User Interfaces

(a) Initial Sales Invoice User Interface (Run)

(b) Simplified Sales Invoice User Interface (Run as “Cashier”)

Figure 6.13: Sales Invoice UI Initial (a) and Simplified (b) Versions

The UI illustrated in Figure 6.13a represents a fully-featured sales invoice,

which is one of the cases we used for testing RBUIS and Cedar Studio. We

considered a role called “Cashier” requiring a simplified version of this UI. By

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 143

allocating the role “Cashier” to the appropriate tasks, applying the relevant

adaptive behavior workflows, and running the UI with a user-identifier allocated

the role “Cashier”, the version illustrated in Figure 6.13b will be displayed.

When the user’s role is modified, for example Cashier to Manger or Novice to

Expert, the adaptation will dynamically change according to the new role. This

conforms to the concept of multi-layer interface design (Shneiderman 2003).

6.6 Assessing Cedar Studio

Cedar Studio was assessed by constructing UIs based on examples from

existing enterprise applications, and applying adaptive behavior to them. The

UIs we constructed are data entry interfaces for managing: bank accounts

(Figure 5.12), customers (Figure 5.4), inventory items, and sales invoices

(Figure 6.13). The adaptations that we applied to these UIs represent practical

scenarios, which could potentially occur in real-life enterprise systems.

Consider the initial sales invoice UI, shown in Figure 6.13a, as an example.

The simplified version of this UI, shown in Figure 6.13b, is better suited for

end-users allocated the role “Cashier”. The feature-set has been minimized to

only show the fields required by cashiers, allowing end-users who are allocated

this role to complete sales invoice transactions more efficiently. Additionally,

the layout was optimized by switching combo boxes with radio buttons and

showing a higher accessibility of functions, thereby allowing cashiers to control

the UI with more ease through the point-of-sale touch screen. On the other

hand, the simplified sales invoice UI for end-users allocated the role “Sales

Officer” only removes the payments grid and totals fields, as illustrated in

Figure 6.14, because sales officers require more functionality. Additionally,

since sales officers use a mouse rather than a touch screen, the combo boxes are

not replaced and a lower accessibility of functions is given.

A similar rationale was used when selecting adaptations for the other UIs

that we constructed. By using Cedar Studio to construct these example UIs and

adaptations, we were able to get a feel of this tool’s strengths, in addition to the

points that could use further improvement.

144 6.6 Assessing Cedar Studio

Figure 6.14: Sales Invoice UI Simplified for the Sales Officer Role

One of the main observed strengths of using Cedar Studio in practice is in its

AUI, CUI, and Workflow design-tools, which are based on existing mature

Visual Studio components. The task model design-tool can be developed further

to reach the same level of maturity and the code editors can be enhanced by

providing additional functionality such as intelligent-sense. We should note

that we do not claim Cedar Studio to be an industrial quality IDE. However,

considering the advanced tools that it offers, it forms a strong starting point

towards achieving this objective.

Cedar Studio fulfills the criteria we established in Chapter 2 for evaluating

the state-of-the-art. This IDE offers control over the UI by allowing stakeholders

to provide their input on all the levels of abstraction using visual-design tools.

Cedar Studio also supports visual-design and code-editing tools for defining

extensible adaptive behavior and adaptation aspects and factors. Its integrated

testing, visual-design tools, and IDE style UI allow Cedar Studio to offer good

flexibility. This IDE supports automatic generation between the UI models, and

the mapping rules can be visually changed to offer better predictability.

In the previous sections, we described the advantages of Cedar Studio in

terms of criteria such as: flexibility, expressive match, and expressive leverage.

In this section, we assess Cedar Studio based on another set of criteria

recommended for user interface development tools (Myers et al. 2000):

Chapter 6 – Cedar Studio: An IDE Supporting the Development of Adaptive Model-

Driven User Interfaces for Enterprise Applications 145

 Threshold and Ceiling: The “threshold” represents the difficulty in learning

and using the tool, and the “ceiling” is related to how advanced the tool’s

outcome can be. An ideal tool would have a low threshold and a high ceiling.

 Path of Least Resistance: Developers should be guided to construct the UI

in an appropriate manner by making the right approach easier to follow

than the wrong one.

 Predictability: Any automated approach provided by the tool should be

predictable to the developers using it.

 Moving Targets: The tool should be able to keep up with the rapid

developments in user interface technology.

Upon designing and developing Cedar Studio, we tried to meet the

abovementioned criteria as much as possible.

It might not be feasible to achieve low threshold and high ceiling in all cases.

This point is due to the learning curve created by any additional features, which

allow a tool to produce more advanced outcomes. However, we aimed towards

achieving a balance between threshold and ceiling. We integrated automated

generation and synchronization between models (low threshold), alongside the

possibility of conducting manual adjustments (high ceiling). Furthermore, if

developers understand the semantics of the meta-model they can use the visual-

design tools to produce an advanced outcome (medium threshold / high ceiling).

In the cases where coding could be used, a visual-design tool alternative was

provided such as: visual workflows instead of scripts, and visual role-

assignments instead of code-based rules. Also, the language most familiar to

developers and IT personnel was chosen in the case of using SQL instead of

OCL for model verification.

The path of least resistance is maintained by allowing developers to easily

apply the model-driven approach. The automated generation of UI models and

the mapping between them, saves the time required to perform these operations

manually. The automatic generation preserves predictability by allowing

developers to customize the default mappings between the different model

elements (e.g., abstract input to text-box). Furthermore, the support for visual-

146 6.7 Chapter Summary

adjustment and resynchronization provides an easy way to customize what was

automatically generated.

Concerning the moving targets criteria, the model-driven approach supported

by Cedar Studio was initially created to absorb the effect of changes in

technology and requirements. The model-driven approach allows our IDE to be

independent from presentation technologies, and to evolve more easily

alongside them. If new techniques for building UIs or even new UI types emerge

in the future, the use of models is a good approach to cope with such changes.

The use of models makes it possible to rely on existing abstract representations

to regenerate different types of concrete user interfaces.

6.7 Chapter Summary

This chapter presented an overview of Cedar Studio, an IDE for supporting

different stakeholders such as: software developers and IT personnel, in

developing and maintaining adaptive model-driven enterprise application user

interfaces. The supported adaptive behavior is primarily targeted at the

simplification of enterprise UIs by using RBUIS to minimize a UI’s feature-set

and optimize its layout based on the context-of-use.

Cedar Studio answers research question Q4, which we established in

Chapter 3, by providing technical stakeholders with visual-design and code-

editing tools for creating and managing UI models and adaptive behavior. It

also supports integrated testing of the devised adaptive behavior by running the

developed UI from within the IDE. We assessed Cedar Studio conceptually

based on a set of criteria suggested in the existing literature, and practically by

developing example adaptive enterprise application user interfaces.

Cedar Studio can be observed in operation through demonstration videos,

which are available online10.

The contributions made in this thesis, are evaluated in the next chapter from

both the technical and the human perspectives.

10 Cedar Studio Demonstration Videos: http://adaptiveui.pierreakiki.com

 147

7

Evaluating the Contributions from the

Technical and Human Perspectives

“One of the great mistakes is to judge policies and

programs by their intentions rather than their results.”

― Milton Friedman

The Cedar Architecture and RBUIS are evaluated from a technical

perspective by defining and applying software engineering metrics to measure

several of their characteristics. To perform the technical evaluation, we

integrated RBUIS in an existing open-source enterprise application called

Apache Open For Business (OFBiz). The integration method is based on the

Cedar Architecture. The contributions presented in thesis are also evaluated

from a human perspective. We evaluated our approach based on the opinions of

industry experts and data from real-life projects. We conducted usability studies

to test whether UI simplification significantly improves end-user efficiency,

effectiveness, and satisfaction in real-life enterprise application scenarios.

7.1 Introduction

We presented the contributions of this thesis namely the Cedar Architecture,

RBUIS, and Cedar Studio in Chapters 4, 5, and 6 respectively. This chapter

presents an evaluation of these contributions that covers both the technical and

human perspectives. The work presented in this chapter answers the evaluation

research questions, which were established in Chapter 3.

One of the gaps that we identified in Chapter 2 is related to the ability of

adaptive UI solutions to integrate in existing systems. In this chapter, we

148 7.1 Introduction

elaborate more on this point by discussing the strengths and shortcomings of

existing approaches including: toolkits, aspect-oriented programming, design-

time model-driven, and runtime model-driven. We integrated RBUIS into an

existing open-source enterprise application called Apache Open For Business

(OFBiz) using an integration method based on the Cedar Architecture. We

established and applied several technical metrics, which allowed us to answer

research question Q5 that was presented in Chapter 3 as follows:

Q5: Does the devised UI adaptation approach (Cedar Architecture and RBUIS)

integrate in existing enterprise applications without causing major changes to

the way they function or incurring a high integration cost?

The metrics allowed us to highlight the advantages that interpreted runtime

models provide for integrating adaptive UI capabilities in existing systems.

After integrating RBUIS in OFBiz, we demonstrated its runtime scalability

and efficiency, thereby answering research question Q6 (Chapter 3):

Q6: Does the proposed UI adaptation technique (RBUIS) provide a real-time

runtime performance and is it scalable?

We interviewed the manager of a software company, which builds products

based on OFBiz, in order to get an industry perspective about our adaptation

approach and answer research question Q7 (Chapter 3):

Q7: What is the perspective of industry experts on the generality and flexibility

of the devised UI adaptation technique (RBUIS)?

Finally, we conducted two usability studies, one online and another in the

laboratory. These studies showed that RBUIS can significantly improve

usability when applied to real-life enterprise application scenarios, thereby

answering research question Q8 (Chapter 3):

Q8: Does feature-set minimization and layout optimization significantly

improve the usability (efficiency, effectiveness, and satisfaction) of enterprise

application user interfaces?

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 149

7.2 Evaluation Based on Technical Metrics

Many enterprise applications incorporate hundreds or even thousands of UIs

and are already at a mature stage in their development. A method is needed for

integrating adaptive UI capabilities into these systems, without incurring a

high development cost or significantly changing the way they function.

In his paper on criteria for evaluating UI research, Olsen,Jr. (2007) gives an

example about the objections that were made in the late 1970s towards new UI

architectures due to the large amount of legacy code written for command-line

or text UIs. He notes that legacy code can be a barrier to progress hence, if

rewriting applications is necessary, it could be the price of progress. Yet, Olsen

also states that providing a new advance while maintaining legacy code is

desirable. The latter is what we aim to achieve with our method for integrating

adaptive UI capabilities in enterprise applications.

Another integration challenge lies in the difference between research work

on adaptive user interfaces presented in the literature and traditional UI

development techniques. For example, many research works on adaptive UIs

adopt the model-driven approach to UI development either partially or fully

such as: Supple (Gajos et al. 2010) and MASP (Blumendorf et al. 2010)

respectively. However, despite the advantages of the model-driven approach,

the user interfaces of many existing software systems including enterprise

applications have been developed using traditional techniques. Therefore, an

important issue to consider for adaptive UI integration in existing applications

is the means of combining new UI development approaches such as the model-

driven approach with UIs that have been built using existing UI design tools

such as interface builders.

We present a method for integrating adaptive UI capabilities in enterprise

applications without the need for major integration effort. We integrated

RBUIS in the open-source enterprise application Apache Open For Business

(OFBiz). Several technical characteristics, related to RBUIS and the integration

method, were evaluated by establishing and applying technical metrics. This

evaluation covered: reverse-engineering, integration, and runtime execution.

150 7.2 Evaluation Based on Technical Metrics

Figure 7.1: An Example on Adapting the Product Store UI of OFBiz

We followed the Cedar Architecture to integrate RBUIS in OFBiz. The

example shown in Figure 7.1 was part of the evaluation we conducted. It

demonstrates feature-set minimization and layout optimization operations on

the Product Store UI of OFBiz.

7.2.1 How Does the State-of-the-Art Integrate in Existing Systems?

We established in Chapter 2 that the existing art does not provide means for

integrating adaptive UI capabilities in existing system. This section groups the

state-of-the-art according to the adaptation approaches, and discusses the

strengths and shortcomings of each approach in terms of integrating into

existing systems.

Toolkit-based approaches for adaptive UIs have been explored extensively

in the literature. Some examples include: caring, sharing widgets (Lecolinet

2003), selectors (Johnson 1992), SwingStates (Appert & Beaudouin-Lafon 2006),

etc. Technology dependence is one of the disadvantages of toolkits in

comparison to model-driven UIs. This disadvantage could impact the

integration of adaptive UI toolkits in existing enterprise applications since the

entire toolkit has to be redeveloped for each technology. Providing technology-

independence is an important part of the Cedar Architecture. The Comet(s)

(Calvary et al. 2005) attempts to combine the toolkit and model-driven

approaches for building adaptive UIs. Nevertheless, even if the toolkit was

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 151

technologically compatible with an existing enterprise system, the amount of

code modification that is required to switch the UI from the classical toolkit to

the adaptive one could be significant. This is especially true if the enterprise

application’s UI was not developed by following design patterns like a “bridge”

to decouple each widget’s abstraction from its implementation. In such a

situation, a conversion tool is necessary with some manual work for shifting the

UI specification from one toolkit to another. Our approach operates on existing

UIs without updating them to a new toolkit due to the loose coupling between

the adaptation mechanism and the technology dependent UI representation.

Aspect-oriented programming (AOP) was proposed for improving the

separation of concerns in software systems (Kiczales et al. 1997). One approach

that used AOP for adapting UIs, requires several presentations to be defined for

the same UI at design-time, and uses a weaver to associate these presentations

to instrument classes that handle the way the UI functions (Blouin et al. 2011).

Our approach is conceptually similar to AOP since we are trying to achieve a

separation of concerns between the UI adaptation technique and the enterprise

system. Yet, our main focus is on adapting the UI’s presentation and not its

implementation code. From this perspective, the existing AOP-based approach

requires UI variations to be defined manually by developers at design-time,

whereas our approach aims at adapting UIs through adaptive behavior using

rules that could be applied to different UIs at runtime. For example, adaptive

behavior could be defined to switch the way the UI’s widgets are grouped by

changing group-boxes to tab-pages. Adaptive behavior defined outside the

enterprise system could save integration time and support dynamic changes

that narrow the gap between development-time and runtime.

Design-time model-driven approaches rely on generating multiple

adapted UIs based on models that represent the UI at several levels of

abstraction. Some approaches rely on software-product-lines (SPL) for tailoring

user interfaces. Although SPLs can be dynamic (Bencomo et al. 2008), SPL-

based UI adaptation approaches, such as the work by Pleuss et al. (2010), focus

on design-time adaptation like generating UIs with different subsets of features

based on a feature model, whereas runtime adaptive behavior is not addressed.

Smart templates are another generative approach and were used with

152 7.2 Evaluation Based on Technical Metrics

ubiquitous remote control mobile UIs (Nichols et al. 2004). Code generation

makes such approaches difficult to adopt for existing mature enterprise

applications due to the amount of effort needed to integrate the generated code

in the existing systems and the increased number of software artifacts that can

require maintenance. Also, if the adopted presentation technology required

compilation, for example Windows Forms, adding UI artifacts would increase

the compilation time. Our integration method requires a few lines-of-code to be

added to the enterprise application at design-time to trigger UI adaptations at

runtime. Therefore, RBUIS can be integrated in existing systems without major

design-time effort or the need for creating or changing a large number of

software artifacts.

Runtime model-driven approaches keep the models alive at runtime for

adapting the running UI dynamically. Some are generative, such as MASP

(Blumendorf et al. 2010), thereby generate an individual UI specification from

the models at design-time and use the models to adapt this UI at runtime.

Other approaches such as: Supple (Gajos et al. 2010) and DynaMo-AID (Clerckx

et al. 2005), rely on interpreting the models and dynamically rendering the UI.

MASP, Supple, and DynaMo-AID did not demonstrate and evaluate the ability

to integrate their proposed approaches in existing software systems.

We think that runtime model-driven UI development is the most suitable

approach to support a method for integrating adaptive UI capabilities in

existing enterprise applications, due its dynamic nature. Yet, the lack of

attention from existing works in the literature towards integration drives us to

present an integration method based on the Cedar Architecture. This method

allows us to integrate RBUIS in OFBiz and to conduct a metric-based evaluation.

7.2.2 Integrating RBUIS in OFBiz

This section provides an overview of our method for integrating adaptive UI

capabilities (RBUIS) in enterprise systems based on the Cedar Architecture.

The open-source enterprise application OFBiz is used as a test-case.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 153

OFBiz 11 is an open-source enterprise automation software project, which

contains several sub-systems such as: enterprise resource planning (ERP),

manufacturing resources planning (MRP), customer relationship management

(CRM), e-business and e-commerce, and supply chain management (SCM). It

can be considered as a general-purpose, large-scale, enterprise system

considering the characteristics shown in Table 7.1.

Table 7.1: Some of the Characteristics of OFBiz

Commercial enterprise systems can be larger. For example, SAP has over

250,000,000 lines-of-code (Judith Hurwitz 2007) and Lawson has over 10,000

UIs (Allbee 2008). Nonetheless, OFBiz has complex UIs with a large number of

widgets, which may need adaptation, making it a good candidate for our study.

For example, the main UIs from its Catalog module have an average of 55

widgets and a maximum of 170. Also, an open-source system is necessary to test

our integration method. Our method could work with commercial systems but

the company that owns the source-code should perform the integration.

7.2.2.1 Integration Based on the Cedar Architecture

The Cedar Architecture’s (Figure 4.1 in Chapter 4) client components can

integrate in enterprise applications to empower them with adaptive user

interface capabilities as illustrated by arrows (1) to (5) in Figure 7.2, using

OFBiz as an example.

11 Apache Open For Business: http://ofbiz.apache.org

OFBiz Release 12.04

Number of User Interfaces > 750

Number of Lines-of-Code ≈ 1,466,000

Projects Based on OFBiz 20

Public Sites using OFBiz 90

154 7.2 Evaluation Based on Technical Metrics

Figure 7.2: Integrating Adaptive User Interface Capabilities (RBUIS) in OFBiz based
on the Cedar Architecture

These components are dependent on the programming and presentation

technologies, since they have to be integrated in the enterprise application’s

code. Hence, different sets of components are required. These components offer

an application programming interface (API) that is loaded globally (1) in the

enterprise application, for example in OFBiz’s common header. Whenever the

end-user launches a UI, a request is made to the API for adapting this UI; the

identifiers of the end-user and the UI are passed as parameters (2). The API

uses web-services to pass the UI adaptation request to the server-side layers

(3), which perform the adaptation and return the result to the API as XML (4).

The API’s UI Presenter is responsible for applying the adaptation result to the

running enterprise application UI, which is an HTML page in the case of

OFBiz. Once a UI is adapted, the Caching Engine will cache the adapted

version on the client-side in case the end-user requests it again.

7.2.2.2 The Technique for Integrating RBUIS in OFBiz

OFBiz uses HTML to represent its UIs. Hence, in order to integrate RBUIS

in it, we developed a JavaScript version of the Cedar Architecture’s client API,

which works with HTML UIs. Since RBUIS adopts a model-driven UI

development approach, we devised a procedure for reverse-engineering HTML

forms into a model-driven representation supporting the levels of abstraction

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 155

suggested by CAMELEON (task, AUI, and CUI models). The reverse-

engineering is done at design-time. However, our technique launches the HTML

pages of OFBiz in the browser then acquires the HTML through JavaScript to

include the elements that are generated by server-side scripts. Our procedure

transforms an HTML form into an XML document, which is used to create a

CUI model. Then, the CUI is reverse-engineered into an AUI model and the

AUI into a task model automatically. The only manual part in this procedure is

the definition of mapping rules (Figure 6.6 and Figure 6.8), which control how

models are mapped to a higher level of abstraction.

Listing 7.1: Code for Reverse Engineering HTML UI to a Model-Driven Representation:
Excerpt of HTML Table Example

1. function ConvertHTMLTableToXml(TableID) {

2. var xml = "";

3. $("#" + TableID + " tr").each(function () {

4. //Parse Cells

5. var cells = $("td", this);

6. for(var cellCtr=0; cellCtr<cells.length; ++cellCtr) {

7. var inputs = $("input", cells.eq(cellCtr));

8. //Parse Input Fields

9. for(var inpCtr=0; inpCtr<inputs.length; ++inpCtr) {

10. var fieldType = inputs.eq(inpCtr).attr('type'),

11. fieldID = GetFieldID(inputs.eq(inpCounter)),

12. element = GetElement(fieldID);

13. //Generate XML for Element

14. var xmlInput = GetInputFieldXml(
 element, fieldType, fieldID) + "\n";

15. xml += xmlInput;

16. }

17. }

18. }

19. return xml;

20. }

156 7.2 Evaluation Based on Technical Metrics

The process of transforming the HTML FUI into a CUI model is done using

JavaScript. The excerpt of the code for reverse-engineering an HTML table is

shown in Listing 7.1. Mapping the CUI to an AUI and the AUI to a task model

can be done visually using Cedar Studio as shown in Chapter 6.

After reverse-engineering the UIs that require adaptation, we can apply

RBUIS on the obtained UI models using Cedar Studio. To make the adaptation

work at runtime on OFBiz’s HTML pages, we need to extend OFBiz with a few

lines-of-code that load the client API, call the web-service, and apply the

obtained result. OFBiz uses a master page to wrap its UI forms with a common

header, footer, and panel as shown in Figure 7.2. To reduce the integration

effort we loaded the API and performed the adaptation call in the common

header using the code shown in Listing 7.2.

Listing 7.2: Code for Enabling Adaptive UI Capabilities

1. //Load the API Scripts

2. <script type="text/javascript" src="http://
[ServiceAddress]/CedarScripts.js"></script>

3. <script type="text/javascript">

4. $(document).ready(function() {

5. //Setup the API

6. Initialize('[ServiceAddress]');

7. //Call the API to adapt the UI and
 //pass the logged-in user id as a parameter)

8. LoadAdaptedUI(getUserID());

9. });

10. </script>

The “getUserID()” function call on Line 8 in Listing 7.2 should be

implemented by a developer to obtain the identifier of the logged-in user from

the OFBiz system. The “LoadAdaptedUI” function can internally acquire the UI

identifier through a mapping table, which contains the UI’s URL and a number

to identify the UI’s models in the database hosted on the Adaptive Behavior and

UI Models layer. The UI’s URL is obtained from the web-browser and passed as

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 157

a parameter to the adaptation function on the web-service. The mapping is done

on the server-side by querying a mapping table in the database.

After receiving an XML representation of the adapted UI from the server,

the UI presenter component will apply the changes to the HTML page loaded on

the client machine by modifying the widgets’ properties. An excerpt of the code

that applies the adaptations is shown in Listing 7.3. This code excerpt

demonstrates hiding the widgets that were set to be invisible by an adaptation,

for example by removing features that are not required by a certain end-user.

Listing 7.3: API Code for Applying the Adapted UI: Excerpt of Widget Hiding Example

1. function ApplyAdaptedUI(UIXML) {

2. //Loop around the UI widgets

3. $(UIXML).find("Control").each(function () {

4. //Get the name and visibility attributes

5. var technicalName = $(this).attr('TechnicalName');

6. var isVisible = $(this).attr('Visible');

7. //Hide the invisible elements

8. if(isVisible == 'false') {

9. var element = GetElement(technicalName);

10. //Hide the element if it exists

11. if (typeof (element) != 'undefined')

12. { element.style.visibility = 'collapse'; }

13. }

14. });

15. }

7.2.3 Metric-Based Evaluation

The process of integrating RBUIS in enterprise applications starts by

reverse-engineering the target application’s UIs. Afterwards, the application is

extended to support adaptation hence becoming able to adapt its UIs at

runtime. This section explains the metrics, which we used to evaluate our

integration method at all the stages of the process and demonstrates an

application of these metrics to scenarios from OFBiz.

158 7.2 Evaluation Based on Technical Metrics

7.2.3.1 Reverse-Engineering the User Interfaces

As we mentioned in Section 7.2.2.2, we devised a procedure for reverse-

engineering HTML forms into a model-driven representation that can be

adapted by RBUIS. Although it is automated, this procedure requires mapping

rules to be defined manually. Hence, the first question that might come to mind

is about the difficulty of deducing these rules from the existing enterprise system

since it has a large number of UIs. Assuming that there is no prior knowledge of

the types of mapping rules required for reverse-engineering the enterprise

system at hand, we defined the following metrics for estimating the number of

UIs that require manual work before the majority of the mapping rules are

detected. These metrics indirectly show the level of diversity in an application’s

UIs. More diversity could signify that there are more mapping rules, which are

more uniformly distributed over the entire system.

The approximate mapping rule detection saturation point SP

indicates that the number of new encountered mapping rules stabilized after

reverse-engineering a number of UIs a. This metric will allow us to test if the

Pareto principle (70-30 rule) applies for detecting 70% of the mapping rules in

the first 30% of the UIs. This metric gives an indication about the similarity

among the UIs of a software system. Although eventually all the mapping rules

have to be determined, the applicability of the Pareto principle indicates that

the manual work is concentrated at the beginning of the reverse-engineering

process. Therefore, experienced software developers could work on the first 30%

of the UI and leave the more straightforward work (70%) for the developers

with less experience. The developers who have less experience can trigger the

automated process and test the UIs. In case there is a problem with a UI due to

the need for a new mapping rule, the experienced developers can step-in to

define this rule. If the Pareto principle stands, there could be a better allocation

of human resources by combining automation with minimal human control from

junior developers in 70% of the reverse-engineering process.

To check if the Pareto principle holds, we define the following equation

where {R } is the set of rules detected in the UIs before SP and {MR} is the set

of all the detected mapping rules:

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 159

| |

| |
 ()

Equation 7.1: Pareto Principle for Mapping Rule Detection Metric

The saturation point SP is defined as follows:

 ()

| |

Equation 7.2: Approximate Mapping Rule Detection Saturation Point Metric

where UI is a user interface being reverse-engineered, C is the number of new

mapping rules detected in this UI, the subscript b of C indicates the next UI to

be reverse-engineered, and T is the total number of UIs to be reverse-

engineered. The types of mapping rules that are encountered when reverse-

engineering a UI can differ depending on the characteristics of the software

application being reverse-engineered. We hypothesize that the Pareto principle

holds for enterprise applications due to the use of similar WIMP style UIs.

OFBiz Scenario: We selected a sample formed of the 19 main input UIs from

the “Catalog” and “Human Resources” modules. We were able to deduce two

types of mapping rules necessary for reverse-engineering these UIs into a

model-driven representation: (1) The most common type of rule is the one that

maps individual HTML elements to CUI elements, which are in turn mapped to

AUI elements then tasks in the task model, and (2) the second type of rule is

related to grouping widget pairs composed of a label and an input widget into

logical groups, which are reflected in the AUI and task models. The mapping

rules are used for linking the elements between one UI level of abstraction and

another. These rules can be defined using Cedar Studio as shown in Chapter 6

by Figure 6.6 and Figure 6.8. Defining rules from these two types alongside

getting information provided by the HTML UI (e.g., widget properties: name,

size, location, etc.) was sufficient to obtain a model-driven UI representation

that we can adapt using RBUIS. In case the software application at hand

required more advanced mappings rules, a transformation language such as

XSLT could be introduced into Cedar Studio for supporting this functionality.

160 7.2 Evaluation Based on Technical Metrics

Figure 7.3: Saturation Point for Mapping Rules

The chart in Figure 7.3 shows the number of mapping rules, which we

deduced from each of the OFBiz UIs that we selected. The chart shows a best

case scenario where we started with the UI that has the largest number of

widgets and a worst case scenario where we did the opposite. We encountered 8

different widget types, each requiring 1 mapping rule, and were able to detect

the second mapping rule relating to logical widget grouping in the first UI. We

obtained a saturation point SP = 2 / 19 = 0.10 signifying that after the second

UI the mapping rules become minimal as shown in Figure 7.3. Following our

example where SP = 0.1, P is: 7 / 9 = 0.77 (77%) in the best case scenario and 6 /

9 = 0.66 (66%) in the worst case one. With an average of 71.5% of the rules

detected in the first 10% of the UIs, we can say that the Pareto principle holds

and the UIs of OFBiz are highly similar.

7.2.3.2 Integrating the Adaptive UI Capabilities

After reverse-engineering the UIs, we can assess the level of change the

integration will incur on the enterprise application. We defined the lines-of-code

and change-impact metrics for this assessment.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 161

The lines-of-code metric refers to the code required locally in each UI or

globally in the enterprise application to apply a type of adaptation. This metric

excludes the API code since the Cedar Architecture requires each presentation

technology (e.g., HTML) to have one API that is reusable with any enterprise

application. The lines-of-code metric is given as follows:

 𝑂 () 𝑂 ()

Equation 7.3: Lines-of-Code Metric

where LLOC represents a UI’s local lines-of-code, whereas GLOC represents the

global lines-of-code common across the application, A is the required adaptation,

UI is the user interface to which this adaptation will be applied, and EA is the

enterprise application. The values for LLOC and GLOC represent the number of

lines-of-code that must to be added to make the adaptation operational.

OFBiz Scenario: As an example test-case, we considered the context-driven

UI adaptations listed in Table 7.2 and applied them to OFBiz. An example of

the output was shown earlier in Figure 7.1. Adaptation A1 is a feature-set

minimization, whereas adaptations A2, A3, and A4 are layout optimizations.

Table 7.2: Example User Interface Adaptation Operations

Our method only requires the 10 lines-of-code shown in Listing 7.2 to be

added globally to OFBiz’s common header to empower it with adaptive UI

capabilities. Consider {AE} to be the set of adaptations listed in Table 7.2. The

lines-of-code needed to make these adaptations work in OFBiz using our

method are ⩝ x | x ∊ {AE}, GLOC (x, OFBiz) = 10 and LLOC (x, AnyUI) = 0.

Achieving this low number of lines-of-code is possible because all the adaptation

rules are defined on the server-side as shown in Figure 7.2.

Code Adaptation

A1 Reduce features (e.g., hide or disable widgets)

A2 Switch widget type (e.g., combo-boxes to radio-buttons)

A3 Change layout grouping (e.g., group-boxes to tab-pages)

A4 Change font-size (e.g., larger fonts for visually impaired users)

162 7.2 Evaluation Based on Technical Metrics

Some approaches discussed in Section 7.2.1 operate by changing the UI’s

representation (e.g., HTML tags) at design-time. Therefore, we established the

change-impact (CI) metric to measure the level of change each approach will

incur on the enterprise application. A higher change-impact could signify that:

(1) More time and effort are needed to perform the integration and (2) the

compilation time will increase if a compiled presentation technology such as

Windows Forms was used. Since we can think of UIs in terms of widgets, the

change-impact metric is given as follows:

 () ∑ 𝑙 | |

Equation 7.4: Change Impact Metric

where A is the adaptation being applied, UI is the user interface being adapted,

k is a type of widget (e.g., text-box, combo-box, etc.), n is the number of widget

types in the UI, lk is the number of lines required for representing each widget

type (e.g., number of HTML tags), and | | is the number of widgets of a

certain type that have been changed by the adaptation.

The variable v represents the number of generated UI versions and is > 1 for

approaches that cannot adapt the same UI copy (e.g., a single HTML page) but

generate multiple copies of the UI, each of which is adapted to a certain context-

of-use. Widget toolkits aim at replacing existing widgets from the standard

toolkit with adaptive equivalents. Hence, the value of v for widget toolkits

would be = 1 since the change is occurring in the initial UI copy. We should note

that widget toolkits are generally used to adapt the layout and do not have the

ability to adapt the feature-set due to their lack of a high-level UI model such as

a task model. Model-driven design-time generative approaches generate multiple

versions of the same UI adapted to different contexts-of-use. Hence, the value

for v in this approach would be > 1. The research work that used AOP for

adapting the UI’s behavior (Blouin et al. 2011), relied on manually creating

multiple adapted UI layouts hence we also consider its v value to be > 1. As for

our method, CI is always = 0 since we use runtime adaptation hence the UI

representation (e.g., HTML pages) will remain completely intact at design-time.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 163

Table 7.3: Integration Time of Different Adaptation Approaches

Based on CI we provided a qualitative comparison between the different UI

adaptation approaches as shown in Table 7.3. Our aim is to give an idea about

the differences in the required integration effort between approaches, while

recognizing that there could be slight differences between adaptation techniques

using the same approach. Widget toolkits require an average amount of time if a

conversion tool existed to automatically convert the UI; otherwise a high amount

of time is needed. Model-driven generative design-time approaches require an

average amount of time since the adapted versions could be automatically

generated but more time could be still required to integrate them with the

software application. Logically, manual adaptation requires a high amount of

time. The integration time of our method is low since CI is always = 0, hence the

developers can continue working on the application without major disruptions.

OFBiz Scenario: We attempted to apply adaptation A2 (Table 7.2) to the 19

main input UIs of the Catalog and Human Resources modules of OFBiz. This

adaptation switches combo-boxes with three other types of widgets including:

radio-buttons, list-boxes, and lookups. These possibilities indicate that we could

obtain three different versions of the UI, hence v (Equation 7.4) = 3 for the

model-driven generative and manual design-time approaches and v = 1 for the

widget toolkit approach. The value for n (Equation 7.4) is 1 since we are only

adapting combo-boxes, and we consider that each combo-box is represented by a

single HTML tag hence l (Equation 7.4) = 1. The results we obtained from

calculating CI are listed in Table 7.4, and show that our approach, namely

runtime interpreted model-driven, has the lowest change-impact. The adaptation

we applied in this example switches combo-boxes with radio-buttons, list-boxes,

and lookups.

Approach Integration Time

Runtime Interpreted Model-Driven Low

Design-Time Generative Model-Driven Medium

Widget Toolkits Medium / High

AOP + Design-Time Manual Adaptation High

164 7.2 Evaluation Based on Technical Metrics

Table 7.4: Results Obtained from Calculating the Change Impact Metric

7.2.3.3 Level of Decoupling

The level of decoupling shows how much intertwining exists between the

adaptive behavior and the enterprise application. It is affected by the

percentage of adaptive behavior defined in the enterprise application versus

that defined separately. Decoupling provides a separation of concerns that could

offer potential for scalability and facilitate the integration of an adaptation

technique in existing enterprise applications. As shown earlier in Figure 7.2,

the Cedar Architecture completely separates the implementation of the

adaptive UI technique, which resides on a server and the enterprise application

that uses a client-side API to communicate with it through a web-service.

It is important to maintain the backward compatibility of UI adaptations

as enterprise applications evolve. We consider an adaptation A to be backward

compatible if it can be applied to previous UI versions successfully and without

reintegration effort. Decoupling helps in improving backward compatibility in

terms of eliminating reintegration effort. A conceptual assessment of the

backward compatibility of UI adaptation approaches is presented in Table 7.5

based on the need for reintegration effort.

Table 7.5: Backward Compatibility of UI Adaptation Approaches

 Change-Impact

Approach Mean Total

Runtime Interpreted Model-Driven 0 0

Widget Toolkits 6.94 132

Design-Time Generative Model-Driven 106.73 2028

AOP + Design-Time Manual Adaptation 106.73 2028

Approach Backward Compatible

Runtime Interpreted Model-Driven True

Widget Toolkits
Depends on the ability to load a new

widget toolkit version at runtime

Design-Time Generative Model-Driven False

AOP + Design-Time Manual Adaptation False

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 165

Widget toolkits can be backward compatible if it is possible to load a new

toolkit version at runtime to update the existing adaptive behavior in older

versions of the enterprise application. This is not possible with model-driven

approaches that generate UIs at design-time since the generated artifacts have

to be manually integrated in all the previous versions. Manual design-time

adaptation suffers from a similar problem. If we consider the adaptations listed

in Table 7.2, we can say that our approach is backward compatible since it is

only necessary to define a global code once to make these adaptations work for all

the UIs. Hence, the adaptations would work for all the previous versions that

have this code since the adaptive behavior is being defined separately.

An adaptation’s success can be partially due to differences in the UI

definition between one version and another. We defined a metric for calculating

the backward compatibility success ratio as follows:

 ()
| () () |

| () () |

Equation 7.5: Backward Compatibility Metric

where UIvn is a UI from the enterprise application version into which the

adaptation A was integrated for the first time, and UIvn-k is one of the previous

versions; {W} is the set of widgets in a UI and {AW } is the set of widgets

affected by an adaptation A.

As an example of partial UI adaptation success, let us consider a UI for

managing customer records. Consider that CustomerUIv2 has multiple fields, 10

of which are for data selection and are represented as combo-boxes (e.g.,

gender). Assume that the previous UI version CustomerUIv1 has the same data

selection fields but only 8 are represented as combo-boxes and the other 2 are

list-boxes. If we introduce an adaptation to switch data selection widgets with

radio-buttons in CustomerUIv2, we might ignore list-boxes. In this case, BC =

8/10 = 0.8 indicating an 80% success rate. With approaches that are not

dynamic and rule-based (e.g., design-time generative), two adapted UIs have to

be generated and integrated into each respective CustomerUI version to achieve a

100% success rate. As for our approach, we only have to adjust the adaptation

166 7.2 Evaluation Based on Technical Metrics

rule in our RBUIS mechanism to take into consideration list-boxes as well as

combo-boxes to obtain a 100% backward compatibility.

7.2.3.4 Runtime Performance

Considering that our approach is highly dynamic, we had to test its runtime

efficiency and scalability especially since we are working with UIs that are

expected to load in real-time. In Chapter 5, we conducted a complexity analysis

to show that the algorithms behind our RBUIS mechanism are theoretically

scalable. In this chapter, we demonstrate our technique’s runtime efficiency and

scalability after integrating it in an existing real-life system (OFBiz). To

perform this test, we defined the following efficiency metric as a function of an

adaptation A and a user interface UI:

 ()

Equation 7.6: Runtime Efficiency Metric for UI Adaptation

where t0a is the time needed to perform an adaptation on the server-side, t0b is the

common server-side time needed for any number of adaptations, for example

loading common data before applying the adaptations, t1 is the time needed to

transmit the adapted UI as XML to the client, and t2 is the time it takes the

API to apply the adaptation on a running UI such as an HTML page in OFBiz.

We used this metric to test the efficiency of the four example adaptations

listed in Table 7.2 on the three UIs with the highest number of widgets in

OFBiz’s Catalog module. The test was conducted on a single machine with an

Intel Core 2 Duo 2.93 GHz CPU and 4 GB of RAM running a 32 bit edition of

Windows 7. We used the Firefox web-browser to run OFBiz.

We determined the t0b variable to be equal to 30 milliseconds (ms). The t1

variable depends on the network connection and is negligible for our test since

we were operating on a single machine. We calculated the average XML

document size for the 3 selected UIs to be 20kb. Based on this file size, t1 will be

very small over an internet connection (e.g., ≈15ms / 10Mbps) and negligible

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 167

over a corporate network (e.g., ≈0.15ms / 1Gbps). The values of variables t0a and

t2 are shown in Figure 7.4 for each UI and adaptation.

Figure 7.4: Results of the Efficiency Test on Three OFBiz UIs Using Four Example
Adaptations (t0b = 30ms and t1 =15ms)

Using the data shown in Figure 7.4 and considering t1 to be 15ms, we

determined the average efficiency for each adaptation to be: E(A1) = 75ms,

E(A2) = 115ms, E(A3) = 150ms, and E(A4) = 90ms. The general average is (75 +

115 + 150 + 90) / 4 = 107.5ms. If we do not consider the fixed values t0b (30ms)

and t1 (15ms), the general average will be 62.5ms. Based on this number, we can

say that our technique can perform around 15 different adaptations on the

same UI, transmit it, and display the result all in less than 1 second

(62.5 × 15 + 30 + 15 = 982.5ms).

Since the Cedar Architecture supports client/server-side caching, performance

can be further enhanced. Client-side caching is used if an end-user who is still

operating in the same context, for example still logged-in with the same roles,

requests a UI that has already been adapted. In this case the efficiency metric

will be: E (A, UI) = t2 (general average 24.5ms). As for the server-side caching, it

is used when an end-user requests a UI that has already been adapted for

another end-user operating in the same context, for example someone who has

the same roles. In this case, the efficiency metric will be: E (A, UI) = t1 + t2.

168 7.2 Evaluation Based on Technical Metrics

After testing the efficiency of our technique we verified its scalability by

load-testing the UI adaptation web-service. We selected the largest of the three

UIs that were used in the scalability test, namely the Product Store UI with 170

widgets, and applied to it the four adaptation operations shown in Table 7.2. We

submitted increasing requests of that UI to the server over five minute periods

and repeated the whole cycle five times. The web-service was hosted on an

Amazon cloud server with a single Intel Xeon CPU with 2 cores (2.40 GHz,

2.15GHz), 3.75 GB of RAM, and running a 64-bit edition of Windows Server

2012 Standard with the IIS 7 web-server. We consider this setup to be an

average configuration since enterprises with hundreds of users usually setup

servers with multiple CPUs and a larger amount of RAM. We simulated the load

using an application that we developed and ran simultaneously on three client

machines. The resulting server response times (t0a + t0b from Equation 7.6) are

shown as a box-plot in Figure 7.5.

Figure 7.5: Box-plot of Load-Testing Results (showing medians)

The fitting curve of the mean response times shown in Figure 7.6 is

polynomial of the 4th order with R2=0.9999431. We should note that the

polynomial curves of the 2nd and 3rd orders also produced a high R2 where R2 (2nd)

= 0.9977252 and R2 (3rd) = 0.9989506. Based on this test, we can say that our UI

adaptation service is scalable and will not form a bottle-neck if it receives a high

number of requests.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 169

Figure 7.6: Curve of the Load-Testing Results (showing means)

7.2.4 Discussing the Results of the Technical Evaluation

This section discusses the results of the technical evaluation in terms of

supporting or rejecting the null hypotheses H0-1 and H0-2 that we established in

Chapter 3. The limitations and threats to validity are also presented.

7.2.4.1 Discussion

Reverse-engineering the UIs of two modules from OFBiz showed that its UIs

are highly similar and require a few mapping rules to be reverse-engineered

from HTML into a model-driven representation. This similarity makes the

reverse-engineering process easier for enterprise applications, which contain

thousands of user interfaces.

The saturation point metric that we defined in Section 7.2.3.1 showed that

71.5% of the mapping rules were determined in the first 10% of the UIs. This

distribution allows a better allocation of human resources by combining

automation with minimal human control from junior developers in over 70% of

the reverse-engineering process. Hence, the senior developers might only have

to intervene when the definition of new mapping rules are needed.

We were able to integrate RBUIS by merely adding a few lines-of-code

globally in the OFBiz. Hence, our integration approach causes less change to

170 7.2 Evaluation Based on Technical Metrics

the enterprise application than other existing approaches as shown by the

change-impact metric in Section 7.2.3.2. Our adaptation approach also provides

better backward compatibility (Section 7.2.3.3) when applying adaptations to

older UI versions, due to the definition of the adaptive behavior separately.

Based on the abovementioned results, we reject the null hypothesis H0-1

because we showed that using the Cedar Architecture and interpreted runtime

models allowed RBUIS to integrate in OFBiz without causing major changes to

the way it functions or incurring a high integration cost.

We also demonstrated in Section 7.2.3.4 that our technique can perform

around 15 different adaptations on the same UI, transmit it to the client

machine, and display the result all in less than 1 second. Therefore, we can

reject the null hypothesis H0-2 because our UI adaptation technique provides

real-time performance (milliseconds) and is scalable.

7.2.4.2 Threats to Validity and Limitations

The data presented in this section is based on applying our UI adaptation

approach to scenarios from OFBiz. The figures we obtained by applying the

saturation point (SP) metric give us an indication about the nature of enterprise

application UIs without claiming generalizability to all enterprise applications.

When we compared our approach to others from the literature using the

change-impact (CI) and backward compatibility (BC) metrics, we aimed at

giving a general conceptual idea about the differences while acknowledging that

there could be some variations between the low-level adaptation techniques

using the same approach. The load-testing curve presented in Figure 7.6 is

intended to show that our UI adaptation mechanism is scalable. Determining

an accurate regression equation, which is not the purpose of this test, requires a

larger sample of mean execution times.

Task models represented as ConcurTaskTrees support temporal operators,

which can help in determining inter-task dependency. Determining this

dependency is helpful for feature-reduction adaptation operations. Currently,

we are unable to automatically detect these operators when reverse-engineering

a UI specified in a presentation technology such as HTML to a model-driven

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 171

representation. It is possible to specify these operators manually using the task

model design-tool in Cedar Studio.

7.3 Evaluation Based on Industrial Expertise and Data

This section presents an evaluation of the generality and flexibility of our

method based on industrial expertise and data. To evaluate our method from an

industrial perspective, we drew on the expertise and data from real-life projects

offered to us by a software company that sells enterprise systems to medium and

large enterprises in China. We selected this company due to its expertise in

enterprise systems, UI adaptation, and our test-case OFBiz.

7.3.1 Inquiring about our Approach’s Generality and Flexibility

 We communicated with the manager of the software company in China

multiple times, over the phone, in order to explain our UI adaptation approach

and assess how well it fits within their line of work. We discovered that one of

the major problems faced by this company is usability related. The enterprise

applications that they sell suffer from a diminished user experience due to the

diverse end-user needs, which make one UI not fit for all end-users. We

established through a verbal explanation of our UI adaptation technique that it

could be useful with real-life enterprise systems such as OFBiz.

At a later stage, after integrating our UI adaptation technique successfully

in OFBiz, we sought to further evaluate its usefulness by assessing its generality

and flexibility. These two criteria were introduced (alongside others) by Olsen,Jr.

(2007) for evaluating UI research including architectures such as the Cedar

Architecture. According to Olsen, Generality evaluates the possibility of using

the proposed solutions with different use cases and flexibility evaluates “the

possibility of making rapid design changes that can be evaluated by the users”

(p. 255). We demonstrated our UI adaptation and integration techniques to the

manager with videos showing running examples of using our IDE Cedar Studio

for developing adaptive model-driven UIs and an example of integrating these

capabilities in OFBiz. Afterwards, we conducted a semi-structured interview over

172 7.3 Evaluation Based on Industrial Expertise and Data

the phone with the manager and followed it with several discussions. During the

interview we directly asked the interviewee about his opinion on the generality

and flexibility or our UI adaptation approach, without restricting the discussion

to these two points to also explore any additional insights that he might have.

To achieve generality, our method only requires an API for the presentation

technology adopted by the target enterprise application. As shown by the Cedar

Architecture in Figure 7.2, all the server-side components are technology-

independent and can be accessed from a technology-dependent API through

web-services. An API for a particular presentation technology can be used with

any application adopting this technology by following the integration procedure

described in Section 7.2.2. This was deemed acceptable by the manager since we

developed an API and demonstrated it in a working example with Cedar Studio.

According to Olsen’s definition, flexibility is regarded as a development

metric that assesses how easy it is for developers to make rapid design-time

changes using a tool. It is achieved from this perspective by Cedar Studio,

which supports visual-design tools for both UI models and adaptive behavior in

addition to integrated testing of the adapted UIs. These features allow changes

and testing to be done rapidly. Based on the videos he observed, the manager

thought that Cedar Studio is very promising especially since it supports visual-

design tools and the ability to generate one UI model from another.

Although he gave us positive comments on our approach’s generality and

flexibility, the interviewee did not elaborate a lot on these two points because he

was mostly interested in RBUIS’s feedback mechanism. Based on his experience,

he thought that this mechanism offered flexibility from an end-user perspective.

He appreciated the fact that it allows end-users to report their feedback

immediately to the system without having to refer to the software company. His

comments on this point allowed us to explore an interesting potential for the

feedback loop, which we had not previously anticipated. Section 7.3.2 explains

this potential and highlights its importance using data from real-life projects.

7.3.2 Importance of the Feedback Loop in the UI Adaptation Process

Based on his company’s experience, the manager said that UIs are first

adapted by the developers based on the initial knowledge they have on the

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 173

needs of an enterprise’s end-users. Afterwards, the UI adaptation is tuned over

several cycles in a process that includes end-user-evaluation, change-reporting

and discussion, and readapting the UI based on the newly reported changes. He

noted that the adaptation mechanism available to them in OFBiz supports

reducing features (layout optimization is not supported) through XML

configuration files, which are defined by the developers. Therefore, as he stated,

the feedback mechanism provided by our approach is an important advantage,

which empowers end-users to provide direct feedback to the system in order to

shorten the cycles of the adaptation process. This reduces the implementation

cost and allows the end-users to obtain an adapted UI more quickly. As a result

of this interview, we were able to establish the process shown in Figure 7.7,

which demonstrates conceptually these advantages.

Figure 7.7: UI Adaptation Process: Design-Time versus Runtime UI Adaptation Cycles
(based on interviewing an industry expert)

A complementary indication on the importance of runtime adaptation

approaches is made by an existing research work, which states that software

systems should attempt to break the boundary between development-time and

runtime to handle the changes that cannot be anticipated or predicted

beforehand (Baresi & Ghezzi 2010). Empowering end-users with control over

174 7.3 Evaluation Based on Industrial Expertise and Data

the UI adaptations narrows this boundary and helps in reducing the round trip

in the adaptation process.

We estimated the time that the feedback mechanism could save in the UI

adaptation cycle based on real-life data. We asked the manager who we

interviewed to provide us with timestamps of requests on the different steps of

the UI adaptation process from past projects. We were provided with a sample

of 36 timestamps of requests from three past projects that were running in

parallel. The timestamps were obtained by referring to historic emails of

requests on development, deployment, and change reporting and discussion.

Based on these timestamps, we calculated the mean number of days for

developing and deploying the adapted UIs and reporting and discussing change

requests between the enterprise employees and the software company. The

results are shown in Figure 7.8 but the project names are hidden for

confidentiality reasons. The results indicate that the highest mean days in the

UI adaptation process are allocated to end-user evaluation, and change

reporting and discussion (Project A=45.25, Project B=25.66, Project C=35) and a

smaller mean number of days is allocated to the development and deployment

of UI adaptations (Project A=9, Project B=4.75, Project C=5.25).

Figure 7.8: Mean Number of Days for One UI Adaptation Cycle from Three Real-Life
Enterprise Application Projects Running in Parallel

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 175

The results shown in Figure 7.8 indicate that if the UI adaptation process

was repeated from the start with every cycle, a period of over one month could

pass before the end-users get their requested UI adaptations. On the other

hand, if the end-users were given the ability to report the changes directly to

the system through a feedback mechanism this process could become much

shorter by eliminating the time required for development, deployment, and

change discussion.

7.3.3 Discussing the Results of Interviewing the Industry Expert

This section provides a discussion of the results we got from interviewing an

industry expert with respect to our UI adaptation approach. It also presents the

threats to the validity of this part of the evaluation.

7.3.3.1 Discussion

The main intention of the interview was to inquire about the opinion of an

industry expert on the generality and flexibility of our UI adaptation approach.

However, the interviewee offered us interesting insights on the importance of

the feedback loop in shortening the UI adaptation cycle by allowing end-users to

report changes directly to the system rather than to the software company.

Based on data from three real-life projects, we observed that when the end-

users report UI adaptation changes to the software company, a period over one

month could pass before they get the requested changes. Yet, with the feedback

loop the changes can be obtained immediately.

We acknowledge the limitations of this interview due to the small amount of

information that we were able to obtain on generality and flexibility. Therefore,

we need to collect more data before being able to decide on whether to accept or

reject the null hypothesis H0-3, which was established in Chapter 3. The next

section offers more details on the threats to validity.

176 7.4 Evaluation Based on Usability Studies

7.3.3.2 Threats to Validity

The purpose of this interview is for providing an indication about the

opinions of industry experts in our UI adaptation approach primarily on its

generality and flexibility. We acknowledge however that interviewing more

industry experts will support our claims further and can also offer us additional

insights. Since the interview yielded more information on the feedback loop that

any other characteristics of our approach, in the future we plan on running

focus group sessions during which software developers can work with Cedar

Studio and report their opinions on our approach’s flexibility and learnability.

Concerning the UI adaptation cycle data illustrated in Figure 7.8, as we

mentioned earlier it is based on a sample of 36 request timestamps from 3

projects. Therefore, our intention is not to generalize it but to give an indication

about the time each adaption cycle could take to show the usefulness of our

runtime feedback mechanism in shortening these cycles.

7.4 Evaluation Based on Usability Studies

Prior research works such as Supple (Gajos et al. 2010), have shown that

adaptive UIs can improve usability in certain scenarios. However, these works

did not directly target enterprise application UIs, which can be more complex

than others. Additionally, these works mostly focused on layout optimization

and not feature-set minimization. Therefore, we conducted usability studies to

determine whether RBUIS can significantly improve usability when used with

real-life enterprise application UIs. One could expect an improvement especially

when simplifying the feature-set of a UI, since the end-users are presented with

a fewer number of fields. Yet, the main question behind our usability studies is

on the significance of this improvement. Since implementing adaptive UIs can

add some overhead in comparison to simply using one generic off-the-shelf UI,

the significance of the improvement in usability is important. A marginal

improvement might not be enough for enterprises to invest in adaptive UIs.

We conducted two usability studies, a preliminary online study and a more

comprehensive one in the laboratory. We started with the online study because

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 177

it is less costly to run. Hence, in case it gave us negative indications we could

perform adjustments on RBUIS before running a more thorough lab-based

study. Our two usability studies aim to answer research question Q8 by

evaluating if the feature-set minimization and layout optimization provided by

RBUIS can significantly improve the usability (efficiency, effectiveness, and

satisfaction) of enterprise application UIs. Sections 7.4.1 and 7.4.2 describe the

online study and lab-based one respectively, and present their outcomes.

7.4.1 Online Study

This study served as a preliminary low-cost evaluation of how much RBUIS

can improve the usability of enterprise application UIs. The participants were

presented with an interactive UI pair composed of an initial and an adapted

version of the same interface. We selected the Customer Maintenance UI of the

SAP ERP system. The initial version contains numerous tab-pages and a lot of

fields. However, end-users with different roles in the enterprise require a

different sub-set of the features. For example, some end-users require a simpler

version for managing basic customer records. The simple version has a much

smaller sub-set of the features available in the initial generic UI offered by

SAP. The fields were selected based on existing information about the

variability in SAP’s user needs (Synactive GmbH 2010).

We developed a copy of SAP’s UI alongside a simplified version containing

the fields required for managing basic customer records. The initial and

simplified UI versions are illustrated by Figure 7.9a, and Figure 7.9b

respectively. The fields that are not required were hidden in the simplified UI

version, and the widgets were regrouped accordingly. Some of the hidden fields

were set to be reversible by the end-user, in order to test whether the

participants are able to use the feedback mechanism for bringing back fields.

After completing the assigned task, the participants were asked to answer

the System Usability Scale (SUS) questions shown in Section B.2 of Appendix

B. The SUS questions allow us to measure the end-user satisfaction (perceived

usability) and compare the results of the two UI versions. The time taken by

178 7.4 Evaluation Based on Usability Studies

each participant to complete the task was also recorded to measure the

efficiency and compare the results of the initial and the simplified UI versions.

(a) Initial Customer Maintenance User Interface

(b) Simplified Customer Maintenance User Interface

Figure 7.9: Customer Maintenance UI Initial (a) and Simplified (b) Versions

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 179

7.4.1.1 Participant Recruitment and Demographics

We recruited 25 participants for this study using Amazon Mechanical Turk,

a crowdsourcing internet marketplace. The existing literature has shown that

Amazon Mechanical Turk is a viable option for conducting research studies

(Paolacci et al. 2010). The site has the necessary elements for successfully

completing a research project, and can provide participants with diverse

demographic characteristics (Buhrmester et al. 2011). Each participant was

paid a marginal amount of money ($1) to participate in this study on which they

spent an average time of 9 minutes and 53 seconds. To ensure the recruitment

of serious participants, we requested Mechanical Turk workers who have

completed more than 5000 hits (tasks) with over 95% accuracy.

Figure 7.10: Participant Demographic Information for Online Usability Study

The participants were recruited at random and had diverse demographics as

shown by the chart in Figure 7.10. None of them had previously used SAP’s

Customer Maintenance UI. The demographic information was collected using

the questionnaire presented in Section B.1 of Appendix B.

180 7.4 Evaluation Based on Usability Studies

7.4.1.2 Task Allocated to Participants

The participants were asked to fill a set of fields required for creating a basic

customer record using both UI versions. In the case of the simplified UI, two of

the fields had to be retrieved through the user-feedback UI, thereby allowing us

to test the participants’ ability to use this feature. The instructions that were

given to the participants are shown in Figure 7.11, and were displayed during

the study on the right-hand side of the respective UI shown in Figure 7.9.

Figure 7.11: Online Usability Study Participant Instructions for the Initial (Left) and
Simplified (Right) User Interface Versions

In some cases, participants prefer the first UI option they see hence creating

certain bias in a study’s outcome. To avoid this potential bias, we presented half

of the participants with the initial UI first and the other half with the

simplified one first.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 181

7.4.1.3 Results

We used a Wilcoxon signed-ranks test to test if there are statistically

significant differences between the initial UI and the simplified one. This test is

the nonparametric equivalent to the dependent t-test. The data that we

collected did not have a normal distribution. Therefore, we used the Wilcoxon

signed-rank test because it does not assume normality in the data. Also, this

test can be applied to dependent variables that are continuous such as: the task

completion times and SUS scores.

The results showed that the simplified UI elicited a statistically significant

improvement in both perceived usability based on the SUS score (Z = -3.530, p =

0.0004) and efficiency based on the task completion time (Z = -2.644, p = 0.008).

The asymptotic significance (2-tailed) is the p value for the test and the

Wilcoxon signed-ranks test, is reported using the Z statistic. The p value is <

0.01 for both cases, indicating that the simplified UI version shows a very

strong improvement over the initial one in terms of satisfaction and efficiency.

Figure 7.12: End-User Satisfaction and Efficiency Results

The results are illustrated by the box-plots in Figure 7.12. The means of the

SUS score and time taken to complete the task are presented in Table 7.11

alongside the improvements. The improvements that the simplified UI offered

were also reflected in the comments of some participants about it being more

182 7.4 Evaluation Based on Usability Studies

efficient, whereas the initial UI made it too complicated to locate the fields that

were dispersed across many tab-pages.

Table 7.6: Improvement in End-User Satisfaction and Efficiency after UI Simplification

The ease-of-use of the feedback mechanism was reflected by the fact that

80% of the participants were able to use it by only referring to a few words of

instruction on its purpose. Since 20% of the participants did not fill the two

hidden fields, we assumed that they were not able to show them using the

feedback mechanism.

Some participants also left one or two of the visible and required fields blank.

Hence, the task completion time was calculated per input field rather than for

the task as a whole. A limitation of conducting the study online is the inability

to know the reason for leaving these fields blank. Hence, we only consider the

results of this study as a preliminary indication of RBUIS’s ability to improve

usability. On the other hand, in the lab-based study we calculated the task

completion time for the task as a whole. In case the participants left some fields

blank, we can know if the reason was the complexity of the UI since the

laboratory session is video-recorded. Hence, in the lab-based study we also

calculated effectiveness in addition to efficiency and satisfaction.

7.4.2 Lab-Based Study

Since the online study (Section 7.4.1) showed an improvement in usability for

simplified UIs, we conducted a more thorough lab-based study to check if it will

yield similar results. This study has two parts, one on feature-set minimization

and another on layout optimization.

 Mean SUS Score

Customer

Maintenance UI

Initial Simplified Improvement

50.08 (se=4.005) 66.68 (se=3.496) 33.14 % (1.33×)

 Mean Task Completion Time (Per Input Field in Sec.)

Customer

Maintenance UI

Initial Simplified Improvement

24.84 (se=3.794) 13.68 (se=2.369) 44.92 % (1.81×)

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 183

In the feature-set minimization part, the participants were presented with

two pairs of UIs on a desktop computer connected to a Tobii12 eye-tracker. The

UIs were selected from the SAP ERP system. The first pair included an initial

and a simplified version of the Material UI shown in Figure 7.13a, and Figure

7.13b respectively. The second pair represented the Vendor maintenance UI,

which is shown in its initial state in Figure 7.14a, and after simplification in

Figure 7.14b.

Similar to the UI selected in the online study, the initial version of these UIs

contains several tab-pages and a lot of fields, and can be simplified for roles

that require more basic functionality. An existing document provides

information and examples on the variation in SAP’s user needs and helped us in

determining what features to remove from the UIs (Synactive GmbH 2010). The

fields that are not required by a role were hidden in the simplified UI version

and the widgets were regrouped accordingly.

As shown by Figure 7.13a, and Figure 7.14a, each of the initial UIs has six

tab-pages. As provided by SAP, these UIs originally have a larger number of

tab-pages. However, we only used six because we wanted to keep the time

required to complete the study reasonable for the participants. Nevertheless, a

UI with six tab-pages offers enough complexity for evaluating the significance of

usability improvement provided by feature-set minimization. Hence, if the

simplified UI provided a significant improvement in comparison to an initial UI

with six tab-pages, it is likely to yield similar or even better results when

compared to an initial UI with more tab-pages.

In the part on layout optimization, the participants were also given two pairs

of UIs. The first pair was presented to them on an iPad tablet and consisted of

an initial and a simplified version of the Sales Transaction UI shown in Figure

7.15a, and Figure 7.15b respectively. This UI was selected from Microsoft’s

Dynamics ERP system. Its initial version has a desktop-style input grid and a

lookup list for selecting items. Many enterprise systems maintain this UI style

on tablets. The simplified UI provided a point-of-sale style sales transaction

12 Tobii eye-tracker: www.tobii.com

184 7.4 Evaluation Based on Usability Studies

with a buttons panel for selecting items and a grid with up/down arrows for

changing an item’s quantity. The second pair was presented on an HTC Desire

mobile phone and consisted of an initial and a simplified version of the Contacts

UI, which was previously shown in Chapter 5 by Figure 5.9.

Several measurements were made to compare the usability of both the initial

and simplified versions of the UIs presented in this study. For both parts of the

study, the participants were asked to answer the System Usability Scale (SUS)

questions shown in Section B.2 of Appendix B to determine their satisfaction

(perceived usability). In addition to SUS, the participants were asked to select

three terms from the Microsoft Product Reaction Cards (Benedek & Miner

2002), shown in Section B.3 of Appendix B, to describe the UI. The time taken

to complete each task was also recorded in both parts to measure the efficiency.

Additionally, in the feature-set minimization part of the study, eye-tracking

was used to determine how lost the participants were in the initial UI versus

the simplified one. The sessions were video-recorded, and the participants were

asked to express their thoughts out loud in order to give us insights on their

experience. The video recordings, especially in the feature-set minimization

part, helped us in identifying whether a participant missed a field because of

the UI’s complexity or due to a simple human error.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 185

(a) Initial Material User Interface

(b) Simplified Material User Interface

Figure 7.13: Material UI Initial (a) and Simplified (b) Versions

186 7.4 Evaluation Based on Usability Studies

(a) Initial Vendor User Interface

(b) Simplified Vendor User Interface

Figure 7.14: Vendor UI Initial (a) and Simplified (b) Versions

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 187

(a) Initial Sales Transaction User Interface

(b) Simplified Sales Transaction User Interface

Figure 7.15: Sales Transaction UI Initial (a) and Simplified (b) Versions

188 7.4 Evaluation Based on Usability Studies

7.4.2.1 Participant Recruitment and Demographics

We recruited 23 participants for this study by promoting it within The Open

University community. The participants volunteered to take part without

receiving any financial compensation. This study took an average of 45 minutes.

The participants were recruited at random and had diverse demographics as

shown by the chart in Figure 7.16. The demographic information was collected

using the questionnaire presented in Section B.1 of Appendix B. None of the

participants had previously used the UIs, which were selected for the study.

Figure 7.16: Participant Demographic Information for Lab-Based Usability Study

7.4.2.2 Tasks Allocated to Participants

In the feature-set minimization part, the participants were asked to fill a

new record in each of the initial and simplified Material and Vendor UIs,

following the instructions shown in Figure 7.17. The same instructions were

given for both UI versions in each pair.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 189

Figure 7.17: Lab-Based Usability Study Participant Instructions of the Feature-Set
Minimization Part for the Material UI (Left) and Vendor UI (Right)

In the layout optimization part, the participants were asked to perform a

simple task with each UI. For the first pair of UIs, they were asked to select a

customer, add four items, and change the quantities for two of the added items

as dictated by the following instructions:

1) Select the customer: Sophia Kenan

2) Add the following items:

 Café Latte

 Mocha

 Blueberry Muffin

 Apple Pie

3) Increase the quantity of the Café Latte item to 2

4) Increase the quantity of the Apple Pie item to 3

As for the second pair, the participants were asked to make a phone call to a

contact called Charles Becker assuming that the UI is being used while running

190 7.4 Evaluation Based on Usability Studies

down the street. They were presented with the ability to shake the phone, hence

prompting it to change from one UI version to another.

Following the same practice as the online study, since some users have a

tendency to like the first UI that they see, we presented half of the participants

with the initial UI first and the other half with the adapted one first in order to

avoid potential bias.

7.4.2.3 Satisfaction and Efficiency Results

We used a Wilcoxon signed-ranks test to check if there are statistically

significant differences between the initial UIs and the simplified ones. Similar

to the online usability study, the data that we collected did not have a normal

distribution. Therefore, we used the Wilcoxon signed-rank test, nonparametric

equivalent to the dependent t-test, because it does not assume normality in the

data. Additionally, this test can be applied to continuous variables, which is our

case with the task completion times and SUS scores.

The results presented in Table 7.7 show that simplifying the UI based on

roles elicited a statistically significant improvement in both perceived usability

based on the SUS score and efficiency based on the task completion time. The

asymptotic significance (2-tailed) is the p value for the test and the Wilcoxon

signed-ranks test, is reported using the Z statistic. The p value is < 0.01 for all

cases, indicating that the simplified UI versions show a very strong improvement

over the initial ones in terms of satisfaction and efficiency. We should note that

the time taken by the participants to complete the task was not measured for

the Contacts UI because the task is trivial and only takes a few seconds.

Table 7.7: Results of Wilcoxon Signed Ranks Test for Satisfaction and Efficiency

User Interface Satisfaction (SUS Score) Efficiency (Time)

Material Z = -4.200, p = 0.000027 Z = -4.197, p = 0.000027

Vendor Z = -4.199, p = 0.000027 Z = -4.198, p = 0.000027

Sales Transaction Z = -4.109, p = 0.000040 Z = -4.167, p = 0.000031

Contacts Z = -2.617, p = 0.008877 Not Measured

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 191

The results of the SUS scores are illustrated by the box-plots in Figure 7.18.

We can observe three outliers but these are not extreme cases.

Figure 7.18: End-User Satisfaction Results for Lab-Based Usability Study

The mean SUS scores are presented in Table 7.8, alongside the improvement

percentage for each of the four user interfaces used in the study. The

improvement percentages show the advantage of the simplified UI versions over

the initial ones for all cases.

Table 7.8: Improvement in End-User Satisfaction after UI Simplification

 Mean SUS Score

User Interface Initial Simplified Improvement

Material 34.09 (se=2.785) 68.78 (se=4.273) 101.76 % (2.01×)

Vendor 41.65 (se=3.942) 86.13 (se=2.788) 106.79 % (2.06×)

Sales Transaction 54.09 (se=4.488) 88.48 (se=2.830) 63.58 % (1. 63×)

Contacts 66.70 (se=3.703) 83.74 (se=3.727) 25.55 % (1. 25×)

192 7.4 Evaluation Based on Usability Studies

The results of the time taken to complete the tasks are illustrated by the box-

plots in Figure 7.19. We can observe three outliers but these are very close to

the boundary of the box-plot.

Figure 7.19: End-User Efficiency Results for Lab-Based Usability

The mean times taken to complete the allocated tasks are presented in Table

7.9, alongside the improvement percentage for each of the four user interfaces

used in the study. The improvement percentages show the advantage of the

simplified UI versions over the initial ones for all cases.

Table 7.9: Improvement in End-User Efficiency after UI Simplification

 Mean Task Completion Time (In Seconds)

User Interface Initial Simplified Improvement

Material 406.39 (se=23.005) 129.96 (se=9.010) 68.02 % (3.12×)

Vendor 236.30 (se=12.043) 84.57 (se=6.943) 64.21 % (2.79×)

Sales Transaction 148.87 (se=8.035) 63.83 (se=4.331) 57.12 % (2.33×)

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 193

The reaction cards selected by the participants to describe each UI confirm

the improvement of end-user satisfaction achieved by the simplified UIs over

the initial ones. The participants were asked to select three reaction cards to

describe each UI from the list shown in Section B.3 of Appendix B. The pie-

charts illustrated in Figure 7.20 show that they selected a majority of positive

terms when describing the simplified UIs, whereas they described the initial

UIs with a majority of negative terms.

Figure 7.20: Aggregated Product Reaction Card Results for Lab-Based Usability Study

In addition to the reaction cards, the participants also mostly expressed

dissatisfaction with the initial UIs in their verbal and written comments. For

example, one participant said: “I do not want a job where I have to use this UI

194 7.4 Evaluation Based on Usability Studies

(initial version), whatever the job may be”. On the other, the simplified UIs

mostly yielded positive comments. For example, although the task was exactly

the same for both versions of the same UI one participant described a simplified

UI as follows: “The interface is simple, and the task is easier and more familiar”.

Figure 7.21: Product Reaction Cards Selected More than Two Times by Participants

The terms that were selected more than two times for each UI by the

participants are illustrated by the bar-charts in Figure 7.21.

7.4.2.4 Effectiveness Results

The effectiveness is related to the “accuracy and completeness with which

specified users can achieve specified goals in particular environments” (ISO 9241

2008). To measure and compare the effectiveness between the initial and

simplified UIs, we checked the number of fields that were left blank by the

participants. We were able to determine the reason behind the effectiveness

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 195

results because the sessions were video-recorded. This option was not available

to us in the online study.

In the layout optimization part, the participants were able to complete the

tasks successfully in most cases. The task given in the contacts UI (calling one

of the contacts) was quite simple hence all the participants were able to perform

it. In the Sales Transaction UI, very few participants missed entering one of the

items or increasing a quantity. As pointed out by the participants themselves,

this mistake was not due to the UIs but to a simple human error when reading

the instructions.

The case was not the same for the feature-set minimization part where the

participants left more blank fields with the initial UI than with the simplified

one. A Wilcoxon signed-ranks test showed that the simplified UIs elicited a

strong statistically significant improvement (p < 0.01) in both the Material (Z =

-2.728, p = 0.0063) and the Vendor (Z = -2.655, p = 0.0079) UIs. The average

percentages of the missing fields per participant are presented in Table 7.10.

Table 7.10: Improvement in End-User Effectiveness after UI Simplification

Very few fields were missed with the simplified UIs constituting an average

of 1.59% per participant. This percentage indicates that there is on average 1

missing field for every 5 participants. As we observed in the video-recordings,

the main reason for missing a field in the simplified UI is a simple human error

when reading the instructions (e.g., skipping a field by mistake).

The percentage of missing fields was higher with the initial UI versions with

an average of 7.12%. This percentage indicates that there is on average 1

missing field for each participant. By observing the video-recordings we noticed

that there were two main reasons behind the missing fields in the initial UI.

 Mean Missing Required Fields per Participant

User Interface Initial Simplified Improvement

Material
1.36 fields (6.33 %)

(se=0.381)
0.14 fields (0.93 %)

(se=0.100)
 89.92 % (9.92×)

Vendor
0.95 fields (7.91 %)

(se=0.259)

0.27 fields (2.25 %)

(se=0.117)
 71.57 % (3.51×)

196 7.4 Evaluation Based on Usability Studies

The first reason is that in some cases the participants tried to fill a field

whenever they spotted it, thereby causing them to forget some fields because of

not working sequentially. The second reason was knowingly skipping a field

after getting frustrated from searching thoroughly and not finding it. Some

participants tried using the search feature available in the web-browser to find

certain fields. Yet, as we observed this was not helpful in all the cases since the

participants still had to go through the tabs and apply the search on each one.

Another point to note about the initial UIs is that during the study we

intervened a few times to offer the participants hints, primarily about two

points: the existence of tab-pages, and the existence of scrolling in one of the

tab-pages of the initial Vendor UI. Some participants did not notice that the

initial UIs had tabs and some others did not notice that one of the tabs in the

initial Vendor UI had a scroll bar. Hence, we gave hints 11 times on the tab-

pages and 11 times on the scrolling. Some participants needed both hints; some

needed only one, while the others did not require any of the two. On the other

hand, in the simplified UIs no hints were needed for completing the task.

Without the hints in the initial UIs, some participants might have taken longer

to complete the task, and might have even left more required fields blank.

7.4.2.5 Eye-Tracking Results

The eye-tracking that we conducted in the feature-set minimization part of

the study on the Material and Vendor UIs, helped us in determining and

comparing how lost the participants were when using each of the UI versions.

We discarded the eye-tracking data for 4 of our 23 participants because their

eye-glasses prevented the eye-tracking device from recording any data. We used

two metrics, namely the fixation duration and fixation count, from the eye-

tracking data to determine how lost the participants were when using the

different UI versions. The fixation duration is the measurement of how much

time a participant spent focusing directly on certain points in the UI, while the

fixation count is the measurement of the number of times that each participant

directly focused on certain points.

The difference between the initial and simplified UIs in terms of fixation

duration and fixation count is illustrated by the box-plots in Figure 7.22. By

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 197

observing the box-plots, we can immediately notice the improvement between

the initial and simplified UI versions for all cases. These numbers represent the

eye-tracking data of the part of the screen that shows the data entry form (SAP

UI). The tasks shown in Figure 7.17 that were also displayed on the screen were

excluded by defining an area-of-interest around each UI using the software tool

provided by the Tobii eye-tracker. The areas-of-interest allow us to get accurate

data about how much gazing each participant did on the UI itself.

Figure 7.22: Eye-Tracking Results of Fixation Duration and Fixation Count

The mean values of the fixation duration and fixation count are presented in

Table 7.11 alongside the improvement percentages, which show that the

simplified UIs have a significant advantage over the initial ones.

Table 7.11: Improvement in Fixation Data after Simplification

 Mean Fixation Duration (In Seconds)

User Interface Initial Simplified Improvement

Material 137.68 (se=15.03) 29.77(se=2.748) 78.37 % (4.62×)

Vendor 71.98 (se=8.693) 14.97 (se=1.365) 79.20 % (4.80×)

 Mean Fixation Count

User Interface Initial Simplified Improvement

Material 599 (se=48.336) 128 (se=9.552) 78.63 % (4.67×)

Vendor 312 (se=34.755) 63 (se=5.217) 79.80 % (4.95×)

198 7.4 Evaluation Based on Usability Studies

The heat maps in Figure 7.23 show the aggregated fixation data. We can

visually observe the improvement provided by the simplified UI versions. We

can notice that the highest amount of gazing is done on the left-hand-side of the

input fields in the initial UI, where the labels are presented. This indicates that

the participants were carefully checking the labels because it was difficult for

them to find the fields in which they were required to enter data. On the other

hand, with the simplified versions the overall gazing was much less intense.

Material Initial Version Material Simplified Version

Vendor Initial Version Vendor Simplified Version

Legend

More Gazing

(More Lost)

Less Gazing

(Less Lost)

Figure 7.23: Heat Maps Showing an Aggregation of the Participants’ Gazing

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 199

The gaze plots in Figure 7.24, illustrate an example of one participant whose

data came close to the means presented in Table 7.11. We can observe that even

in an average case the significance of the improvement is visually noticeable.

Material Initial Version Material Simplified Version

Vendor Initial Version Vendor Simplified Version

Figure 7.24: Gaze Plots of One Participant with Data Close to the Mean

7.4.2.6 Additional Insights

Some participants expressed their preference of seeing the fields in the

instructions in the same order as their counterparts in UI. We do acknowledge

the importance of this point. However, we purposely presented the instruction

fields in a different order than their UI counterparts to make the study closer to

200 7.4 Evaluation Based on Usability Studies

a real-life scenario. For example, in real-life the data in the instructions can in

some cases be received in an arbitrary order on paper from business partners

such as: suppliers, customers, etc.

Some participants said that they disliked the fact that some of the labels

were presented as acronyms. They said that having a full name for the field

might be more helpful in searching for it. Some participants also stated that

certain fields were not logically allocated under the tabs that they expected. For

example, the General/Plant tab-page had the Shipping Times field in it. We

should note that we copied the UIs as it is from SAP. Hence, these two points

could also be improved upon in the initial design to make the UIs more usable.

7.4.3 Discussing the Results of the Usability Studies

This section discusses the results of the usability studies in terms of

supporting or rejecting the null hypothesis H0-4, which we established in

Chapter 3, and indicates the limitations of the studies.

7.4.3.1 Discussion

Our initial online usability study yielded a very strong statistically

significant improvement (p < 0.01) for the simplified UIs over the initial ones in

terms of end-user satisfaction and efficiency. These results were encouraging

hence we conducted a more thorough lab-based study to further investigate and

validate this improvement.

The lab-based study also yielded a very strong statistically significant

improvement (p < 0.01) for end-user satisfaction. As demonstrated earlier by

the values in Table 7.8, feature-set minimization and layout optimization

increased end-user satisfaction by an average of 104.27% and 44.56%

respectively. These results are also confirmed by the reaction cards, which the

participants selected to describe the UIs. As illustrated earlier in Figure 7.20,

the participants mostly selected negative keywords to describe the initial UIs

and positive ones to describe the simplified UIs. The implementation phase of

enterprise applications could be very costly. This phase deals with the system

deployment and includes: customization, data migration, training, etc. The end-

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 201

users’ technology acceptance (satisfaction) is a key success factor in this phase

(Section 1.3.3). Hence, offering the end-users UIs that they perceive as easy-to-

use is vital for the success of the enterprise application. This point highlights

the importance of the improvement in end-user satisfaction, which was yielded

by the simplified UIs in the usability studies that we conducted.

A very strong statistically significant improvement (p < 0.01) was also

demonstrated for end-user efficiency. Both feature-set minimization and layout

optimization decreased the time taken to complete the tasks. As demonstrated

earlier by the values in Table 7.9, feature-set minimization improved efficiency

by an average of 66.11% and layout optimization improved it by an average of

57.12%. Enterprises generally pay large sums of money for their enterprise

applications. Therefore, these applications are expected to have a good return

on investment in terms of speeding up the daily business transactions. The

significant improvement in efficiency achieved by the simplified UIs allows

enterprises to have a quicker return on investment, instead of losing time and

money with the less efficient initial user interfaces.

The improvement in end-user satisfaction and efficiency shown by the lab-

based study, confirmed the results of the online study. Furthermore, additional

work was done in the laboratory on measuring the end-users’ effectiveness and

also the extent to which they feel lost when trying to find the required fields in

both versions of the user interface.

The lab-based study showed that the simplified UIs elicited a very strong

statistically significant improvement (p < 0.01) in effectiveness over the initial

ones. As shown earlier by the values in Table 7.10, the simplified UIs improved

effectiveness by an average of 80.74%. Effectiveness is highly important for the

activities managed by enterprise applications. Some errors committed by the

end-users when entering financial information could cause the enterprise to

lose a lot of time and money and might have legal repercussions due to

discrepancies in some financial reports. Hence, the UIs should be simple enough

to support the end-users to complete their tasks with as few errors as possible.

The eye-tracking results also demonstrated that feature-set minimization

significantly improves the fixation duration and fixation count. We can notice

202 7.4 Evaluation Based on Usability Studies

from the data that with the simplified UI versions the participants required a

low fixation in order to find the fields that they needed for completing the

assigned task. On the other hand, with the initial UI versions, the required

fixation was much higher. As shown earlier by the values in Table 7.11, the

average improvement is 78.78% and 79.21% for the fixation duration and

fixation count respectively. Enterprise application end-users can spend several

consecutive hours every day working with these systems. Hence, the more lost

they feel when looking for UI elements, the more they have to fixate on certain

points of the UI to try and locate them. This issue could degrade their

performance even further after several hours of work, by having a negative

effect on: efficiency due to getting tired, effectiveness due to being lost, and

satisfaction due to frustration.

Based on the improvements in efficiency, effectiveness, and satisfaction, we

can reject the null hypothesis H0-4 and say that minimizing the feature-set and

optimizing the layout of enterprise application UIs based on the context-of-use,

significantly improves their usability in terms of: efficiency, effectiveness, and

satisfaction. The results of the eye-tracking data also support our rejection of

this null hypothesis even further.

7.4.3.2 Threats to Validity

One might ask about the effect of learning over time on the results, which we

obtained from the usability studies. Would learning eventually make the end-

users more effective, efficient, and satisfied with the initial UIs? We can say

that as the end-users learn, their efficiency and effectiveness are likely to

improve for both the initial and the simplified UIs. Learning however is

unlikely to improve their satisfaction with the initial UIs. Subjecting the end-

users to the complexity of the initial UIs could drive them to reject the

enterprise application in the early stages of the training hence causing an

implementation failure. An additional rationale for using the simplified UIs is

that training the end-users on the initial UIs requires more time and money,

whereas the simplified ones are likely to be learned more quickly.

Chapter 7 – Evaluating the Contributions from the Technical and Human Perspectives

 203

7.5 Chapter Summary

In this chapter, we evaluated the contributions from both the technical and

human perspectives. This evaluation helped us in answering the evaluation

research questions that were defined in Section 3.1.2 of Chapter 3.

The first part of the evaluation, presented in Section 7.2, focused on the

technical aspects of our contributions. We integrated RBUIS into an open-

source enterprise application called OFBiz. Then, we established and applied

several technical metrics to assess this integration. We were able to perform the

integration by merely adding a few lines-of-code globally in OFBiz, thereby

maintaining a low change-impact. We showed that there is a similarity between

the UIs of OFBiz hence requiring fewer mapping rules for reverse-engineering

them into a model-driven representation. This point makes the reverse-

engineering process easier for enterprise applications, which contain thousands

of user interfaces. Based on these results, we rejected the null hypothesis H0-1

because using the Cedar Architecture and interpreted runtime models allowed

RBUIS to integrate in OFBiz without causing major changes to the way it

functions or incurring a high integration cost. Furthermore, we conducted an

efficiency and scalability test, which showed that our UI adaptation approach

provides a real-time runtime performance and is scalable, thereby supporting

our rejection of the null hypothesis H0-2.

In the second part of the evaluation, presented in Section 7.3, we assessed

our contributions based on industrial expertise and data from real-life projects.

We conducted an interview with the manager of a software company, which

builds products based on OFBiz in China, to inquire about his opinion on the

generality and flexibility of our UI adaptation approach. Although, the

interviewee acknowledged our approach’s generality and flexibility, he was

more interested in discussing its feedback mechanism. He offered us interesting

insights on the importance of this mechanism for shortening the UI adaptation

cycle by allowing end-users to report changes directly to the system rather than

to the software company. We were able to estimate and demonstrate this

improvement based on data from three real-life projects provided to us by the

manager whom we interviewed. We acknowledge the limitations of this

204 7.5 Chapter Summary

interview due to the small amount of information that we were able to obtain on

generality and flexibility. Therefore, we need to collect more data before being

able to decide on whether to accept or reject the null hypothesis H0-3.

The third and final part of the evaluation was presented in Section 7.4, and

focused on whether our UI adaptation approach can significantly enhance the

usability of enterprise applications UIs. We started this part of the evaluation

by running a low-cost online usability study to compare an initial real-life

enterprise application UI and a simplified version of it, in terms of end-user

efficiency and satisfaction. This study showed that the simplified UI yielded a

very strong statistically significant improvement (p < 0.01) over the initial one.

Afterwards, we ran a more thorough lab-based usability study, which presented

participants with four pairs of real-life enterprise UIs each containing an initial

and a simplified version of the same UI. Two UI pairs were used for evaluating

feature-set minimization, and two were used for evaluating layout optimization.

The lab-based study confirmed the results on efficiency and satisfaction we

obtained through the online study. Additionally, this study showed that the

simplified UIs elicited a very strong statistically significant improvement (p <

0.01) in end-user effectiveness over the initial UIs. Furthermore, by applying

eye-tracking in the feature-set minimization part of the study, we showed that

participants were much more lost when using the initial UIs compared to using

the simplified ones. Based on the results of the usability studies, we rejected the

null hypothesis H0-4 since minimizing the feature-set and optimizing the layout

of enterprise application UIs based on the context-of-use, significantly improved

their usability in terms of: efficiency, effectiveness, and satisfaction.

 205

8

Conclusions and Future Work

“The end of a melody is not its goal: but nonetheless, had the melody

not reached its end it would not have reached its goal either. A parable.”

― Friedrich Nietzsche

This thesis presented a tool-supported approach for engineering adaptive

model-driven enterprise application user interfaces. This chapter summarizes

the work that was presented in the thesis and provides our concluding

thoughts. It also presents a few points, which can be the target of future

research endeavors. Since we already partially addressed some of these points,

we summarize our preliminary results and offer some guidance for researchers

wishing to tackle these challenges in the future.

8.1 Contributions

This thesis contributed an approach for engineering adaptive model-driven

enterprise application user interfaces. In Chapter 2, we conducted a literature

review of adaptive model-driven UI development systems. We evaluated the

existing art after classifying it under: architectures, techniques, and tools. The

evaluation was based on a set of criteria, which we compiled either based on

direct recommendations from the literature or by combining features from

multiple existing systems. The evaluation allowed us to identify the gaps, which

offer potential for new research to be conducted. Based on these gaps, we

defined our research questions and setup the corresponding hypotheses in

Chapter 3. To answer the research questions, three technical contributions were

presented and evaluated. These contributions are: the Cedar Architecture, the

206 8.1 Contributions

Role-Based UI Simplification (RBUIS) mechanism, and their supporting IDE,

Cedar Studio.

We presented the Cedar Architecture in Chapter 4, as a reference for the

stakeholders interested in developing adaptive model-driven enterprise

application UIs. This architecture is based on existing works including: the

Three Layer Architecture and the CAMELEON Reference Framework. The

Cedar Architecture has three server-side technology-independent layers. The

decision components layer handles decision making in various adaptive UI

scenarios such as evaluating whether a change in the context-of-use requires

the UI to be adapted. The adaptation components layer is mainly responsible for

adapting the UI models using the appropriate adaptive behavior. The adaptive

behavior and UI models layer hosts the models that comprise the different

levels of abstraction representing the UI, and the adaptive behavior that is

applied to adapt the UI to the different contexts-of-use. The Cedar Architecture

also has a client components layer. This layer hosts the technology-specific

components, which are deployed to the client machine. These components are

part of an API, which integrates in the enterprise application’s code and allows

it to connect to the server-side layers in order to adapt its user interfaces.

In Chapter 5, we presented Role-Based User Interface Simplification

(RBUIS), a mechanism for improving usability through adaptive behavior by

providing end-users with a minimal feature-set and an optimal layout based on

the context-of-use. RBUIS merges role-based access control (RBAC) with

adaptive behavior for simplifying UIs. In RBUIS, roles are divided into groups

representing the aspects (e.g., computer literacy, job title, etc.) based on which

the UI will be simplified. RBUIS supports feature-set minimization by assigning

roles to task models for providing end-users with a minimal feature-set based

on the context-of-use. The assignment could be done by IT personnel but there

is also a potential for engaging end-users in the process. Layout optimization is

supported by assigning roles to workflows that represent adaptive UI behavior

visually and through code before being applied to CUI models. Furthermore,

RBUIS promotes user-feedback for refining the adaptation operations. Hence,

end-users are allowed to reverse feature-set minimizations and layout

optimizations, and to choose possible alternative layout optimizations.

Chapter 8 – Conclusions and Future Work 207

Cedar Studio was presented in Chapter 6 as an IDE for supporting the

development of adaptive model-driven enterprise application UIs based on the

Cedar Architecture and using RBUIS. Cedar Studio supports stakeholders such

as: developers and IT personnel, in defining and managing artifacts such as: UI

models and adaptive behavior, which are stored in a server-side database. This

IDE can access the server-side layers of the Cedar Architecture through web-

services in order to request or update artifacts. Cedar Studio supports visual-

design tools for: (1) task models, (2) domain models, (3) AUI models, (4) CUI

models (5) goal models, and (6) workflows. It also supports visual-design and

code-editing tools for: (1) task-role assignments and RBUIS rules, (2) model

constraints, and (3) dynamic scripts. Automatic generation and synchronization

between the various levels of abstraction (task, AUI, and CUI models) is also

supported, with the ability to make manual changes at any of these levels.

In Chapter 7, the contributions were evaluated from the technical and

human perspectives. In the technical evaluation part, RBUIS was integrated

into an existing open-source enterprise application called OFBiz. Several

metrics were defined and applied to measure technical characteristics related

to: reverse-engineering, integration, and runtime execution. We showed that

RBUIS can be integrated into existing enterprise applications without causing

major changes to the way they function or incurring a high integration cost. We

also showed that it can run efficiently in real-time and that it is scalable. In the

second part of the evaluation, we assessed our contributions based on industrial

expertise and data from real-life projects. We obtained interesting insights on

the importance of RBUIS’s feedback mechanism in shortening the UI

adaptation cycle, by allowing end-users to report their feedback directly to the

system rather than to the software company. The third and final part focused

on evaluating whether our UI adaptation approach can significantly improve

the usability of enterprise application UIs. We conducted usability studies with

real-life UIs. These studies showed that UIs with a minimized feature-set and

an optimized layout elicited a very strong statistically significant improvement

over their initial versions in terms of end-user efficiency, effectiveness, and

satisfaction. Eye-tracking was also conducted, and it showed that minimizing

the feature-set of complex UIs significantly decreases the extent to which end-

users are lost when searching for input fields.

208 8.2 Future Work

8.2 Future Work

In addition to the novel contributions that were made in this thesis, there is

room for more work that could be the target of future endeavors. In this section,

we present this potential future work and summarize the preliminary results of

some of the points that we are proposing.

8.2.1 Preserving Designer Input on the User Interface

Designer input on the CUI model is important for the predictability and

quality of the user interface. Hence, it would be better if designers can create a

CUI model rather than completely generating it from an abstract model. Yet

even though some approaches offer designers the ability to create CUIs, the

designer’s choices are bound to change upon adapting the UI according to the

context-of-use. Nevertheless, in certain cases, there are some decisions that are

hard to make automatically. For example, assume a UI element was hidden by

applying a feature-set minimization operation. The layout refitting algorithm

could have two choices for filling the gap left by the hidden element, either

increasing the height of the element above it, or increasing the width of the

element on its left-hand side. Such decisions could be better supported by the

choices of the UI designers who know the functional nature of the interface.

We presented some preliminary work on a technique (Akiki et al. 2013c),

which provides non-technical UI designers with a simple means of assigning

constraints on the CUI. The constraints are taken into consideration and

preserved when the UI is being automatically adapted to a particular context-

of-use. Such constraints embody the characteristics of the UI that require

human ingenuity and are not met by fully-automated techniques. More work is

still required to make the proposed technique applicable in practice. A primary

point would be devising an algorithm, which can convert explicit designer

constraints into a constraint problem. This algorithm should then be utilized by

the adaptation engine in combination with the algorithm (Listing 5.6) that

refits the UI based on implicit constraints, in order to maintain the designer’s

input upon adapting the user interface.

Chapter 8 – Conclusions and Future Work 209

8.2.2 Empowering New Design Participants

Leveraging the concept of crowdsourcing for adapting enterprise application

UIs could be beneficial when considering the large communities and commercial

interests behind these applications. In terms of RBUIS, crowdsourcing can

allow end-users to adapt the feature-set using a simple tool without attaching

the adaptations to user-roles. Afterwards, administrators could attach the UIs

adapted by the crowd to one or more enterprise roles. This helps administrators

in delegating some of the adaptation effort to the crowd.

We conducted initial research (Akiki et al. 2013b) in which we extended

RBUIS by allowing end-users to perform feature-set minimization through a

basic web-based feature-set editing tool. This tool can be made available online

for an enterprise’s community members. We evaluated the tool through a

preliminary online user-study, which provided encouraging results in terms of

end-user satisfaction, efficiency, and effectiveness. However, this study is

limited in terms of the simplicity of the considered example. Additionally, it was

carried out online hence we were not able to collect a lot of information on the

participants’ interaction with the tool. These limitations could be overcome in

the future by conducting lab-based studies with more complex user interface

examples. Furthermore, in the future, the web-based feature-set editing tool

could be extended to support the adaptation of concrete UI widget properties

(e.g., size, location, etc.). The study could also be enriched by testing the tool

with a real-life enterprise application, and crowdsourcing the UI adaptations to

that application’s relevant online community.

8.2.3 Applying Simplification to Multiple Related User Interfaces

In enterprise applications, data input tasks can be scattered across multiple

UIs. For example, consider the scenario of entering data for an inventory item

in the Microsoft Dynamics Great Plains ERP system. The primary data entry is

done using a UI called Item Maintenance. However, other item-related

information is entered using separate UIs, which include: Internet Information,

Options, Serial/Lot, Accounts, Currency, Print Options, Price List, Price Group,

Purchasing Options, etc. On the domain model level, all these forms are linked

210 8.3 Final Thoughts

with the Item Maintenance UI through a primary-key/foreign-key relationship

on the Item Reference field.

One could argue that all these forms could be developed at design-time, as

one UI. Yet, we should consider the usage complexity that this design choice

might incur in terms of the large number of UI widgets. Furthermore, we

should consider the loading time of both the user interface elements and the

data. Having a user interface that combines the required scattered fields in one

UI, could enhance the performance of enterprise application end-users.

A possible solution could be extending RBUIS to support UI simplification in

such scenarios, where related information is scattered across multiple UIs. A

possible way of achieving this solution is by monitoring each end-user’s

behavior in terms of sequential usage of tasks. Afterwards, the system would

suggest a new user interface, which combines the various related UI fragments

that are being sequentially accessed by a particular end-user. This point can be

achieved by suggesting a means for implementing the behavior monitors and

behavior evaluators, which have been suggested by the Cedar Architecture.

8.3 Final Thoughts

Our approach is not intended to replace any of the stakeholders involved in

the process of designing and developing user interfaces. It is merely meant to

help them in producing user interfaces that fit the context-of-use better, thereby

providing end-users with an improved usability.

As a final future outlook, we think that packaging adaptive model-driven

user interface development systems as general-purpose products could increase

their usefulness for real-life projects. This is already the case for existing

commercial tools, which support the development of traditional UIs. Perhaps

the initiative for producing an adaptive model-driven UI development system,

which rivals traditional commercial IDEs, could be a joint venture between

academics working in this area and industrial partners with a real interest in

adopting this approach. Cedar Studio is a strong starting point for achieving

this objective.

Bibliography 211

Bibliography

(Abrams et al. 1999) Abrams, M. et al., 1999. UIML: An Appliance-

Independent XML User Interface Language. Computer Networks, 31(11),

pp.1695–1708. http://dx.doi.org/10.1016/S1389-1286(99)00044-4.

(Akiki 2010) Akiki, P., 2010. Devising a New Model-Driven Framework for

Developing GUI for Enterprise Applications. In G. A. Papadopoulos et al.,

eds. Information Systems Development. Boston, MA: Springer US, pp. 269–

279. isbn:978-0-387-84809-9, 978-0-387-84810-5.

(Akiki et al. 2011) Akiki, P.A. et al., 2011. A Systematic Framework for

Assessing the Implementation Phase of Enterprise Resource Planning

Systems, The Open University. http://bit.ly/TR2012-06.

(Akiki 2013) Akiki, P.A., 2013. Engineering Adaptive User Interfaces for

Enterprise Applications. In Proceedings of the 5th ACM SIGCHI Symposium

on Engineering Interactive Computing Systems. London, UK: ACM, pp. 151–

154. http://dx.doi.org/10.1145/2494603.2480333.

(Akiki et al. 2015) Akiki, P.A., Bandara, A.K. & Yu, Y., 2015. Adaptive Model-

Driven User Interface Development Systems. ACM Computing Surveys,

47(1), pp.64:1–64:33 (In Press).

(Akiki et al. 2013a) Akiki, P.A., Bandara, A.K. & Yu, Y., 2013. Cedar Studio:

An IDE Supporting Adaptive Model-Driven User Interfaces for Enterprise

Applications. In Proceedings of the 5th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems. London, UK: ACM, pp. 139–144.

http://dx.doi.org/10.1145/2494603.2480332.

(Akiki et al. 2013b) Akiki, P.A., Bandara, A.K. & Yu, Y., 2013. Crowdsourcing

User Interface Adaptations for Minimizing the Bloat in Enterprise

Applications. In Proceedings of the 5th ACM SIGCHI Symposium on

Engineering Interactive Computing Systems. London, UK: ACM, pp. 121–126.

http://dx.doi.org/10.1145/2494603.2480319.

(Akiki et al. 2014) Akiki, P.A., Bandara, A.K. & Yu, Y., 2014. Integrating

Adaptive User Interface Capabilities in Enterprise Applications. In

Proceedings of the 36th International Conference on Software Engineering.

Hyderabad, India: IEEE/ACM, (forthcoming). http://bit.ly/1fQ8aR7.

(Akiki et al. 2013c) Akiki, P.A., Bandara, A.K. & Yu, Y., 2013. Preserving

Designer Input on Concrete User Interfaces Using Constraints While

Maintaining Adaptive Behavior. In Proceedings of the 2nd Workshop on

212 Bibliography

Context-Aware Adaptation of Service Front-Ends. London, UK: CEUR-

WS.org, pp. 9–16. http://bit.ly/1mYQ2MA.

(Akiki et al. 2013d) Akiki, P.A., Bandara, A.K. & Yu, Y., 2013. RBUIS:

Simplifying Enterprise Application User Interfaces through Engineering

Role-Based Adaptive Behavior. In Proceedings of the 5th ACM SIGCHI

Symposium on Engineering Interactive Computing Systems. London, UK:

ACM, pp. 3–12. http://dx.doi.org/10.1145/2494603.2480297.

(Akiki et al. 2012) Akiki, P.A., Bandara, A.K. & Yu, Y., 2012. Using

Interpreted Runtime Models for Devising Adaptive User Interfaces of

Enterprise Applications. In Proceedings of the 14th International Conference

on Enterprise Information Systems. Wroclaw, Poland: SciTePress, pp. 72–77.

http://dx.doi.org/10.5220/0003975800720077.

(Allbee 2008) Allbee, M., 2008. Lawson Smart Office brings WPF Goodness to

the Enterprise. http://bit.ly/1mdhYJ0 [Accessed August 1, 2013].

(Appert & Beaudouin-Lafon 2006) Appert, C. & Beaudouin-Lafon, M., 2006.

SwingStates: Adding State Machines to the Swing Toolkit. In Proceedings of

the 19th ACM Symposium on User Interface Software and Technology.

Montreux, Switzerland: ACM, pp. 319–322. http://dx.doi.org/10.1002/spe.v38:11.

(Aquino et al. 2010) Aquino, N. et al., 2010. Usability Evaluation of Multi-

Device/Platform User Interfaces Generated by Model-Driven Engineering. In

Proceedings of the 4th International Symposium on Empirical Software

Engineering and Measurement. Bolzano-Bozen, Italy: ACM, pp. 30:1–30:10.

http://dx.doi.org/10.1145/1852786.1852826.

(Balme et al. 2004) Balme, L. et al., 2004. Cameleon-RT: A Software

Architecture Reference Model for Distributed, Migratable, and Plastic User

Interfaces. In Proceedings of the 2nd European Symposium on Ambient

Intelligence. Eindhoven, The Netherlands: Springer, pp. 291–302.

http://dx.doi.org/10.1007/978-3-540-30473-9_28.

(Balzert et al. 1996) Balzert, H. et al., 1996. The JANUS Application

Development Environment-Generating More than the User Interface. In J.

Vanderdonckt, ed. Computer-Aided Design of User Interfaces I, Proceedings

of the Second International Workshop on Computer-Aided Design of User

Interfaces. Namur, Belgium: Presses Universitaires de Namur, pp. 183–206.

isbn:2-87037-232-9.

(Baresi & Ghezzi 2010) Baresi, L. & Ghezzi, C., 2010. The Disappearing

Boundary Between Development-time and Run-time. In Proceedings of the

FSE/SDP Workshop on Future of Software Engineering Research. Santa Fe,

New Mexico, USA: ACM, pp. 17–22. http://dx.doi.org/10.1145/1882362.1882367.

(Baresi et al. 2010) Baresi, L., Pasquale, L. & Spoletini, P., 2010. Fuzzy Goals

for Requirements-Driven Adaptation. In Proceedings of the 18th IEEE

International Requirements Engineering Conference. Sydney, Australia:

IEEE, pp. 125 –134. http://dx.doi.org/10.1109/RE.2010.25.

Bibliography 213

(Bencomo et al. 2008) Bencomo, N. et al., 2008. Dynamically Adaptive

Systems are Product Lines too: Using Model-Driven Techniques to Capture

Dynamic Variability of Adaptive Systems. In Proceedings of the 12th

International Conference on Software Product Lines. Limerick, Ireland: Lero

Int. Science Centre, University of Limerick, pp. 23–32. http://bit.ly/1iIEQRv.

(Benedek & Miner 2002) Benedek, J. & Miner, T., 2002. Measuring

Desirability: New methods for Evaluating Desirability in a Usability Lab

Setting. Proceedings of Usability Professionals Association, 2003, pp.8–12.

(Bergh et al. 2010) Bergh, J., Sahni, D. & Coninx, K., 2010. Task Models for

Safe Software Evolution and Adaptation. In D. England et al., eds. Task

Models and Diagrams for User Interface Design. Lecture Notes in Computer

Science. Berlin Heidelberg: Springer, pp. 72–77. isbn:978-3-642-11796-1.

(Berti et al. 2004) Berti, S. et al., 2004. The TERESA XML Language for the

Description of Interactive Systems at Multiple Abstraction Levels. In

Proceedings the Workshop on Developing User Interfaces with XML: Advances

on User Interface Description Languages. Advanced Visual Interfaces.

Gallipoli, Italy, pp. 103–110. http://bit.ly/1hWhLFS.

(Bihler & Mügge 2007) Bihler, P. & Mügge, H., 2007. Supporting Cross-

Application Contexts with Dynamic User Interface Fusion. In R. Koschke et

al., eds. Proceedings of INFORMATIK. LNI. Bremen, Germany: GI, pp. 459–

464. isbn:978-3-88579-203-1.

(Blouin et al. 2011) Blouin, A. et al., 2011. Combining Aspect-Oriented

Modeling with Property-Based Reasoning to Improve User Interface

Adaptation. In Proceedings of the 3rd ACM SIGCHI Symposium on

Engineering Interactive Computing Systems. Pisa, Italy: ACM, pp. 85–94.

http://dx.doi.org/10.1145/1996461.1996500.

(Blouin & Beaudoux 2010) Blouin, A. & Beaudoux, O., 2010. Improving

Modularity and Usability of Interactive Systems with Malai. In Proceedings

of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing

Systems. New York, USA: ACM, pp. 115–124.

http://dx.doi.org/10.1145/1822018.1822037.

(Blumendorf 2009) Blumendorf, M., 2009. Multimodal Interaction in Smart

Environments: A Model-based Runtime System for Ubiquitous User

Interfaces. PhD Thesis. Berlin, Germany: Technischen Universität Berlin.

http://bit.ly/1n2y0qs.

(Blumendorf et al. 2006) Blumendorf, M., Feuerstack, S. & Albayrak, S.,

2006. Event-based Synchronization of Model-Based Multimodal User

Interfaces. In A. Pleuss et al., eds. Proceedings of the 2nd International

Workshop on Model Driven Development of Advanced User Interfaces. 9th

International Conference on Model-Driven Engineering Languages and

Systems. Genova, Italy: ACM, pp. 1–5. http://bit.ly/1n2ysEY.

(Blumendorf et al. 2008) Blumendorf, M., Feuerstack, S. & Albayrak, S.,

2008. Multimodal Smart Home User Interfaces. In K. Mukasa, A. Holzinger,

214 Bibliography

& A. Karshmer, eds. Proceedings of the Workshop on Intelligent User

Interfaces for Ambient Assisted Living. 13th International Conference on

Intelligent User Interfaces. Gran Canaria, Spain: ACM. http://bit.ly/1kEKkuD.

(Blumendorf et al. 2007) Blumendorf, M., Feuerstack, S. & Albayrak, S.,

2007. Multimodal User Interaction in Smart Environments: Delivering

Distributed User Interfaces. In M. Mühlhäuser, A. Ferscha, & E.

Aitenbichler, eds. Constructing Ambient Intelligence. Berlin: Springer-

Verlag, pp. 113–120. isbn:978-3-540-85378-7, 978-3-540-85379-4.

(Blumendorf et al. 2010) Blumendorf, M., Lehmann, G. & Albayrak, S., 2010.

Bridging Models and Systems at Runtime to Build Adaptive User Interfaces.

In Proceedings of the 2nd ACM SIGCHI Symposium on Engineering

Interactive Computing Systems. Berlin, Germany: ACM, pp. 9–18.

http://dx.doi.org/10.1145/1822018.1822022.

(Bodart et al. 1995) Bodart, F. et al., 1995. Towards a Systematic Building of

Software Architecture: The TRIDENT Methodological Guide. In P. A.

Palanque & Rémi Bastide, eds. Design, Specification and Verification of

Interactive Systems. Proceedings of the Eurographics Workshop. Toulouse,

France: Springer, pp. 262–278. isbn:978-3-211-82739-0, 978-3-7091-9437-9.

(Botterweck 2011) Botterweck, G., 2011. Multi Front-End Engineering. In H.

Hussmann, G. Meixner, & D. Zuehlke, eds. Model-Driven Development of

Advanced User Interfaces. Springer, pp. 27–42. isbn:978-3-642-14561-2, 978-

3-642-14562-9.

(Brdiczka et al. 2007) Brdiczka, O., Crowley, J.L. & Reignier, P., 2007.

Learning Situation Models for Providing Context-Aware Services. In C.

Stephanidis, ed. Universal Access in HCI. Springer-Verlag, pp. 23–32.

isbn:978-3-540-73280-8, 978-3-540-73281-5.

(Brooke 1996) Brooke, J., 1996. SUS: A Quick and Dirty Usability Scale. In P.

W. Jordan et al., eds. Usability Evaluation in Industry. London, UK: Taylor

and Francis. http://bit.ly/1jicBsB.

(Buhrmester et al. 2011) Buhrmester, M., Kwang, T. & Gosling, S.D., 2011.

Amazon’s Mechanical Turk: A New Source of Inexpensive, Yet High-Quality,

Data? Perspectives on Psychological Science, 6(1), pp.3–5.

http://dx.doi.org/10.1177/1745691610393980.

(Calvary et al. 2003) Calvary, G. et al., 2003. A Unifying Reference

Framework for Multi-Target User Interfaces. Interacting with Computers,

15(3), pp.289–308. http://dx.doi.org/10.1016/S0953-5438(03)00010-9.

(Calvary et al. 2005) Calvary, G. et al., 2005. Towards a New Generation of

Widgets for Supporting Software Plasticity: The ”Comet”. In R. Bastide, P.

Palanque, & J. Roth, eds. Engineering Human Computer Interaction and

Interactive Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 306–

324. isbn:978-3-540-26097-4, 978-3-540-31961-0.

Bibliography 215

(Cao 2008) Cao, Y., 2008. Pareto Front - MATLAB Central.

http://bit.ly/ParetoFrontAlg [Accessed December 19, 2012].

(Carroll & Carrithers 1984) Carroll, J.M. & Carrithers, C., 1984. Training

Wheels in a User Interface. Communications of the ACM, 27(8), pp.800–806.

http://dx.doi.org/10.1145/358198.358218.

(Cheng et al. 2009) Cheng, B.H.C. et al., 2009. Software Engineering for Self-

Adaptive Systems: A Research Roadmap. In B. H. C. Cheng et al., eds.

Software Engineering for Self-Adaptive Systems. Springer, pp. 1–26.

isbn:978-3-642-02160-2, 978-3-642-02161-9.

(Clerckx et al. 2006) Clerckx, T. et al., 2006. A Task-Driven User Interface

Architecture for Ambient Intelligent Environments. In Proceedings of the

11th International Conference on Intelligent User Interfaces. Sydney,

Australia: ACM, pp. 309–311. http://dx.doi.org/10.1145/1111449.1111520.

(Clerckx et al. 2005) Clerckx, T., Luyten, K. & Coninx, K., 2005. DynaMo-AID:

a Design Process and a Runtime Architecture for Dynamic Model-Based User

Interface Development. In R. Bastide, P. A. Palanque, & J. Roth, eds.

Engineering Human Computer Interaction and Interactive Systems. Springer,

pp. 77–95. isbn:978-3-540-26097-4, 978-3-540-31961-0.

(Cohen 1988) Cohen, J., 1988. Statistical Power Analysis for the Behavioral

Sciences 2nd ed., Routledge Academic. isbn:0805802835.

(Coninx et al. 2003) Coninx, K. et al., 2003. Dygimes: Dynamically Generating

Interfaces for Mobile Computing Devices and Embedded Systems. In

Proceedings of the 5th International Symposium on Human-Computer

Interaction with Mobile Devices and Services. Udine, Italy: Springer, pp. 256–

270. isbn:978-3-540-40821-5, 978-3-540-45233-1.

(Coutaz 2010) Coutaz, J., 2010. User Interface Plasticity: Model Driven

Engineering to the Limit! In Proceedings of the 2nd ACM SIGCHI

Symposium on Engineering Interactive Computing Systems. Berlin,

Germany: ACM, pp. 1–8. http://dx.doi.org/10.1145/1822018.1822019.

(Coyette & Vanderdonckt 2005) Coyette, A. & Vanderdonckt, J., 2005. A

Sketching Tool for Designing Anyuser, Anyplatform, Anywhere User

Interfaces. In Proceedings of 10th IFIP TC 13 International Conference on

Human-Computer Interaction. Rome, Italy: Springer, pp. 12–16. isbn:978-3-

540-28943-2, 978-3-540-31722-7.

(Crease et al. 2000) Crease, M., Brewster, S. & Gray, P., 2000. Caring, Sharing

Widgets: A Toolkit of Sensitive Widgets. In Proceedings of the 14th British

Computer Society Human Computer Interaction Conference. London, United

Kingdom: Springer, pp. 257–270. http://dx.doi.org/10.1007/978-1-4471-0515-

2_17.

(Demeure et al. 2009) Demeure, A. et al., 2009. Design by Example of

Graphical User Interfaces Adapting to Available Screen Size. In V. Lopez-

Jaquero et al., eds. Proceedings of the 7th International Conference on

216 Bibliography

Computer-Aided Design of User Interfaces. Albacete, Spain: Springer-Verlag,

pp. 277–282. isbn:978-84882-205-4.

(Demeure et al. 2008) Demeure, A., Calvary, G. & Coninx, K., 2008.

COMET(s), A Software Architecture Style and an Interactors Toolkit for

Plastic User Interfaces. In T. C. Graham & P. Philippe, eds. Proceedings of

the 15th International Workshop on Interactive Systems Design Specification

and Verification. Kingston, Canada: Springer, pp. 225 – 237.

http://dx.doi.org/10.1007/978-3-540-70569-7_21.

(Dragicevic & Fekete 2001) Dragicevic, P. & Fekete, J.-D., 2001. Input Device

Selection and Interaction Configuration with ICON. In A. Blandford, J.

Vanderdonckt, & P. Gray, eds. People and Computers XV—Interaction

without Frontiers. Springer, pp. 543–558. http://bit.ly/1iAzpVD.

(Duarte & Carriço 2006) Duarte, C. & Carriço, L., 2006. A Conceptual

Framework for Developing Adaptive Multimodal Applications. In

Proceedings of the 11th International Conference on Intelligent User

Interfaces. Sydney, Australia: ACM, pp. 132–139.

http://dx.doi.org/10.1145/1111449.1111481.

(Easterbrook et al. 2008) Easterbrook, S. et al., 2008. Selecting Empirical

Methods for Software Engineering Research. In F. Shull, J. Singer, & D.

Sjoberg, eds. Guide to Advanced Empirical Software Engineering. London:

Springer London, pp. 285–311. isbn:978-1-84800-043-8.

(Elwert & Schlungbaum 1995) Elwert, T. & Schlungbaum, E., 1995.

Modelling and Generation of Graphical User Interfaces in the TADEUS

Approach. In P. A. Palanque & R. Bastide, eds. Proceedings of the

Eurographics Workshop on Design, Specification and Verification of

Interactive Systems. Toulouse, France: Springer, pp. 193–208. isbn:978-3-

211-82739-0, 978-3-7091-9437-9.

(Ferraiolo et al. 2001) Ferraiolo, D.F. et al., 2001. Proposed NIST Standard

for Role-Based Access Control. ACM Transactions on Information and

System Security, 4(3), pp.224–274. http://dx.doi.org/10.1145/501978.501980.

(Feuerstack 2008) Feuerstack, S., 2008. A Method for the User-centered and

Model-based Development of Interactive Application. PhD Thesis. Berlin,

Germany: Technischen Universität Berlin. http://bit.ly/1krVe6C.

(Feuerstack et al. 2008) Feuerstack, S. et al., 2008. Model-based Layout

Generation. In P. Bottoni & S. Levialdi, eds. Proceedings of the Working

Conference on Advanced Visual Interfaces. Napoli, Italy: ACM, pp. 217–224.

http://dx.doi.org/10.1145/1385569.1385605.

(Feuerstack, Blumendorf, Lehmann, et al. 2006) Feuerstack, S. et al., 2006.

Seamless Home Services. In A. Maña & V. Lotz, eds. Developing Ambient

Intelligence. Paris, France: Springer, pp. 1–10. isbn:978-2-287-47469-9, 978-

2-287-47610-5.

Bibliography 217

(Feuerstack, Blumendorf & Albayrak 2006) Feuerstack, S., Blumendorf, M.

& Albayrak, S., 2006. Bridging the Gap between Model and Design of User

Interfaces. In R. L. Christian Hochberger, ed. GI Jahrestagung (2). GI-

Edition - Lecture Notes in Informatics. Dresden, Germany: GI, pp. 131–137.

http://bit.ly/R6nUto.

(Findlater & McGrenere 2007) Findlater, L. & McGrenere, J., 2007.

Evaluating Reduced-Functionality Interfaces According to Feature

Findability and Awareness. In Proceedings of the 13th International

Conference on Human-Computer Interaction. Springer, pp. 592–605. isbn:3-

540-74794-X, 978-3-540-74794-9.

(Florins 2006) Florins, M., 2006. Graceful Degradation: a Method for Designing

Multiplatform Graphical User Interfaces. PhD Thesis. Louvain, Belgium:

Université Catholique de Louvain. http://bit.ly/1fvVeW5.

(Florins & Vanderdonckt 2004) Florins, M. & Vanderdonckt, J., 2004.

Graceful Degradation of User Interfaces as a Design Method for

Multiplatform Systems. In Proceedings of the 9th International Conference on

Intelligent User Interfaces. Funchal, Madeira, Portugal: ACM, pp. 140–147.

http://dx.doi.org/10.1145/964442.964469.

(Foley et al. 1991) Foley, J. et al., 1991. GUIDE – An Intelligent User

Interface Design Environment. In J. Sullivan & S. Tyler, eds. Architectures

for Intelligent Interfaces: Elements and Prototypes. Addison-Wesley, pp. 339–

384. isbn:0-201-50305-0.

(Fonseca 2010) Fonseca, J.M.C., 2010. Model-Based UI XG Final Report.

http://bit.ly/ModelBasedUIXGFinalReport [Accessed May 30, 2012].

(France & Rumpe 2007) France, R. & Rumpe, B., 2007. Model-Driven

Development of Complex Software: A Research Roadmap. In Proceedings of

the Workshop on the Future of Software Engineering. International

Conference on Software Engineering. Minneapolis, USA: IEEE, pp. 37–54.

http://dx.doi.org/10.1109/FOSE.2007.14.

(Frankel 2003) Frankel, D., 2003. Model Driven Architecture : Applying MDA

to Enterprise Computing, Wiley. isbn:9780471319207.

(Gajos & Weld 2005) Gajos, K. & Weld, D.S., 2005. Preference Elicitation for

Interface Optimization. In Proceedings of the 18th ACM Symposium on User

Interface Software and Technology. Seattle, USA: ACM, pp. 173–182.

http://dx.doi.org/10.1145/1095034.1095063.

(Gajos et al. 2010) Gajos, K.Z., Weld, D.S. & Wobbrock, J.O., 2010.

Automatically Generating Personalized User Interfaces with Supple.

Artificial Intelligence, 174(12), pp.910–950.

http://dx.doi.org/10.1016/j.artint.2010.05.005.

(Gajos et al. 2007) Gajos, K.Z., Wobbrock, J.O. & Weld, D.S., 2007.

Automatically Generating User Interfaces Adapted to Users’ Motor and

Vision Capabilities. In Proceedings of the 20th ACM Symposium on User

218 Bibliography

Interface Software and Technology. Newport, Rhode Island, USA: ACM, pp.

231–240. http://dx.doi.org/10.1145/1294211.1294253.

(Galvao & Goknil 2007) Galvao, I. & Goknil, A., 2007. Survey of Traceability

Approaches in Model-Driven Engineering. In Proceedings of the 11th IEEE

International Enterprise Distributed Object Computing Conference.

Annapolis, Maryland, USA: IEEE, pp. 313–326. isbn:0-7695-2891-0.

(García Frey et al. 2012) García Frey, A. et al., 2012. UsiComp: An Extensible

Model-Driven Composer. In Proceedings of the 4th ACM SIGCHI Symposium

on Engineering Interactive Computing Systems. Copenhagen, Denmark:

ACM, pp. 263–268. http://dx.doi.org/10.1145/2305484.2305528.

(García Frey et al. 2010) García Frey, A., Calvary, G. & Dupuy-Chessa, S.,

2010. Xplain: An Editor for Building Self-Explanatory User Interfaces by

Model-Driven Engineering. In Proceedings of the 2nd ACM SIGCHI

Symposium on Engineering Interactive Computing Systems. Berlin,

Germany: ACM, pp. 41–46. http://dx.doi.org/10.1145/1822018.1822026.

(Garlan et al. 2004) Garlan, D. et al., 2004. Rainbow: Architecture-Based Self-

Adaptation with Reusable Infrastructure. Computer, 37(10), pp.46–54.

http://dx.doi.org/10.1109/MC.2004.175.

(Gartner 2013) Gartner, 2013. Gartner’s Forecast Analysis: Enterprise

Application Software, Worldwide, 2011-2016, 4Q12, http://gtnr.it/1fSE9Am

[Accessed April 1, 2014].

(Green 1985) Green, M., 1985. The University of Alberta User Interface

Management System. In Proceedings of the 12th Annual Conference on

Computer Graphics and Interactive Techniques. San Francisco, California:

ACM, pp. 205–213. http://dx.doi.org/10.1145/325334.325286.

(Griffiths et al. 2001) Griffiths, T. et al., 2001. Teallach: A Model-Based User

Interface Development Environment for Object Databases. Interacting with

Computers, 14(1), pp.31–68. http://dx.doi.org/10.1016/S0953-5438(01)00042-X.

(Guerrero-Garcia et al. 2009) Guerrero-Garcia, J. et al., 2009. A Theoretical

Survey of User Interface Description Languages: Preliminary Results. In

Proceedings of the 2009 Latin American Web Congress. Merida, Yucatan,

Mexico: IEEE, pp. 36–43. http://dx.doi.org/10.1109/LA-WEB.2009.40.

(Hayes et al. 1985) Hayes, P.J., Szekely, P.A. & Lerner, R.A., 1985. Design

Alternatives for User Interface Management Systems Based on Experience

with COUSIN. In Proceedings of the 3rd SIGCHI Conference on Human

Factors in Computing Systems. San Francisco, California: ACM, pp. 169–175.

http://dx.doi.org/10.1145/317456.317488.

(Hill 1986) Hill, R.D., 1986. Supporting Concurrency, Communication, and

Synchronization in Human-Computer Interaction—the Sassafras UIMS.

ACM Transactions on Graphics, 5(3), pp.179–210.

http://dx.doi.org/10.1145/24054.24055.

Bibliography 219

(Huebscher & McCann 2008) Huebscher, M.C. & McCann, J.A., 2008. A

Survey of Autonomic Computing—Degrees, Models, and Applications. ACM

Computing Surveys, 40(3), pp.7:1–7:28.

http://dx.doi.org/10.1145/1380584.1380585.

(Huxham et al. 1986) Huxham, F.A., Burnard, D. & Takatsuka, J., 1986.

Using the Macintosh Toolbox with C, SYBEX. isbn:978-0895885722.

(IBM 2006) IBM, 2006. An Architectural Blueprint for Autonomic Computing.

http://bit.ly/MapeKLoop [Accessed April 5, 2013].

(ISO 9241 2008) ISO 9241, 2008. ISO 9241-12:1998 - Ergonomic Requirements

for Office Work with Visual Display Terminals (VDTs) -- Part 12:

Presentation of information. http://bit.ly/ISO9214 [Accessed May 14, 2012].

(Jabarin & Graham 2003) Jabarin, B. & Graham, T.C.N., 2003. Architectures

for Widget-Level Plasticity. In J. Jorge, N. Jardim Nunes, & J. Falcão e

Cunha, eds. Interactive Systems. Design, Specification, and Verification.

Springer, pp. 124–138. isbn:978-3-540-20159-5.

(Jacob 1986) Jacob, R.J., 1986. A Specification Language for Direct-

Manipulation User Interfaces. ACM Transactions on Graphics, 5(4), pp.283–

317. http://dx.doi.org/10.1145/27623.27624.

(Jacobson et al. 2007) Jacobson, S. et al., 2007. The ERP Market Sizing

Report, 2006–2011, Boston, MA: AMR Research, Inc. http://bit.ly/1rS02XA

[Accessed April 2, 2012].

(Janssen et al. 1993) Janssen, C., Weisbecker, A. & Ziegler, J., 1993.

Generating User Interfaces from Data Models and Dialogue Net

Specifications. In Proceedings of the INTERACT’93 and CHI’93 Conference

on Human Factors in Computing Systems. Amsterdam, The Netherlands:

ACM, pp. 418–423. http://dx.doi.org/10.1145/169059.169335.

(Johnson 1992) Johnson, J., 1992. Selectors: Going Beyond User-Interface

Widgets. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems. Monterey, California, USA: ACM, pp. 273–279.

http://dx.doi.org/10.1145/142750.142810.

(Judith Hurwitz 2007) Judith Hurwitz, 2007. How does SAP turn 250 million

lines of code into modular services? http://bit.ly/SAPLinesOfCode [Accessed

August 1, 2013].

(Kawai et al. 1996) Kawai, S., Aida, H. & Saito, T., 1996. Designing Interface

Toolkit with Dynamic Selectable Modality. In Proceedings of the 2nd Annual

ACM Conference on Assistive Technologies. Vancouver, British Columbia,

Canada: ACM, pp. 72–79. http://dx.doi.org/10.1145/228347.228360.

(Kay 1993) Kay, R.H., 1993. A Practical Research Tool for Assessing Ability to

Use Computers: The Computer Ability Survey (CAS). Journal of Research on

Computing in Education, 26(1), pp.16–27. issn:0888-6504.

220 Bibliography

(Keates et al. 2000) Keates, S. et al., 2000. Towards a Practical Inclusive

Design Approach. In Proceedings on the 2000 Conference on Universal

Usability. Arlington, Virginia, USA: ACM, pp. 45–52.

http://dx.doi.org/10.1145/355460.355471.

(Kent 2002) Kent, S., 2002. Model Driven Engineering. In Proceedings of the

3rd International Conference on Integrated Formal Methods. Turku, Finland:

Springer, pp. 286–298. http://dx.doi.org/10.1007/3-540-47884-1_16.

(Kiczales et al. 1997) Kiczales, G. et al., 1997. Aspect-Oriented Programming.

In Proceedings of the European Conference on Object-Oriented Programming

(ECOOP). European Conference on Object-Oriented Programming. pp. 220–

242. http://dx.doi.org/10.1007/BFb0053381.

(Kramer & Magee 2007) Kramer, J. & Magee, J., 2007. Self-Managed

Systems: an Architectural Challenge. In Proceedings of the Workshop on the

Future of Software Engineering. International Conference on Software

Engineering. Minneapolis, USA: IEEE, pp. 259–268.

http://dx.doi.org/10.1109/FOSE.2007.19.

(Krasner & Pope 1988) Krasner, G.E. & Pope, S.T., 1988. A Description of the

Model-View-Controller User Interface Paradigm in the Smalltalk-80 System.

Journal of Object Oriented Programming, 1(3), pp.26–49.

(Lafreniere et al. 2011) Lafreniere, B. et al., 2011. AdaptableGIMP: Designing

a Socially-Adaptable Interface. In Proceedings of the 24th ACM Symposium

Adjunct on User Interface Software and Technology. Santa Barbara,

California, USA: ACM, pp. 89–90. http://dx.doi.org/10.1145/2046396.2046437.

(Landauer 1997) Landauer, T.K., 1997. Behavioral Research Methods in

Human-Computer Interaction. In M. G. Helander, T. K. Landauer, & P. V.

Prabhu, eds. Handbook of Human–Computer Interaction. Amsterdam:

Elsevier, pp. 203–227. http://dx.doi.org/10.1023/A:1008171820407.

(Lecolinet 2003) Lecolinet, E., 2003. A Molecular Architecture for Creating

Advanced GUIs. In Proceedings of the 16th ACM Symposium on User

Interface Software and Technology. Vancouver, Canada: ACM, pp. 135–144.

http://dx.doi.org/10.1145/964696.964711.

(Lehmann et al. 2010) Lehmann, G. et al., 2010. A 3-Layer Architecture for

Smart Environment Models. In Proceedings of the 8th Annual IEEE

International Conference on Pervasive Computing and Communications.

Mannheim, Germany: IEEE, pp. 636 –641.

http://dx.doi.org/10.1109/PERCOMW.2010.5470513.

(Leon 2008) Leon, A., 2008. ERP Demystified 2nd ed., New Delhi: Tata

McGraw-Hill. isbn:9780070656642.

(Lepreux et al. 2007) Lepreux, S., Vanderdonckt, J. & Michotte, B., 2007.

Visual Design of User Interfaces by (De)Composition. In Proceedings of the

13th International Conference on Interactive Systems: Design, Specification,

Bibliography 221

and Verification. Dublin, Ireland: Springer, pp. 157–170.

http://dx.doi.org/10.1007/978-3-540-69554-7_13.

(Limbourg et al. 2004) Limbourg, Q. et al., 2004. USIXML: A User Interface

Description Language Supporting Multiple Levels of Independence. In

Engineering Advanced Web Applications: Proceedings of Workshops in

connection with the 4th International Conference on Web Engineering.

Munich, Germany: Rinton Press, pp. 325–338. isbn:1-58949-046-0.

(Lin & Landay 2008) Lin, J. & Landay, J.A., 2008. Employing Patterns and

Layers for Early-Stage Design and Prototyping of Cross-Device User

Interfaces. In Proceedings of the ACM SIGCHI Conference on Human Factors

in Computing Systems. Florence, Italy: ACM, pp. 1313–1322.

http://dx.doi.org/10.1145/1357054.1357260.

(Lonczewski & Schreiber 1996) Lonczewski, F. & Schreiber, S., 1996. The

FUSE-System: an Integrated User Interface Design Environment. In

Proceedings of the 2nd International Workshop on Computer-Aided Design of

User Interfaces. Namur, Belgium: Springer, pp. 37–56. isbn:2-87037-232-9.

(López-Jaquero et al. 2009) López-Jaquero, V., Montero, F. & Real, F., 2009.

Designing User Interface Adaptation Rules with T:XML. In Proceedings of

the 14th International Conference on Intelligent User Interfaces. Sanibel

Island, Florida, USA: ACM, pp. 383–388.

http://dx.doi.org/10.1145/1502650.1502705.

(Lykkegaard & Elbak 2011) Lykkegaard, B. & Elbak, A., 2011. IDC -

Document at a Glance - LC52T, International Data Corporation (IDC).

http://bit.ly/IDC-LC52T [Accessed May 2, 2012].

(Mace et al. 1990) Mace, R.L., Hardie, G. e J. & Place, J.P., 1990. Accessible

Environments: Toward Universal Design. In Design Intervention: Toward a

More Humane Architecture. Center for Accessible Housing, North Carolina

State University. isbn:978-0442273330.

(Markopoulos et al. 1992) Markopoulos, P. et al., 1992. Adept-A task based

design environment. In Proceedings of the 25th Hawaii International

Conference on System Sciences. Hawaii, USA: IEEE, pp. 587–596.

http://dx.doi.org/10.1109/HICSS.1992.183310.

(Märtin 1996) Märtin, C., 1996. Software Life Cycle Automation for Interactive

Applications: The AME Design Environment. In Proceedings of the 2nd

International on Computer-Aided Design of User Interfaces. Namur, Belgium:

Presses Universitaires de Namur, pp. 57–76. http://bit.ly/1lCPVEm.

(Martin Fowler 2006) Martin Fowler, 2006. GUI Architectures.

http://bit.ly/1fwn70o [Accessed May 1, 2014].

(Mayhew 1999) Mayhew, D.J., 1999. The Usability Engineering Lifecycle. In

Proceedings of the Extended Abstracts of the 17th Conference on Human

Factors in Computing Systems. Pittsburgh, Pennsylvania: ACM, pp. 147–148.

http://dx.doi.org/10.1145/632716.632805.

222 Bibliography

(McGrenere 2000) McGrenere, J., 2000. “Bloat”: The Objective and Subject

Dimensions. In Proceedings of the Extended Abstracts of the 18th Conference

on Human Factors in Computing Systems. The Hague, The Netherlands:

ACM, pp. 337–338. http://dx.doi.org/10.1145/633292.633495.

(McGrenere et al. 2007) McGrenere, J., Baecker, R.M. & Booth, K.S., 2007. A

Field Evaluation of an Adaptable Two-Interface Design for Feature-Rich

Software. ACM Transactions on Computer-Human Interaction, 14(1), pp.1–

43. http://dx.doi.org/10.1145/1229855.1229858.

(McGrenere et al. 2002) McGrenere, J., Baecker, R.M. & Booth, K.S., 2002. An

Evaluation of a Multiple Interface Design Solution for Bloated Software. In

Proceedings of the 20th SIGCHI Conference on Human Factors in Computing

Systems. Minneapolis, Minnesota, USA: ACM, pp. 164–170.

http://dx.doi.org/10.1145/503376.503406.

(Meixner et al. 2011) Meixner, G., Paternò, F. & Vanderdonckt, J., 2011. Past,

Present, and Future of Model-Based User Interface Development. i-com,

10(3), pp.2–11. http://dx.doi.org/10.1524/icom.2011.0026.

(Meskens et al. 2008) Meskens, J. et al., 2008. Gummy for Multi-Platform

User Interface Designs: Shape me, Multiply me, Fix me, Use me. In

Proceedings of the 8th Working Conference on Advanced Visual Interfaces.

Napoli, Italy: ACM, pp. 233–240. http://dx.doi.org/10.1145/1385569.1385607.

(Michotte & Vanderdonckt 2008) Michotte, B. & Vanderdonckt, J., 2008.

GrafiXML, a Multi-target User Interface Builder Based on UsiXML. In

Proceedings of the 4th International Conference on Autonomic and

Autonomous Systems. Cancun, Mexico: IEEE, pp. 15 –22.

http://dx.doi.org/10.1109/ICAS.2008.29.

(Microsoft 2011) Microsoft, 2011. Role based UI - Dynamics CRM 2011.

http://bit.ly/DynamicsRoleBasedUI [Accessed August 31, 2012].

(Montero & López-Jaquero 2007) Montero, F. & López-Jaquero, V., 2007.

IdealXML: An Interaction Design Tool. In G. Calvary et al., eds. Computer-

Aided Design of User Interfaces V. Springer, pp. 245–252. isbn:978-1-4020-

5819-6, 978-1-4020-5820-2.

(Mori et al. 2002) Mori, G., Paternò, F. & Santoro, C., 2002. CTTE: Support for

Developing and Analyzing Task Models for Interactive System Design. IEEE

Transactions on Software Engineering, 28(8), pp.797–813.

http://dx.doi.org/10.1109/TSE.2002.1027801.

(Myers et al. 2000) Myers, B., Hudson, S.E. & Pausch, R., 2000. Past, Present,

and Future of User Interface Software Tools. ACM Transactions on

Computer-Human Interaction, 7(1), pp.3–28.

http://dx.doi.org/10.1145/344949.344959.

(Myers et al. 1997) Myers, B.A. et al., 1997. The Amulet Environment: New

Models for Effective User Interface Software Development. IEEE

Bibliography 223

Transactions on Software Engineering, 23(6), pp.347–365.

http://dx.doi.org/10.1109/32.601073.

(Nebeling et al. 2012) Nebeling, M., Leone, S. & Norrie, M., 2012.

Crowdsourced Web Engineering and Design. In M. Brambilla, T. Tokuda, &

R. Tolksdorf, eds. Web Engineering. Springer, pp. 31–45. isbn:978-3-642-

31752-1.

(Nebeling & Norrie 2011) Nebeling, M. & Norrie, M.C., 2011. Tools and

Architectural Support for Crowdsourced Adaptation of Web Interfaces. In

Proceedings of the 11th International Conference on Web Engineering.

Paphos, Cyprus: Springer, pp. 243–257. isbn:978-3-642-22232-0.

(Nichols et al. 2004) Nichols, J., Myers, B.A. & Litwack, K., 2004. Improving

Automatic Interface Generation with Smart Templates. In Proceedings of the

9th International Conference on Intelligent User Interfaces. Funchal, Madeira,

Portugal: ACM, pp. 286–288. http://dx.doi.org/10.1145/964442.964507.

(Norcio & Stanley 1989) Norcio, A.F. & Stanley, J., 1989. Adaptive Human-

Computer Interfaces: A Literature Survey and Perspective. IEEE

Transactions on Systems, Man, and Cybernetics, 19, pp.399–408.

http://dx.doi.org/10.1109/21.31042.

(Nylander et al. 2004) Nylander, S., Bylund, M. & Wærn, A., 2004. The

Ubiquitous Interactor - Device Independent Access to Mobile Services. In

Proceedings of the 4th International Conference on Computer-Aided Design of

User Interfaces. Funchal, Portugal: Kluwer, pp. 269–280.

http://dx.doi.org/10.1007/1-4020-3304-4_22.

(Olsen,Jr. 1989) Olsen,Jr., D.R., 1989. A Programming Language Basis for

User Interface Management. In Proceedings of the 7th ACM SIGCHI

Conference on Human Factors in Computing Systems. Austin, USA: ACM,

pp. 171–176. http://dx.doi.org/10.1145/67449.67485.

(Olsen,Jr. 2007) Olsen,Jr., D.R., 2007. Evaluating User Interface Systems

Research. In Proceedings of the 20th ACM SIGCHI Symposium on User

Interface Software and Technology. Newport, Rhode Island, USA: ACM, pp.

251–258. http://dx.doi.org/10.1145/1294211.1294256.

(Olsen,Jr. 1986) Olsen,Jr., D.R., 1986. MIKE: The Menu Interaction Kontrol

Environment. ACM Transactions on Graphics, 5(4), pp.318–344.

http://dx.doi.org/10.1145/27623.28868.

(OMG 2013) OMG, 2013. Object Management Group - Model-Driven

Architecture. http://www.omg.org/mda [Accessed April 10, 2013].

(Oreizy et al. 1999) Oreizy, P. et al., 1999. An Architecture-Based Approach to

Self-Adaptive Software. Intelligent Systems and Their Applications, IEEE,

14(3), pp.54–62. http://dx.doi.org/10.1109/5254.769885.

224 Bibliography

(Oz 2008) Oz, E., 2008. Management Information Systems, Sixth Edition 6th

ed., Boston, MA, United States: Course Technology Press. isbn:1423901789,

9781423901785.

(Palay et al. 1989) Palay, A.J. et al., 1989. The Andrew Toolkit: An Overview.

In Proceedings of the 1988 Winter USENIX Technical Conference. Dallas,

Texas: USENIX Association, pp. 9–21. http://bit.ly/SdJ4H5.

(Panorama Consulting Group 2010) Panorama Consulting Group, 2010. A

Guide to Increasing User Acceptance of ERP Systems. http://bit.ly/R6QWJi.

(Paolacci et al. 2010) Paolacci, G., Chandler, J. & Ipeirotis, P.G., 2010.

Running Experiments on Amazon Mechanical Turk. Judgment and Decision

Making, 5(5), pp.411–419.

(a erno 1999) Paterno , F., 1999. Model-based Design and Evaluation of

Interactive Applications 1st ed., London, UK: Springer. isbn:1852331550.

(Paternò et al. 1997) Paternò, F., Mancini, C. & Meniconi, S., 1997.

ConcurTaskTrees: A Diagrammatic Notation for Specifying Task Models. In

Proceedings of the 6th International Conference on Human-Computer

Interaction. Sydney, Australia: Chapman and Hall, pp. 362–369.

http://dx.doi.org/10.1007/978-0-387-35175-9_58.

(a erno’ e al. 2009) Paterno’, F., Santoro, C. & Spano, L.D., 2009. MARIA: A

Universal, Declarative, Multiple Abstraction-Level Language for Service-

Oriented Applications in Ubiquitous Environments. ACM Transactions on

Computer-Human Interaction, 16(4), pp.19:1–19:30.

http://dx.doi.org/10.1145/1614390.1614394.

(Peissner et al. 2012) Peissner, M. et al., 2012. MyUI: Generating Accessible

User Interfaces from Multimodal Design Patterns. In Proceedings of the 4th

ACM SIGCHI Symposium on Engineering Interactive Computing Systems.

Copenhagen, Denmark: ACM, pp. 81–90.

http://dx.doi.org/10.1145/2305484.2305500.

(Pérez-Medina et al. 2007) Pérez-Medina, J.-L., Dupuy-Chessa, S. & Front,

A., 2007. A Survey of Model Driven Engineering Tools for User Interface

Design. In M. Winckler, H. Johnson, & P. Palanque, eds. Task Models and

Diagrams for User Interface Design. Springer, pp. 84–97. isbn:978-3-540-

77221-7.

(Piechnick et al. 2012) Piechnick, C. et al., 2012. Using Role-Based

Composition to Support Unanticipated, Dynamic Adaptation – Smart

Application Grids. In Proceedings of the 4th International Conference on

Adaptive and Self-adaptive Systems and Applications. Nice, France: IARIA,

pp. 93–102. isbn:978-1-61208-219-6.

(Pleuss et al. 2010) Pleuss, A., Botterweck, G. & Dhungana, D., 2010.

Integrating Automated Product Derivation and Individual User Interface

Design. In Proceedings of the 4th International Workshop on Variability

Bibliography 225

Modelling of Software-Intensive Systems. Linz, Austria: Universitat

Duisburg-Essen, pp. 69–76. http://bit.ly/1nM3Vhh.

(Puerta & Eisenstein 1998) Puerta, A. & Eisenstein, J., 1998. Interactively

Mapping Task Models to Interfaces in MOBI-D. In Proceedings of

Eurographics Workshop on Design, Specification and Validation of

Interactive Systems. Abingdon, United Kingdom: Springer, pp. 261–273.

http://b.gatech.edu/1lRy0Kg.

(Puerta & Eisenstein 2002) Puerta, A. & Eisenstein, J., 2002. XIML: A

Common Representation for Interaction Data. In Proceedings of the 7th

International Conference on Intelligent User Interfaces. San Francisco,

California, USA: ACM, pp. 214–215. http://dx.doi.org/10.1145/502716.502763.

(Puerta 1996) Puerta, A.R., 1996. The MECANO Project: Comprehensive and

Integrated Support for Model-Based Interface Development. In Proceedings

of the 2nd International Workshop on Computer-Aided Design of User

Interfaces. Namur, Belgium: Presses Universitaires de Namur, pp. 19–36.

http://bit.ly/1u8ZWNw.

(Raneburger et al. 2012) Raneburger, D., Popp, R. & Vanderdonckt, J., 2012.

An Automated Layout Approach for Model-Driven WIMP-UI Generation. In

Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems. Copenhagen, Denmark: ACM, pp. 91–100.

http://dx.doi.org/10.1145/2305484.2305501.

(Reinecke & Bernstein 2011) Reinecke, K. & Bernstein, A., 2011. Improving

Performance, Perceived Usability, and Aesthetics with Culturally Adaptive

User Interfaces. ACM Transactions on Computer-Human Interaction, 18(2),

pp.1–29. http://dx.doi.org/10.1145/1970378.1970382.

(Salehie & Tahvildari 2009) Salehie, M. & Tahvildari, L., 2009. Self-Adaptive

Software: Landscape and Research Challenges. ACM Transactions on

Autonomous and Adaptive Systems, 4(2), pp.1–42.

http://dx.doi.org/10.1145/1516533.1516538.

(Schmucker 1987) Schmucker, K.J., 1987. MacApp: An Application

Framework. In R. M. Baecker & W. A. S. Buxton, eds. Human-computer

Interaction. Morgan Kaufmann Publishers Inc., pp. 591–594. isbn:0-934613-

24-9.

(Schwartze et al. 2009) Schwartze, V., Feuerstack, S. & Albayrak, S., 2009.

Behavior-Sensitive User Interfaces for Smart Environments. In Proceedings

of the 2nd International Conference on Digital Human Modeling. San Diego,

USA: Springer, pp. 305–314. isbn:978-3-642-02808-3.

(Sharp et al. 2007) Sharp, H., Rogers, Y. & Preece, J., 2007. Interaction

Design: Beyond Human-Computer Interaction 2nd ed., Wiley.

isbn:0470018666.

226 Bibliography

(Shaw 2002) Shaw, M., 2002. What Makes Good Research in Software

Engineering. International Journal on Software Tools for Technology

Transfer, 4(1), pp.1–7. http://dx.doi.org/10.1007/s10009-002-0083-4.

(Shneiderman 2003) Shneiderman, B., 2003. Promoting Universal Usability

with Multi-Layer Interface Design. In Proceedings of the Conference on

Universal Usability. Vancouver, Canada: ACM, pp. 1–8.

http://dx.doi.org/10.1145/957205.957206.

(Da Silva 2001) Da Silva, P.P., 2001. User Interface Declarative Models and

Development Environments: A Survey. In Proceedings of the 7th

International Conference on Design, Specification, and Verification of

Interactive Systems. Limerick, Ireland: Springer, pp. 207–226.

http://dx.doi.org/10.1007/3-540-44675-3_13.

(Singh & Wesson 2009) Singh, A. & Wesson, J., 2009. Evaluation Criteria for

Assessing the Usability of ERP Systems. In Proceedings of the 2009 Annual

Research Conference of the South African Institute of Computer Scientists

and Information Technologists. Emfuleni, South Africa: ACM, pp. 87–95.

http://dx.doi.org/10.1145/1632149.1632162.

(Soley & OMG Staff Strategy Group 2000) Soley, R. & OMG Staff Strategy

Group, 2000. Model Driven Architecture. http://bit.ly/ModelDrivenArch

[Accessed April 10, 2013].

(Stephanidis 1997) Stephanidis, C., 1997. Towards the Next Generation of

UIST: Developing for all Users. In Proceedings of the 7th International

Conference on Human-Computer Interaction. New York, NY, USA: Elsevier

Science Inc., pp. 473–476. isbn:0-444-82183-X.

(Stuerzlinger et al. 2006) Stuerzlinger, W. et al., 2006. User Interface

Façades: Towards Fully Adaptable User Interfaces. In Proceedings of the

19th ACM Symposium on User Interface Software and Technology. Montreux,

Switzerland: ACM, pp. 309–318. http://dx.doi.org/10.1145/1166253.1166301.

(Synactive GmbH 2010) Synactive GmbH, 2010. GuiXT - Simplify and

Optimize the SAP ERP User Interface. http://bit.ly/SAPGuiXTSimplifyUI

[Accessed September 4, 2012].

(Szekely et al. 1995) Szekely, P. et al., 1995. Declarative Interface Models for

User Interface Construction Tools: The MASTERMIND Approach. In

Proceedings of the IFIP TC2/WG2.7 Working Conference on Engineering for

Human-Computer Interaction. Yellowstone Park, Wyoming, USA: Chapman

& Hall, Ltd., pp. 120–150. isbn:0-412-72180-5.

(Szekely et al. 1992) Szekely, P., Luo, P. & Neches, R., 1992. Facilitating the

Exploration of Interface Design Alternatives: The HUMANOID Model of

Interface Design. In Proceedings of the 10th ACM SIGCHI Conference on

Human Factors in Computing Systems. Monterey, California, USA: ACM, pp.

507–515. http://dx.doi.org/10.1145/142750.142912.

Bibliography 227

(Topi et al. 2005) Topi, H., Lucas, W.T. & Babaian, T., 2005. Identifying

Usability Issues with an ERP Implementation. In Proceedings of the 7th

International Conference on Enterprise Information Systems. Miami, USA:

SciTePress, pp. 128–133. http://bit.ly/1kxcARb.

(Uflacker & Busse 2007) Uflacker, M. & Busse, D., 2007. Complexity in

Enterprise Applications vs. Simplicity in User Experience. In Proceedings of

the 12th International Conference on Human-Computer Interaction:

Applications and Services. Beijing, China: Springer, pp. 778–787. isbn:978-3-

540-73109-2.

(Vanderdonckt 2008) Vanderdonckt, J., 2008. Model-Driven Engineering of

User Interfaces: Promises, Successes, Failures, and Challenges. Romanian

Journal of Human - Computer Interaction, 1(1), pp.1–10. issn:1843-4460.

(Vanderdonckt & Bodart 1996) Vanderdonckt, J. & Bodart, F., 1996. The

“Corpus Ergonomicus”: A Comprehensive and Unique Source for Human-

Machine Interface. In Proceedings of the 1st International Conference on

Applied Ergonomics. Istanbul, Turkey: USA Publishing, pp. 162–169.

http://bit.ly/1jljedM.

(Vanderdonckt & Bodart 1993) Vanderdonckt, J.M. & Bodart, F., 1993.

Encapsulating Knowledge for Intelligent Automatic Interaction Objects

Selection. In Proceedings of the INTERACT’93 and CHI’93 Conference on

Human Factors in Computing Systems. Amsterdam, The Netherlands: ACM,

pp. 424–429. http://dx.doi.org/10.1145/169059.169340.

(Wiecha et al. 1990) Wiecha, C. et al., 1990. ITS: A Tool for Rapidly

Developing Interactive Applications. ACM Transactions on Information

Systems, 8(3), pp.204–236. http://dx.doi.org/10.1145/98188.98194.

Appendices

 231

A

Algorithms

This appendix includes the complete pseudo-code and complexity analysis of

algorithms which were presented in the thesis as excerpts.

A.1 Feature-Set Minimization Algorithm

Variables: m = Number of Task Models, n = Number of Tasks in a Task Model,

j = Number of User Roles, k = Number of Blocked CUI Elements for a given

Task, p = Number of Parent Tasks for a given Task, l = Number of Task Roles

Legend: CON = Constant, LOG = Logarithmic, POL = Polynomial

Total Running Time: O (m × (n × l × p × (2 × j × log j + k) + n))

 Type Cost Time Pseudo-code

O (m × (n × l × p × (2 × j × log j + k) + n))

1. . . . Minimize-Feature-Set (UserRef, UserInterfaceID) {

2. . . . //Load UI Related Information From Database

3. CON c1 O (1) UserRoles[] ← GetUserRolesFromDB(UserRef)

4. CON c2 O (1) UIModel ← GetUIModelFromDB(UserInterfaceID)

5. . . . //Simplify All Associated Task Models

6. POL c3 O (m) foreach tm in UIModel.TaskModel[] {

7. . . . Simplify-Task-Model(tm.TaskModelID,

8. . . . UserRoles, UIModel)

9. . . . }

10. . . . }

232 A.1 Feature-Set Minimization Algorithm

O (n × l × p × (2 × j × log j + k) + n)

1. . . . Simplify-Task-Model (TaskModelID, UserRoles[],

2. . . . UIModel,TasksUnblockedByTheUser[])

3. . . . {

4. . . . //Get Task Model’s Tasks, Mappings, and CUI

5. CON c1 O (1) Tasks[] ← Select t From UIModel.Task

6. . c1 . Where t.TaskModelID = TaskModelID

7. . . .

8. CON c2 O (1) TMToAUIMapping[] ← Select m From

9. . . . UIModel.MappingTaskModelToAUI[]

10. . c2 . Where m.TaskModelID = TaskModelID

11. . . .

12. CON c3 O (1) AUIToCUIMapping[] ← Select m From

13. . c3 . UIModel.MappingAUIToCUI[] Where

14. . c3 . TMToAUIMapping.Contains(m.AUIModelID) = true

15. . . .

16. CON c4 O (1) CUIElements[] ← Select c From

17. . . . UIModel.CUIElements[] Where

18. . c4 . AUIToCUIMapping.Contains(c.CUIModelID) = true

19. . . .

20. . . . //Simplify All the Task Model’s Tasks

21. POL c5 O (n × l × p) foreach task in Tasks[] {

22. . . . if TasksUnblockedByTheUser.Contains(

23. . . . task)= false

24. . . . TaskRoles[] ← Get-Task-Roles(

25. . . . task, UIModel)

26. . . . Simplify-Task(task.TaskID, UserRoles,

27. . . . TaskRoles, TMToAUIMapping,

28. . . . AUIToCUIMapping, CUIElements)

29. . . . }

30. . . . //Re-enabled Read-Only Containers with

31. . . . //Non-Read-Only Children

32. CON c6 O (1) DisabledCUIContainers[] ←

33. . . . Select c From UIModel.CUIElements[]

34. . c6 . Where c.ReadOnly = true and

35. . c6 . (Select child From UIModel.CUIElements[]

36. . c6 . Where child.ReadOnly = false

Appendix A – Algorithms 233

37. . c6 . and child.ParentElementID =

38. . c6 . c.ElementID).Count() > 0

39. . . .

40. POL c7 O(n) foreach cuiEl in DisabledCUIContainers

41. . c7 . { cuiEl.IsReadOnly = false }

42. . . . }

 O (2 × j × l o g j + k)

1. . . . Simplify-Task (TaskID, UserRoles[],

2. . . . TaskRoles[], TMToAUIMapping[],

3. . . . AUIToCUIMapping[], CUIElements[])

4. . . . {

5. . . . //Order Assigned Roles by Task Role Priority

6. POL c1 O (j) foreach ur in UserRoles {

7. CON c2 O (1) tr ← Select From TaskRoles

8. . c2 O (1) Where t.RoleRef = ur.RoleRef

9. . . .

10. CON c3 O (1) if tr = null {

11. CON c4 O (1) tr ← Select t From TaskRoles

12. . c4 . Where t.RoleRef = All-Roles

13. CON c5 O (1) ur.Priority ← tr.Priority;

14. . . . }

15. . . .

16. LOG c6 O (j × log j) UserRoles.OrderBy(Priority)

17. CON c7 O (1) primaryRole ← UserRoles.First()

18. CON c8 O (1) if primaryRole.RoleRef ≠ All-Roles {

19. . . . //Simplify CUI

20. . . . Simplify-CUI(PrimaryRole, TaskID,

21. . . . TMToAUIMapping, AUIToCUIMapping,

22. . . . CUIElements)

23. . . . }

24. . . . }

234 A.1 Feature-Set Minimization Algorithm

 O (k)

1. . . . Simplify-CUI (PrimaryRole, TaskID,

2. . . . TMToAUIMapping[], AUIToCUIMapping[],

3. . . . CUIElements[])

4. . . . {

5. CON c1 O (1) blockedAUIElementIDs[] ← Select

6. . c1 . el.AUIElementID From TMToAUIMapping

7. . c1 . Where el.TaskID = TaskID

8. . . .

9. CON c2 O (1) blockedCUIElementIDs[] ← Select

10. . c2 . el.CUIElementID From AUIToCUIMapping[]

11. . c2 . Where blockedAUIElementIDs.Contains(

12. . c2 . el.AUIElementID) = true

13. . . .

14. CON c3 O(1) blockedCUIElements[] ← Select el

15. . c3 . From CUIElements Where

16. . c3 . blockedCUIElementIDs.Contains(

17. . c3 . el.WidgetID) = true

18. . . .

19. . . . //Apply Concrete Operation to CUI

20. POL c4 O (k) foreach element in blockedCUIElements {

21. POL c5 O (1) switch PrimaryRole.ConcreteOperation

22. . c5 . case Hide

23. CON c6 O (1) element.Visible ← false; break;

24. . c5 . case Disable

25. CON c7 O (1) element.ReadOnly ← true; break;

26. . c5 . case Protect

27. CON c8 O (1) element.ReadOnly ← true;

28. CON c9 O (1) element.MaskChar ← '*'; break;

29. . c5 . case Fade

30. CON c10 O (1) element.Opacity ← 30%; break;

31. . . . }

32. . . . }

Appendix A – Algorithms 235

 O (l × p)

1. . . . [] Get-Task-Roles (Task, UIModel)

2. . . . {

3. CON c1 O (1) TaskRoles[] ← Select tr From

4. UIModel.TaskRoles Where

5. tr.TaskID = Task.TaskID

6. . . .

7. CON c2 O (1) if Task.ParentRoleInheritance = Merge {

8. CON c3 O (1) ParentTask ← (Select t From

9. UIModel.Task[] Where

10. . . . t.TaskID = Task.ParentTaskID).First()

11. . . .

12. CON c4 O (1) if ParentTask = null {return TaskRoles;}

13. . . .

14. POL c5 O (l × p) TaskRoles.Merge(Get-Task-Roles(

15. ParentTask, UIModel))

16. . . . }

17. CON c6 O (1) return TaskRoles

18. . . . }

236 A.2 Layout Optimization Algorithm

A.2 Layout Optimization Algorithm

Variables: m = Number of User Roles, n = Number of Workflows Assigned to

the Primary Role

Legend: CON = Constant, LOG = Logarithmic, POL = Polynomial

Total Running Time: O (2 × m × l o g m + 2 × n × l o g n)

 Type Cost Time Pseudo-code

1. . . . Optimize-Layout (UserRoles[], Roles[],

2. . . . UIModel, LayoutID, WorkflowsCancelledByUser[],

3. . . . AlternativeWorkflows[]) {

4. . . . //Order Assigned Roles by Role Priorities

5. POL c1 O (m) foreach ur in UserRoles {

6. CON c2 O (1) tr ← Roles[].GetRole(ur.RoleRef)

7. CON c3 O (1) if tr = null

8. CON c4 O (1) tr ← Roles[].GetRole(All-Roles)

9. CON c5 O (1) ur.Priority ← tr.Priority;

10. . . . }

11. . . .

12. LOG c6 O(m × log m) UserRoles.OrderBy(Priority)

13. CON c7 O (1) primaryRole ← UserRoles.First()

14. . . .

15. CON c8 O (1) Workflows[] ← Get-Workflows(primaryRole,

16. . c8 . LayoutID, AlternativeWorkflows)

17. CON c9 O (1) Workflows = Select w From Workflows Where

18. . c9 . WorkflowsCancelledByUser.Contains(w) = false

19. . . .

20. CON c10 O(n × log n) Workflows.OrderBy(ExecutionOrder)

21. CON c11 O (n) foreach workflow in Workflows[] {

22. . . . //time depends on workflow’s content

23. . . . workflow.Execute(UIModel)

24. . . . }

25. . . . }

Appendix A – Algorithms 237

A.3 Conflict Checking Based on Temporal Constraints

Variables: m = number of unselected tasks, n = number of conflicting tasks

Legend: CON = Constant, POL = Polynomial

Total Running Time: O (m)

Type Cost Time Pseudo-code

1. [] CheckForConflicts(TaskModel TM) {

2. //Get unselected tasks and their relationships
3. CON c1 O(1) UnselectedTasks[] ← Select * From TM.Tasks

4. . c1 O(1) Where Selected = false

5. CON c2 O(1) UnselTaskRelationships[] ← Select * From

6. . c2 O(1) TM.Relationships as R Where (Select TaskID

7. . c2 O(1) From UnselectedTasks).Contains(

8. . c2 O(1) R.SourceTaskID) || (Select TaskID From

9. . c2 O(1) UnselectedTasks).Contains(R.TargetTaskID)

10. . . . //CTT relation types indicating dependency
11. CON c3 O(1) RemoveTAIfTBIsRemoved[] ← {

12. . c3 O(1) Concurrency with Info. Exchange }

13. . c4 O(1) RemoveTBIfTAIsRemoved[] ← {

14. . c4 O(1) Concurrency with Info. Exchange,

15. . c4 O(1) Enabling, Enabling with Info. Exchange }

16. CON c5 O(1) ConflictingTasks ← [];

17. POL c6 O(m) foreach uTask in UnselectedTasks {

18. . . . //Get conflicts created by unselecting task

19. CON c7 O(1) ConflictingTasks.Add(Select * From

20. . c7 O(1) TM.Tasks as T Where (Select SourceTaskID

21. . c7 O(1) From UnselTaskRelationships Where

22. . c7 O(1) TargetTaskID = uTask.TaskID &&

23. . c7 O(1) RemoveTAIfTBIsRemoved.Contains(

24. . c7 O(1) RelType)).Contains(T.TaskID) ||(Select

25. . c7 O(1) TargetTaskID From UnselTaskRelationships

26. . c7 O(1) Where SourceTaskID = uTask.TaskID &&

27. . c7 O(1) RemoveTBIfTAIsRemoved.Contains(

28. . c7 O(1) RelType)).Contains(T.TaskID)) }

29. CON c8 O(1) return ConflictingTasks }

 239

B

Questionnaires

This appendix presents the questionnaires, which were used in the usability

studies that were conducted to evaluate our UI adaptation mechanism.

B.1 Demographics Questions Used in Usability Studies

1) Please indicate your gender.

 Male Female

2) Please indicate your age group.

 Less than 21 21 to 30 31 to 40 41 to 50

 51 to 60 Above 60

3) Please indicate the highest degree you have obtained.

 Primary School High School Bachelor Degree

 Master Degree Doctorate / PhD

4) Have you ever used enterprise software applications or any line-of-

business information system (enterprise resource planning,

customer relationship management, marketing information

management, supply chain management, accounting, education

information management, etc.)?

 Yes No

240 B.1 Demographics Questions Used in Usability Studies

5) If your answer to question 4 is 'Yes', for how long did you use or

have been using such systems?

 Less than 1 Year 1 to 5 Years 6 to 10 Years

 11 to 15 Years 16 to 20 Years Over 20 Years

6) If your answer to question 4 is 'Yes', how many hours per day did

you use or have been using such systems?

 Less than 1 Hour 1 to 4 Hours

 5 to 8 Hours Over 8 Hours

7) How would you rate your computer skills?

Bad ☆ ☆ ☆ ☆ ☆ ☆ ☆ Good

How would you rate your ability to:

8) Use a word processor to create documents

Low ☆ ☆ ☆ ☆ ☆ ☆ ☆ High

9) Learn a software package that you never used before

Low ☆ ☆ ☆ ☆ ☆ ☆ ☆ High

10) Use an operating system (Windows, Mac OS, Linux, etc.)

Low ☆ ☆ ☆ ☆ ☆ ☆ ☆ High

11) Discuss strengths and weaknesses of various software packages

Low ☆ ☆ ☆ ☆ ☆ ☆ ☆ High

To what extent would you agree with the following?

12) I could probably teach myself most of the things I need to know

about computers.

Disagree ☆ ☆ ☆ ☆ ☆ ☆ ☆ Agree

Appendix B – Questionnaires 241

13) If I had a problem using the computer, I could solve it one way or

another.

Disagree ☆ ☆ ☆ ☆ ☆ ☆ ☆ Agree

14) I do not need someone to tell me the best way to use a computer.

Disagree ☆ ☆ ☆ ☆ ☆ ☆ ☆ Agree

15) I prefer to learn a new computer software package on my own.

Disagree ☆ ☆ ☆ ☆ ☆ ☆ ☆ Agree

The computer literacy level of the participants is calculated using the

answers they gave to questions 7 to 15. The average of the answers that were

given to questions 8 to 15 is computed. Then, the average between the result

and the answer given to question 7 is calculated. The following equation shows

the calculation:

(∑ 𝑛 𝑛

) ⁄ 𝑛 𝑛

The rating (1 to 7) calculated by the equation above determines the computer

literacy level as follows: novice (1, 2, 3), intermediate (4, 5), and expert (6, 7).

242 B.2 System Usability Scale (SUS)

B.2 System Usability Scale (SUS)

Please answer the questions below to rate the user interface based on its ability

to support the given task.

 Strongly

Disagree

Strongly

Agree

1) I think that I would like to use this

system frequently

2) I found the system unnecessarily complex

3) I thought the system was easy to use

4) I think that I would need the support of a

technical person to be able to use this

system

5) I found the various functions in this

system were well integrated

6) I thought there was too much

inconsistency in this system

7) I would imagine that most people would

learn to use this system very quickly

8) I found the system very cumbersome to

use

9) I felt very confident using the system

10) I needed to learn a lot of things before I

could get going with this system

Any other comments: __

Note: This questionnaire was created by Brooke (1996).

Appendix B – Questionnaires 243

B.3 Microsoft Product Reaction Cards

Please select three of the following terms that you find the most suitable for

describing the user interface.

 Accessible Advanced Annoying Appealing

 Approachable Attractive Boring Business-like

 Busy Calm Clean Clear

 Collaborative Comfortable Compatible Compelling

 Complex Comprehensive Confident Confusing

 Connected Consistent Controllable Convenient

 Creative Customizable Cutting edge Dated

 Desirable Difficult Disconnected Disruptive

 Distracting Dull Easy to use Effective

 Efficient Effortless Empowering Energetic

 Engaging Entertaining Enthusiastic Essential

 Exceptional Exciting Expected Familiar

 Fast Flexible Fragile Fresh

 Friendly Frustrating Fun Gets in the way

 Hard to Use Helpful High quality Impersonal

 Impressive Incomprehensible Inconsistent Ineffective

 Innovative Inspiring Integrated Intimidating

 Intuitive Inviting Irrelevant Low Maintenance

 Meaningful Motivating Not Secure Not Valuable

 Novel Old Optimistic Ordinary

 Organized Overbearing Overwhelming Patronizing

 Personal Poor quality Powerful Predictable

 Professional Relevant Reliable Responsive

 Rigid Satisfying Secure Simplistic

Legend

Positive Neutral Negative

Note: The participants were given the table of cards without indicating, which

ones we consider positive, negative, or neutral, in order not to influence their

opinions. The classification is shown in this appendix as an indication of how we

analyzed the results. These cards were created by Benedek & Miner (2002).

