204 research outputs found

    Intraoperative Quantification of Bone Perfusion in Lower Extremity Injury Surgery

    Get PDF
    Orthopaedic surgery is one of the most common surgical categories. In particular, lower extremity injuries sustained from trauma can be complex and life-threatening injuries that are addressed through orthopaedic trauma surgery. Timely evaluation and surgical debridement following lower extremity injury is essential, because devitalized bones and tissues will result in high surgical site infection rates. However, the current clinical judgment of what constitutes “devitalized tissue” is subjective and dependent on surgeon experience, so it is necessary to develop imaging techniques for guiding surgical debridement, in order to control infection rates and to improve patient outcome. In this thesis work, computational models of fluorescence-guided debridement in lower extremity injury surgery will be developed, by quantifying bone perfusion intraoperatively using Dynamic contrast-enhanced fluorescence imaging (DCE-FI) system. Perfusion is an important factor of tissue viability, and therefore quantifying perfusion is essential for fluorescence-guided debridement. In Chapters 3-7 of this thesis, we explore the performance of DCE-FI in quantifying perfusion from benchtop to translation: We proposed a modified fluorescent microsphere quantification technique using cryomacrotome in animal model. This technique can measure bone perfusion in periosteal and endosteal separately, and therefore to validate bone perfusion measurements obtained by DCE-FI; We developed pre-clinical rodent contaminated fracture model to correlate DCE-FI with infection risk, and compare with multi-modality scanning; Furthermore in clinical studies, we investigated first-pass kinetic parameters of DCE-FI and arterial input functions for characterization of perfusion changes during lower limb amputation surgery; We conducted the first in-human use of dynamic contrast-enhanced texture analysis for orthopaedic trauma classification, suggesting that spatiotemporal features from DCE-FI can classify bone perfusion intraoperatively with high accuracy and sensitivity; We established clinical machine learning infection risk predictive model on open fracture surgery, where pixel-scaled prediction on infection risk will be accomplished. In conclusion, pharmacokinetic and spatiotemporal patterns of dynamic contrast-enhanced imaging show great potential for quantifying bone perfusion and prognosing bone infection. The thesis work will decrease surgical site infection risk and improve successful rates of lower extremity injury surgery

    Recent Advances in Forensic Anthropological Methods and Research

    Get PDF
    Forensic anthropology, while still relatively in its infancy compared to other forensic science disciplines, adopts a wide array of methods from many disciplines for human skeletal identification in medico-legal and humanitarian contexts. The human skeleton is a dynamic tissue that can withstand the ravages of time given the right environment and may be the only remaining evidence left in a forensic case whether a week or decades old. Improved understanding of the intrinsic and extrinsic factors that modulate skeletal tissues allows researchers and practitioners to improve the accuracy and precision of identification methods ranging from establishing a biological profile such as estimating age-at-death, and population affinity, estimating time-since-death, using isotopes for geolocation of unidentified decedents, radiology for personal identification, histology to assess a live birth, to assessing traumatic injuries and so much more

    Imaging : making the invisible visible : proceedings of the symposium, 18 May 2000, Technische Universiteit Eindhoven

    Get PDF

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Nonrigid Registration of 3-Dimensional Images of the Carotid Arteries

    Get PDF
    Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Non-invasive imaging tools that characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors, which lead to the development of unstable lesions, and identify patients at risk of plaque disruption. Registration of 3D ultrasound (US) images of carotid plaque obtained at different time points, and with Magnetic Resonance (MR) images are required for monitoring of plaque changes in volume and surface morphology, and combining the complementary information of the two modalities for better understanding of factors that define plaque vulnerability. These registration techniques should be nonrigid, to remove deformations caused by bending and torsion in the neck during image acquisition sessions. The high degrees of freedom and large number of parameters associated with nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, high computational complexity, and low reliability. Thus, we used a “twisting and bending” model with only six parameters to model the natural movement of the neck for nonrigid registration. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target and the registered images using the distance between “matched points” to evaluate registration results. We registered 3D US carotid images acquired at different head positions to simulate images acquired at different times, and obtained an average MRE of 0.8±0.3mm for nonrigid registration. We registered 3D US and MR carotid images at field strengths, 1.5T and 3.0T, of the same subject acquired on the same day, and obtained an average MRE of 1.4±0.3mm for 1.5T and 1.5±0.4mm for 3.0T, using nonrigid registration. Furthermore, we showed that the error metric used here was not significantly different from the widely accepted Target Registration Error (TRE)
    • …
    corecore