120 research outputs found

    GŁĘBOKIE SIECI NEURONOWE DLA DIAGNOSTYKI ZMIAN SKÓRNYCH

    Get PDF
    Non-invasive diagnosis of skin cancer is extremely necessary. In recent years, deep neural networks and transfer learning have been very popular in the diagnosis of skin diseases. The article contains selected basics of deep neural networks, their interesting applications created in recent years, allowing the classification of skin lesions from available dermatoscopic images.Nieinwazyjna diagnostyka nowotworów skóry jest niezwykle potrzebna. W ostatnich latach bardzo dużym zainteresowaniem w diagnostyce chorób skóry cieszą się głębokie sieci neuronowe i transfer learning. Artykuł zawiera wybrane podstawy głębokich sieci neuronowych, ich ciekawe zastosowania stworzone w ostatnich latach, pozwalające na klasyfikację zmian skórnych z dostępnych obrazów dermatoskopowych

    Approximate Lesion Localization in Dermoscopy Images

    Full text link
    Background: Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. Methods: In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Results: The method is tested on a set of 428 dermoscopy images. The localization error is quantified by a metric that uses dermatologist determined borders as the ground truth. Conclusion: The results demonstrate that the method presented here achieves both fast and accurate localization of lesions in dermoscopy images

    An Efficient Block-Based Algorithm for Hair Removal in Dermoscopic Images

    Get PDF
    Hair occlusion in dermoscopy images affects the diagnostic operation of the skin lesion. Segmentation and classification of skin lesions are two major steps of the diagnostic operation required by Dermatologists. We propose a new algorithm for hair removal in dermoscopy images that includes two main stages: hair detection and inpainting. In hair detection, a morphological bottom-hat operation is implemented on Y-channel image of YIQ color space followed by a binarization operation. In inpainting, the repaired Y-channel is partitioned into 256 nonoverlapped blocks and for each block, white pixels are replaced by locating the highest peak of using a histogram function and a morphological close operation. Our proposed algorithm reports a true positive rate (sensitivity) of 97.36%, a false positive rate (fall-out) of 4.25%, and a true negative rate (specificity) of 95.75%. The diagnostic accuracy achieved is recorded at a high level of 95.78%

    The beneficial techniques in preprocessing step of skin cancer detection system comparing

    Full text link
    © 2014 The Authors. Automatic diagnostics of skin cancer is one of the most challenging problems in medical image processing. It helps physicians to decide whether a skin melanoma is benign or malignant. So, determining the more efficient methods of detection to reduce the rate of errors is a vital issue among researchers. Preprocessing is the first stage of detection to improve the quality of images, removing the irrelevant noises and unwanted parts in the background of the skin images. The purpose of this paper is to gather the preprocessing approaches can be used in skin cancer images. This paper provides good starting for researchers in their automatic skin cancer detections

    The Beneficial Techniques in Preprocessing Step of Skin Cancer Detection System Comparing

    Get PDF
    AbstractAutomatic diagnostics of skin cancer is one of the most challenging problems in medical image processing. It helps physicians to decide whether a skin melanoma is benign or malignant. So, determining the more efficient methods of detection to reduce the rate of errors is a vital issue among researchers. Preprocessing is the first stage of detection to improve the quality of images, removing the irrelevant noises and unwanted parts in the background of the skin images. The purpose of this paper is to gather the preprocessing approaches can be used in skin cancer images. This paper provides good starting for researchers in their automatic skin cancer detections

    A Survey on Segmentation Techniques in Skin Cancer Images

    Get PDF
    Skin cancer is the most hazardous and a typical sort of growth. The deadliest type of skin tumor is melanoma. Because of the expenses for dermatologists to screen each patient, there is a requirement for an automated framework to assess a patient's danger of melanoma utilizing pictures of their skin sores caught utilizing dermatoscope. Division have significance to distinguish skin sore from pictures. Diverse technique for division of dermoscopic pictures of skin disease and other pigmented sores is introduced. Division is the grouping of the information picture into skin and non-skin pixels in light of skin surface. In this paper comprises of an audit of six unique kinds of skin sore division methods. Fundamental point of division is exactness, speed and computational productivity

    Teledermoscopy in the Diagnosis of Melanocytic and Non-Melanocytic Skin Lesions: NurugoTM Derma Smartphone Microscope as a Possible New Tool in Daily Clinical Practice

    Get PDF
    Background: Due to the COVID-19 pandemic, teledermoscopy has been increasingly used in the remote diagnosis of skin cancers. In a study conducted in 2020, we demonstrated a potential role of an inexpensive device (NurugoTM Derma) as a first triage to select the skin lesions that require a face-to-face consultation with dermatologists. Herein, we report the results of a novel study that aimed to better investigate the performance of NurugoTM. Objectives: (i) verify whether the NurugoTM can be a communication tool between the general practitioner (GP) and dermatologist in the first assessment of skin lesions, (ii) analyze the degree of diagnostic–therapeutic agreement between dermatologists, (iii) estimate the number of potentially serious diagnostic errors. Methods: One hundred and forty-four images of skin lesions were collected at the Dermatology Outpatient Clinic in Novara using a conventional dermatoscope (instrument F), the NurugoTM (instrument N), and the latter with the interposition of a laboratory slide (instrument V). The images were evaluated in-blind by four dermatologists, and each was asked to make a diagnosis and to specify a possible treatment. Results: Our data show that F gave higher agreement values for all dermatologists, concerning the real clinical diagnosis. Nevertheless, a medium/moderate agreement value was obtained also for N and V instruments and that can be considered encouraging and indicate that all examined tools can potentially be used for the first screening of skin lesions. The total amount of misclassified lesions was limited (especially with the V tool), with up to nine malignant lesions wrongly classified as benign. Conclusions: NurugoTM, with adequate training, can be used to build a specific support network between GP and dermatologist or between dermatologists. Furthermore, its use could be extended to the diagnosis and follow-up of other skin diseases, especially for frail patients in emergencies, such as the current pandemic context

    An Accelerated System for Melanoma Diagnosis Based on Subset Feature Selection

    Get PDF
    In this paper we present an optimised system for diagnosing skin lesions based on digitized dermatoscopic color images. This system is composed mainly of three levels : lesion detection, lesion description (features selection) and decision. The preprocessing of the lesion image is used to remove the undesired objects from the original image and the extraction of the lesion is done by separating it from the healthy surrounding skin. The classification scheme is based on the extraction of a set of features modeling clinical signs of malignancy. The produced vector of features scores is used as input to a multi-layer perceptron classifier in order to assign the lesion to the class of benign lesions or to the one of malignant melanomas. We focus particularly in this paper on the critical step of the features selection allowing to select a reasonable reduced number of useful features while removing redundant information and approximating the properties of melanoma recognition. This permits to reduce the dimension of the lesion\u27s vector, and consequently the calculation time, without a significant loss of information. In fact, a large set of features was investigated by the application of relevant features selection techniques. Then, the number of features for classification was optimized and only five well-selected features were used to cover the discriminatory information about lesions malignancy. With this approach, for reasonably balanced training/test sets, we record a good classification rate of 77.7% in a very promising cpu time
    corecore