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Abstract   

Orthopaedic surgery is one of the most common surgical categories. In particular, 

lower extremity injuries sustained from trauma can be complex and life-threatening injuries 

that are addressed through orthopaedic trauma surgery. Timely evaluation and surgical 

debridement following lower extremity injury is essential, because devitalized bones and 

tissues will result in high surgical site infection rates. However, the current clinical 

judgment of what constitutes “devitalized tissue” is subjective and dependent on surgeon 

experience, so it is necessary to develop imaging techniques for guiding surgical 

debridement, in order to control infection rates and to improve patient outcome. 

In this thesis work, computational models of fluorescence-guided debridement in 

lower extremity injury surgery will be developed, by quantifying bone perfusion 

intraoperatively using Dynamic contrast-enhanced fluorescence imaging (DCE-FI) system. 

Perfusion is an important factor of tissue viability, and therefore quantifying perfusion is 

essential for fluorescence-guided debridement. In Chapters 3-7 of this thesis, we explore 

the performance of DCE-FI in quantifying perfusion from benchtop to translation: We 

proposed a modified fluorescent microsphere quantification technique using 

cryomacrotome in animal model. This technique can measure bone perfusion in periosteal 

and endosteal separately, and therefore to validate bone perfusion measurements obtained 

by DCE-FI; We developed pre-clinical rodent contaminated fracture model to correlate 

DCE-FI with infection risk, and compare with multi-modality scanning; Furthermore in 

clinical studies, we investigated first-pass kinetic parameters of DCE-FI and arterial input 

functions for characterization of perfusion changes during lower limb amputation surgery; 

We conducted the first in-human use of dynamic contrast-enhanced texture analysis for 
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orthopaedic trauma classification, suggesting that spatiotemporal features from DCE-FI 

can classify bone perfusion intraoperatively with high accuracy and sensitivity; We 

established clinical machine learning infection risk predictive model on open fracture 

surgery, where pixel-scaled prediction on infection risk will be accomplished.  

In conclusion, pharmacokinetic and spatiotemporal patterns of dynamic contrast-

enhanced imaging show great potential for quantifying bone perfusion and prognosing 

bone infection. The thesis work will decrease surgical site infection risk and improve 

successful rates of lower extremity injury surgery.  
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Chapter 1  

Introduction and Background 

This chapter is an introduction and a background explanation of the research topic 

and objectives of this thesis. The main topic of this thesis is to quantify bone perfusion by 

analysis of dynamic contrast-enhanced fluorescence imaging (DCE-FI) data. To explain 

the significance and innovation of the main topic: First, the rationale of this thesis will be 

stated within the context of the clinical problem, which is surgical site infection (SSI) 

following lower extremity injury surgery. A detailed description of the cause of SSI in 

lower extremity injury surgery, patient outcomes following SSI, and current standard of 

care of SSI will be provided. Second, the knowledge gaps that this thesis seeks to address 

are highlighted. Those gaps include the uncertainty of the extent of surgical debridement 

in lower extremity injury surgery, the lack of objective quantification of bone perfusion 

intraoperatively, and the difficulty in deciding the risk of potential SSI. Corresponding to 

the main topic, three main research objectives that this thesis will address will be 

discussed, which include validation of DCE-FI, preclinical fracture contamination model, 

and surgical debridement guidance using DCE-FI spatial and kinetic features on open-

fractured lower extremity. 

 

1.1. Clinical Problem/Rationale 

Orthopaedic surgery is one of the most rapidly growing categories of surgical 

procedures: such procedures are performed 22.3 million times per year, worldwide, and are 

growing at an annual rate of 4.9% [1]. Orthopaedic surgery can be categorized as upper 

extremity surgery (hand, elbow, arm and shoulder) and lower extremity surgery (knee, foot, 
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ankle, thigh and back), corresponding to upper and lower extremity injuries, respectively. 

Lower extremity injuries are more complex and life-threatening than upper extremity 

injuries. They account for 32% of all injuries [2], and their main etiologies include falling, 

motor vehicle collision and military involvement [3]. Timely evaluation and surgical 

management of lower extremity injuries— especially high-energy injuries—is important, 

as the morbidity and mortality rates are highly related to the time between injury and 

treatment. Surgical management includes damage control by vascular ligation and/or 

vascular shunting, infection control by antibiotics, debridement and irrigation, and fracture 

management by internal or external fixation.  

Postoperative complications of SSI must be considered in orthopaedic surgery, as 

one of the most challenging postoperative complications, it makes up 15.6% of total 

postoperative complications [4]. In the United States, there were 110,800 SSIs associated 

with inpatient surgeries in 2015, 3% annual increase in SSI ratio in 2021, annual cost of 

$3.3 billion, extended hospital length of stay by 9.7 days, and increased cost of 

hospitalization by $20,000 per admission [5]. High-energy lower extremity injuries have 

an even higher incidence of SSI. SSI is strongly associated with residual foreign bodies 

and/or devitalized bone/tissue, when primary surgical debridement has not been adequate 

for all injured regions. Failed treatment of SSI will result in increasing morbidity, loss of 

function and even amputation [6].  

 

1.2. Knowledge Gap 

 Thorough debridement is necessary in the management of SSIs, and it is the 

primary step before the establishment of mechanical stability. Inadequate debridement 
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leaving with residual devitalized bone or tissue will necessitate additional unplanned 

surgery and prolonged morbidity [6–9]. Microbial biofilm also forms preferentially on 

these tissues, making antibiotic treatment and immune cell response less effective [10,11]. 

However, thorough debridement is challenging, for the following reasons: First, 

devitalized bone or tissue is difficult to spot, because devitalized bone or tissue usually has 

no obvious outlines from its surrounding vitalized bone or tissue; Second, the clinical 

judgment of devitalized bone or tissue is rudimentary. The clinical signs, such as color 

changes, turgidity and “paprika” areas [12,13], are often hard to distinguish under the 

ambiguous surgical light; Third, obvious clinical signs are not always existing in the 

surgical sites. Some devitalized bone or tissue are in “gray-regions” that show no obvious 

clinical signs, making them harder to be recognized [13]. As a result, a functional 

intraoperative imaging system that can guide amount of tissue to be debrided as well as its 

precise boundary is needed. The development of this type of imaging system should 

improve SSI occurrence, treatment and patient outcome. 

Intraoperative imaging can leverage tissue perfusion to guide debridement, since 

perfusion is an important determinant of tissue viability, and perfusion can theoretically be 

measured intraoperatively using dynamic contrast-enhanced fluorescence imaging (DCE-

FI). Specifically in bone, adequate perfusion is essential for maintaining bone activity [14], 

and deficient perfusion prevents delivery of nutrition and antibiotics, and it accelerates 

biofilm formation [15,16]. However, there are currently no imaging systems that can 

quantify bone perfusion intraoperatively. Most of the current systems in imaging bone (i.e. 

plain radiography, computed tomography, and magnetic resonance imaging) have complex 

systematic components that are difficult to be incorporated in surgical procedures, and 
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acquiring these images intraoperatively will lead to prolonged operational time. This 

extensive gap in our understanding leads to substantial variation in extent of debridement, 

potentially compromising perfusion to the tibia from periosteal tissue. This gap also places 

patients at unnecessarily high risk for initial osteitis, recurrent infection/osteitis, and 

osteonecrosis, and therefore increasing possibilities of repeated surgery and decreasing 

patients’ outcome.  

 

1.3. Research Objectives 

We propose a fluorescence-guided approach that applies DCE-FI techniques to 

assess the perfusion of bone, and to provide precise guidance of debridement during lower 

extremity injury surgery. Our central hypothesis is: DCE-FI contains perfusion-

associated features that enables the prediction of negative outcomes of bone 

devitalization. The proposed computational model works by incorporating spatiotemporal, 

statistical, and kinetic parameters extracted from DCE-FI, and using this information to 

predict bone perfusion status, with the goal of guiding debridement. By the model, bone 

needing debridement will be labeled as low perfused regions and have clear margins from 

well perfused regions, when visualized as a classification map. The proposed model will 

be a useful debridement guidance tool that has high clinical potential. The thesis work will 

focus on developing the model from benchtop to bedside (Figure 1.1), with the following 

specific aims: 

Aim 1: Validation of DCE-FI with fluorescent microspheres. The first aim is to 

develop a “gold standard” for DCE-FI. In our pilot animal study [17], we modify the classic 

fluorescent microsphere (FM) perfusion measurement technique, making it not only 
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quantitative but also a spatially resolved visualization of perfusion. By the modified FM 

technique, perfusion can be visualized in 3D as volumetric whole-bone/cortex/marrow 

perfusion map, by overlaid with different segmented bone structures. In this aim, we will 

develop this modified FM technique to validate the accuracy of DCE-FI in quantifying 

bone perfusion. To complete this aim, we will 1) design animal study of administrating 

FMs and indocyanine green (ICG) into bones with different perfusion levels, 2) use DCE-

FI to image the bones, 3) scan FMs with cryo-macotome imaging system and calculate 

volumetric perfusion maps, and 4) compare the volumetric perfusion maps by FM 

technique with the predicted perfusion by DCE-FI models. 

Aim 2: Correlate DCE-FI with infection risk in rodent Methicillin-resistant 

Staphylococcus aureus (MRSA)- contaminated fracture model. We have previously 

developed a rodent fracture model that has controlled level of trauma by blast overpressure 

tube injury. In the second aim, we will further incorporate survival and infection into the 

rodent fracture model, and correlate the detected contaminated region by bioluminescent 

imaging with the predicted low perfusion bone region by DCE-FI. We hypothesize that 

infected regions are more likely to have low post-injury perfusion, and that DCE-FI can 

guide debridement of tissue most susceptible to infection. To complete this aim, we will 1) 

introduce low-energy fracture to rodent femur by the blast overpressure tube platform, 2) 

conduct surgical debridement and stabilization, 3) inoculate bioluminescent MRSA at 

fracture site, 4) image rodent femur by DCE-FI and bioluminescent imaging during MRSA 

growth period, and 5) compare multi-modality results and compute the correlation 

coefficients. 
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Aim 3: Validate machine learning predictive model on clinical open infection 

data. Clinical prediction of bone infection is mainly based on patient demographics and 

preoperative laboratory test results [18], which can only provide patient-wise prediction 

not region-wise or pixel-wise prediction, and therefore, can only influence surgeon 

decision slightly. To make region-wise prediction, we will develop a machine learning 

predictive model based on DCE-FI and validate it on clinical open infection data. Machine 

learning has been previously utilized in differentiating damaged bones verses normal bones 

[19] and assessing bone perfusion [20]. In this aim, we will build the machine learning 

predictive model by including kinetic features, spatiotemporal features and infection risk 

score [18], and validate its accuracy with multi-site open infection patient data. In detail, 

we will 1) extract spatiotemporal features and kinetic features by texture analysis and 

kinetic analysis, 2) calculate patient-wise infection risk score, 3) train machine learning 

algorithms, and 3) compute classification metrics by comparing with ground truth of 

confirmed patient outcome from multiple medical centers.  

 

 

Figure 1.1: Diagram of research objectives in the thesis work. 
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1.4. Research Significance and Impact  

This thesis work has significance and impact both in research and in clinics, as 

listed below: 

Firstly, this thesis work will make predictions for SSI occurrence. SSI is one of the 

most challenging postoperative complications following orthopaedic surgery, but current 

prognostic strategies for SSI are inadequate. With the proposed predictive model, the 

potential of bone infection can be assessed intraoperatively. 

Secondly, this thesis work will extend fluorescence-guided techniques by 

developing them specifically for surgical debridement. In particular, the proposed 

predictive model will enable the classification of bone tissue regions-of-interest according 

to different perfusion levels (and other perfusion-associated features), and meanwhile 

visualize margin between low-perfused regions and other regions. We anticipate that this 

model will be helpful for surgeons, especially inexperienced ones, whose surgical success 

rates have the most to gain, and which will in turn improve the outcome and quality of life 

for patients. 

Thirdly, this thesis work advances the ability to quantify bone perfusion 

intraoperatively. Classical fluorescence-guided surgery (FGS) technique provide only 

qualitative information, and in contrast, this thesis work further expands the usability of 

FGS by providing quantitative information such as blood volume and blood flow. This is 

accomplished by accounting for sources of variation in the delivery of ICG to the tissue 

region of interest, for example. Such quantitative information can be then used in 

developing bone-specific kinetic models [19,21] and machine learning models.  
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Lastly, this thesis work has demonstrated a “gold standard” for validating the 

measurement of perfusion in orthopaedic research, in principle. The modified fluorescent 

microsphere technique we have developed using imaging macrotome is a repeatable and 

valuable perfusion measurement, and it can be applied in both pre-clinical and clinical 

studies. While we were only able to complete a limited dataset due to challenges accessing 

the imaging macrocryotome, the technique was demonstrated and results showing the 

potential of the approach were highlighted. 

 

1.5. Thesis Outline 

This thesis consists of eight chapters. The first and second chapters provide 

introduction, background, and literature review matterial. The following five chapters 

provide an adaptation of published or ongoing studies that have been accomplished during 

my graduate work. The final chapter provides a conclusion and discusses where I think 

future work should focus on. Provided here is a summary of each of the chapters which 

pertain to the research studies I performed: 

 

1.5.1. Validation of DCE-FI by microsphere quantification technique using custom-built 

multi-channel cryomacrotome (mQUIC) in rabbit femur (Chapter 3) 

Perfusion is important in maintaining normal bone viability, but currently there are 

no techniques to directly measure bone blood flow rate. Therefore, there is no “ground 

truth” method for bone perfusion to validate DCE-FI. This chapter summarizes the work 

from the paper “Validation of dynamic contrast-enhanced bone blood flow imaging 

technique with fluorescent microspheres”, published in Proc. SPIE 11943 in 2022, by X. 
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Han, V. Demidov, D. Wirth, B. Byrd, S. C. Davis, I. L. Gitajn, and J. T. Elliott, and the 

paper “Initial experience of perfusion assessment in a rabbit model of orthopaedic trauma 

surgery using fluorescent microspheres and hyperspectral imaging cryomacrotome”, 

published in Proc. SPIE 12146 in 2022, by X. Han, V. Demidov, D. Wirth, B. Byrd, S. C. 

Davis, I. L. Gitajn, and J. T. Elliott. Here we proposed a modified fluorescent microsphere 

quantification technique using custom-built multi-channel cryomacrotome, termed as 

“mQUIC”. This technique converted the spatial density of fluorescent microsphere counted 

in ex vivo serial frozen sections into volumetric perfusion maps, and through the use of 

corresponding color images of the frozen tissue, enabled the visualization of periosteal and 

endosteal perfusion separately. As a result, mQUIC is a method that can be used as a 

validation approach for bone perfusion assessment. 

 

1.5.2. Low-energy fractured MRSA-contaminated rodent femur model for correlating 

DCE-FI with bioluminescent imaging (Chapter 4) 

This chapter will expand the application of DCE-FI in bone viability assessment to 

bone infection assessment. Bone infection associated with fractures is difficult to 

characterize, due to the complex changes in blood flow and vasculature. This chapter 

describes a completed work using DCE-FI and bioluminescent imaging to visualize the 

vascular changes after fracture and bacterial contamination. This completed work will be 

published in a peer-review journal in the near future. In this study, we developed a low-

energy rodent femur fracture model followed by MRSA contamination. DCE-FI imaging 

were correlated with a longitudinal bioluminescent imaging, providing a multi-modality 

imaging approach for understanding and monitoring bone infection. As a result, this 
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preclinical study represents an important first step for any further preclinical and clinical 

studies in evaluating the DCE-FI in bone infection imaging.  

 

1.5.3. First-pass kinetic parameters and arterial input functions (AIFs) characterization of 

amputation (Chapter 5) 

Model-dependent methods in computing blood flow from DCE temporal curves 

have been established decades ago, but the required assumptions of physical conditions  

and location-specific interpretations have limited their applications in broader orthopaedic 

problems. In addition, intrasubject variations caused by differences in dose and 

cardiovascular conditions within a patient group were one of main reasons for inaccurate 

computations. This chapter demonstrates the work from the paper “First pass kinetics of 

dynamic contrast-enhanced fluorescence imaging in lower limb amputations: model-

independent characterization and classification in perfusion states”, under review in 

Journal of Bone and Joint Surgery in 2023, by X. Han, J. T. Elliott, Y. Tang, J. S. Sottosanti, 

A. Hall, S. Jiang, and I. L. Gitajn. In this study, we developed a simplified model-

independent method using first-pass kinetic parameters extracted from DCE-FI intensity 

curves. Meantime, we corrected the intersubjective variations caused by AIF-associated 

fluctuations using a simple AIF correction method. This work will prove the first-pass 

kinetic analysis in characterization of amputation degrees, and will accelerate the 

applications of DCE-FI in bone imaging. 

 

1.5.4. First in-human use of dynamic contrast-enhanced texture analysis for orthopaedic 

trauma classification (Chapter 6) 
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Assessing bone viability levels intraoperatively is challenging due to lack of 

accurate physical measurement. This chapter describes the work presented in the paper 

“Spatial and temporal patterns in dynamic-contrast enhanced intraoperative fluorescence 

imaging enable classification of bone perfusion in patients undergoing leg amputation”, 

published in Biomedical Optics Express in 2022, by X. Han, V. Demidov, V. S. Vaze, S. 

Jiang, I. L. Gitajn, and J. T. Elliott. Here we developed an unsupervised machine learning 

based bone viability level classification approach using spatial and temporal features 

extracted from DCE-FI human data. In this approach, we used principle component 

analysis to reduce the feature dimension, and k-means clustering algorithm to separate the 

data into normal/suspicious/compromised groups. This study opened up the possibility of 

dynamic contrast-enhanced texture analysis in orthopaedic trauma classification.  

 

1.5.5. Risk prediction on orthopaedic trauma patients for fracture-associated infection 

using DCE-FI (Chapter 7) 

Proper surgical debridement is a critical step for preventing SSI. However, 

currently there are no techniques to predict the risk of SSI and thus to guide the location 

and degree of debridement. This chapter is based on the work in the paper “Risk prediction 

on orthopaedic trauma patients for fracture-associated infection using dynamic contrast 

enhanced-fluorescence imaging” in press in Proc. SPIE 11943 in 2023, by X. Han, L. M. 

Bateman, P. M. Werth, S. Jiang, I. L.Gitajn, and J. T. Elliott. Here we presented an SSI 

risk prediction method using DCE-FI and supervised machine learning. In this method, we 

extracted three categories of predictive features: spatial, temporal and informatic features. 
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A combination of these features can not only predict the possibility of SSI, but also provide 

a three-level predictive map for visual guidance of debridement. 

 

1.5.6. Conclusion and future studies (Chapter 8)  

This chapter will summarize the previous five chapters and draw conclusions 

regarding the main results. Essentially, the above five chapters have developed the 

assessment and validation approaches in bone viability and bone infection from benchtop 

to translation, which can provide visual guidance for surgical debridement in orthopaedic 

trauma surgery. This chapter will tie all of these pieces together, and will also discuss some 

potential future studies associated with the completed studies, including and model-

dependent approach in bone perfusion evaluation, multi-institutional cohort clinical study 

on guiding open-fracture surgery, and correlating DCE-FI with multiple injury levels for 

more precise bone infection evaluation. 
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Chapter 2 

Literature Review 

This chapter reviews the literature relevant to the topic of this thesis—the 

development and validation of dynamic contrast-enhanced fluorescence imaging (DCE-FI) 

approaches for bone perfusion quantification in lower extremity injury surgery. First, the 

clinical problem—surgical site infection (SSI) following lower extremity injury surgery—

will be introduced. A detailed description of the cause of SSI in lower extremity injury 

surgery will be provided, followed by the challenges in current standard of care. Second, 

the background related to physiology of bone perfusion will be discussed. Here the reader 

will understand the importance of perfusion in bone viability, the complex structure of bone 

vasculature, characteristics of osteomyelitis, and the current methods for measuring bone 

perfusion. Third, the theoretical basis of dynamic contrast-enhanced (DCE) imaging will 

be introduced in detail, as DCE imaging serves as fundamental to the approaches developed 

in this thesis. Here we will describe the history of DCE, theories of tracer kinetic models, 

and current applications and techniques of DCE imaging. Fourth, an overview of tissue 

optics, and specifically, fluorescence imaging will be provided. The theory of tissue 

scattering and absorption, physical modeling of light propagation in tissue, principle of 

fluorescence and fluorophores will be explained here. Specifically, DCE-FI techniques will 

be discussed, as it is the imaging modality used in this thesis. Fifth, microsphere dilution 

theory will be demonstrated, including its specific application in tissue perfusion 

quantification. Last, machine learning classification theory and its application in bone 

imaging will be addressed. Detailed descriptions involve theoretical basis, texture analysis 

and prognosis models.  
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2.1. Issues in Orthopaedic Trauma 

2.1.1. Clinical presentation 

Orthopaedic trauma surgery includes lower extremity (knee, foot, ankle, thigh and 

back) surgery and upper extremity (hand, elbow, arm and shoulder) surgery. The annual 

number of orthopaedic surgical procedures is 22.3 million worldwide, and the annual 

growth rate is 4.9% [1], making it one of the most rapidly growing categories of surgical 

procedures. In the United States, approximately 7.9 million musculoskeletal injuries are 

reported each year, with 5-10% of which ending in delayed or impaired healing [22]. 

Trauma costs nearly $56 billion per year for health care, making it the second most 

expensive medical problem in the US, just after heart disease [23]. Of all reported 

orthopaedic trauma patients, 22% of them suffer severe injuries, and 33% of them have 

moderate injuries. The overall mortality rate is 4.39%, with largest number of deaths 

caused by fall-related injuries (44.2%), motor vehicle accidents (26%) and firearm injuries 

(15.3%) [24].  

In orthopaedic trauma surgery, one of the common types is lower extremity injury 

that accounts for 32% of all injuries [2]. In 2012, there are approximately 278,100 lower 

extremity injuries in the US [25]. Common causes for lower extremity injury include 

falling, motor vehicle collision and military involvement [3]. Most severe civilian 

extremity injuries are caused by blunt trauma, and then by penetrating or combined 

mechanisms. In contrast, most military extremity injuries are due to penetrating or 

combined mechanisms that have high rates of open fracture and vascular injury [3,26]. 

Lower extremity injuries are limb-threatening and even life-threatening. Severe lower 

extremity injuries are associated with a high incidence of complications, including wound 



15 
 

complications such as infection, necrosis, nonunion and osteomyelitis, venous 

thromboembolism, rhabdomyolysis, and late complications such as amputation and 

heterotopic ossification in residual limbs [3]. These complications following lower 

extremity injuries will result in prolonged hospitalization and additional operative 

treatment [27]. Mortality of civilian extremity injury ranges from 5 to 10 percent, and is 

greater in blunt injuries than in penetrating injuries [28]. 

Postoperative complication is one of the most challenging issues in orthopaedic 

surgery, especially when dealing with high-energy lower extremity injury. SSI makes up 

15.6% of total postoperative complications [4], and is one of the most severe complications. 

In 2009 in the US alone, annual incidence of SSI in all surgical categories is 1.07%, along 

with annual deaths of 8,000 and financial cost of treatment of $10 billion [29]. The main 

causes of SSI are incomplete primary surgical debridement, leaving behind residual foreign 

bodies and/or injured tissue. SSI will result morbidity, loss of function and amputation [6]. 

This thesis work will focus specifically on the critical issue of optimizing debridement so 

that it is thorough and leaves the patient with the least likelihood of infection. 

 

2.1.2. Challenges in current standard of care 

Current evaluation of lower extremity injuries consists of four functional 

components—nerves, vessels, bones, and soft tissues—that must be evaluated both 

individually and in combination. The injury is a mangled extremity if any three of the four 

components are injured [30]. To achieve the best outcome, limb salvage can be attempted 

even if the patient has a mangled extremity, or primary amputation is required if the injury 

level is so severe.   
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The goal of surgical management is to restore the limbs for maximum function. 

Surgical management of lower extremity injuries includes damage control by vascular 

ligation and/or vascular shunting, infection control by antibiotics, debridement and 

irrigation, and fracture management by internal or external fixation [6–9]. Thorough 

debridement of foreign body and devitalized tissue is necessary in the management of SSIs, 

and it is the primary step before the other mechanical maintenance [6–9]. In debridement 

surgery, clinical judgment of devitalized bone or tissue is based on the clinical signs, such 

as color changes, turgidity and “paprika” areas [12,13]. However, these clinical signs are 

often hard to distinguish under the ambiguous surgical light, and some devitalized bone or 

tissue are in “gray-regions” that do not display obvious clinical signs [13]. Therefore, the 

risk of debriding too much or too little is high due to lack of objective measurement tools 

of bone perfusion, especially on the “grayish regions” that don’t satisfy all clinical signs. 

In other words, debridement is currently performed ‘blind’—while the goal of debridement 

is to improve the overall perfusion of tissue remaining in the patient by removing poorly 

perfused tissue, there is no currently used method to confirm this has been accomplished. 

 

2.2. Physiology of Bone Perfusion 

2.2.1. Importance of perfusion in bone viability 

Perfusion characterizes blood flow at the level of the capillary bed. Why is 

perfusion critical for keeping bone viable? Generally, for both bone and soft tissue, 

adequate perfusion is essential for repair and healing of fracture, prevention of secondary 

fractures, management of infection following trauma, maintenance of bone growth and 

strength, and delivering oxygen, nutrients, antibiotics, immune cells [14,31–37]. In contrast, 



17 
 

deficient perfusion prevents the delivery of antibiotics and endogenous immune cells to 

traumatized bone, becomes a site of biofilm formation, and resists antibiotic effects [15,16]. 

Inadequate perfusion will result in tissue and organ dysfunction, which associated with 

chronic conditions including hypertension, obesity, diabetes mellitus and dyslipidemia [38]. 

Regulation of tissue perfusion is done by microcirculation, where stand 70% to 90% of the 

systemic arterial pressure and offer the main resistance to flow of blood [39]. 

As for bone specifically, first, poor bone perfusion is associated with complications 

including infection, necrosis, functional deficits [40–42]. If a bone is poorly perfused, it is 

likely that it becomes devitalized. Residual devitalized bone or tissue will require 

additional unplanned surgery and prolonged morbidity [6–9]. Microbial biofilm will also 

form on them, making antibiotics treatment and immune cell response even harder [10,11]. 

Failure of proper treatment in devitalized bone will lead to significant loss of bone function, 

increased risk of recurrent infection and repeat surgery, prolonged morbidity, reduced 

quality of life, and conversion to amputation [43–46]. Second, perfusion is also crucial for 

bone remodeling and healing. Inadequate perfusion in bone remodeling is associated with 

increased risk of fracture and avascular necrosis [47]. Third, reduced bone perfusion is 

related to skeletal diseases, such as osteoporosis [48] and osteoarthritis [49]. 

 

2.2.2. Structure of bone vasculature 

As discussed in section 2.2.1, blood vessels function in transporting and 

maintaining homeostasis of bone. Bone vasculature is a complex and heterogenous system 

(Figure 2.1). Distinct vessel subtypes consist of bone vasculature, and differentially 

regulate osteogenesis, hematopoiesis and disease conditions in bone [50]. Similar to other 
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tissues, bone vasculature consists of arteries and veins, and connected through capillary 

network. In longbones such as tibia and femur, arteries can be separated as periosteal 

arteries surrounding the bone, and endosteal arteries (including principle nutrient artery 

and Haversian arteries) penetrating the bone. Periosteal system supplies the outer one-third 

of the cortex, and endosteal system supply the medulla and inner two-thirds of the cortex. 

Capillary vessels fill the marrow cavity, and are mostly linear columnar arranged. The main 

capillary network connects with a large central vein, where other smaller veins are drained 

separately by epiphyseal capillaries. 

  

Figure 2.1: Schematic diagram of bone vascular supply. One or more nutrient arteries are the 

main blood supply, which penetrate the medulla. Smaller periosteal arteries supply the cortex and 

connect to the nutrient arteries. The arterial branches drain into arterio-venous sinuses in the 

medulla. Image from [14]. Reproduced with permission from Springer Nature. 

 

2.2.3. Characteristics of osteomyelitis 

Osteomyelitis is an inflammatory process caused by infecting microorganism. 

Staphylococcus aureus (S. aureus) is the most common pathogenic microorganism. S. 
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aureus can attach to extracellular matrix protein to adhere the host tissues, evade from host 

defenses by emitting some toxins, attack host tissues or degrade components of 

extracellular matrix, and colonize tissues and persist after bacteremia [51]. S. aureus can 

also form biofilms, which is a structured microbial community. Once S. aureus attaches to 

the bone tissue, the bacteria begin to accumulate and produce a sticky matrix of initial 

biofilm. This accumulation results in the formation of biofilm microcolonies and 

development of mature biofilm. The biofilm may then finally break down and release the 

bacteria from within, causing contamination throughout the host [52,53]. As a result, 

biofilms are difficult to treat with antimicrobial agents, and create a diffusion barrier to 

inhibit the penetration of nutrients. 

Osteomyelitis can involve a single or several regions of the bone, including marrow, 

cortex, periosteum and soft tissue. Infection can happen after trauma, surgery or joint 

replacement, and then can spread locally from the initial infection source. Acute 

osteomyelitis usually develops over several days or weeks, and chronic osteomyelitis 

evolves over months or years. In chronic osteomyelitis, persistence of microorganisms, 

low-grade inflammation, and the presence of dead bone and fistulous tracts are 

characteristics of the disease [54,55]. 

In osteomyelitis, the infected regions have acute suppurative inflammations where 

microorganisms are embedded. The inflammation, along with leucocytes, contribute to 

tissue necrosis and bone structure destruction. Moreover, blood vessels are compressed and 

occluded by the inflammation in tissue, leading to ischemia and bone necrosis. Necrotic 

bones without blood supply can become separated and extended to form sequestra, letting 

microorganisms grow within and becoming resistant of antibiotic treatment. At the 
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infarction edge, there is reactive hyperemia and increased osteoclastic activity that leads to 

bone loss and osteoporosis. Bone apposition also occurs, causing periosteal apposition and 

new bone formation [54,56]. 

 

2.2.4. Current methods for measuring bone perfusion 

Focusing on the critical parameter of ‘perfusion’ as the implicit or explicit goal of 

any debridement procedure, we now turn to a discussion of the current methods for 

measuring perfusion in bone. Quantitative measurement of bone perfusion is important in 

various clinical conditions such as infection, trauma, inflammation, arthritis, avascular 

necrosis neoplasms, and bone grafting [57]. 

Various non-invasive techniques are used for clinical measurement of tissue 

perfusion, such as Doppler flow probe  [58] and transit time flow measurement probe [59]. 

Monitoring tissue perfusion can be done by looking at biomarkers of global tissue perfusion 

including serum lactate and central venous oxygen saturation, assessment of non-vital 

organ perfusion, and direct visualization of sublingual microcirculation [60]. Ideally, 

measurement of tissue perfusion should be rapid, non-invasive and user-friendly.   

For measuring perfusion in bone, angiographic imaging techniques are routinely 

used in the clinic [61]. Different preoperative imaging modalities can improve surgical 

strategies in many aspects, including early detection, improving diagnostic accuracy and 

operative staging and planning [62]. Plain film radiography doesn’t have sufficient 

sensitivity [63]. Magnetic resonance imaging (MRI) is capable of diagnosing very early 

lesions, and has a very high sensitivity and specificity (more than 90%). MRI detects bone 

marrow changes more readily than other than bone changes [64,65]; however, MRI is 
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expensive and not always available at smaller hospitals. Single-photon emission 

computerized tomography (SPECT) can detect vascular integrity, focus avascular regions 

on early lesions. SPECT also has high sensitivity and high resolution [66,67]. Computed 

tomography (CT) has high spatial resolution and contrast resolution. CT can detect 

morphologic features. However, CT cannot visualize early vascular and marrow 

abnormalities [68,69]. Planar scintigraphy has been reported to have a moderate sensitivity. 

Quantitative bone scan using planar scintigraphy allows quantitative analysis of perfusion 

and static phases, but it is still under investigation and not widely used clinically [66,70].  

Specifically, MRI has strengths in providing carriable soft tissue contrast related to 

the inherent T1 and T2 relaxivities of the tissue. Both cortical and trabecular bones can 

have excellent contrast by MRI [71]. Current techniques of MRI incorporate contrast media, 

including small and macro molecular contrast media, into MRI to allow for assessment of 

angiogenic activity and estimation of physiological parameters including permeability, 

blood flow and clearance rates. Positron emission tomography (PET) acquire quantitative 

information about the localization and metabolism of tissues by injecting radiotracer. A 

specific radiotracer, 18F-Fluoride, is Food and Drug Administration (FDA) approved bone 

seeking radiotracer that can bind to hydroxyapatite in the bone matrix [72]. Dynamic PET 

time-activity curves can be used to analysis the behavior of 18F-Fluoride, demonstrating 

differentiation of bone blood flow in the angiogenic phase from bone mineral binding and 

bone formation in the osteoblastic phase [57]. 

In section 2.3, the technique proposed in this thesis to measure bone perfusion—

mainly, DCE-FI—will be further discussed. In the subsequent section, however, the 

general principles of dynamic contrast-enhanced imaging, which are relevant to a number 
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of different modalities such as CT and MRI, will be thoroughly discussed to provide the 

most comprehensive foundation for understanding the specific fluorescence-based 

technique that has been developed in this work. 

 

2.3. Dynamic Contrast-Enhanced Imaging  

2.3.1. History of DCE 

Dynamic contrast-enhanced imaging is based on indicator dilution theory that 

describes the kinetic behavior of the indicator diluted into the circulatory system. The first 

study of indicator dilution theory was done in 1761, where an indicator was injected into 

the vena cava to compare pulmonary circulation times [73,74]. In 1824, indicator dilution 

theory was further developed to measure blood flow, cardiac output, and central blood 

volume [73]. The first attempt for measuring cerebral blood flow (CBF) was done by 

utilizing the highly diffusible gas nitrous oxide as a blood flow tracer, and measuring the 

time-varying concentration of nitrous oxide in arterial blood and venous blood samples 

from the jugular bulb [75]. After that, radiolabeled 85Kr replaced nitrous oxide and assessed 

regional CBF by placing scintillation counting devices at various locations on the scalp 

[76]. The measurement of blood flow was further improved by using radioactive 133Xe, 

modifying three tissue compartment equation, and determining noninvasively the arterial 

input function (AIF) [77]. Later, after the indicator dilution theory was corrected by taking 

account recirculation, it became a reliable method of characterizing the vascular dynamic 

of tissue [78].  

Later on, along with the development of multiple imaging modalities, indicator 

dilution theory has been combined with imaging techniques and developed as DCE 
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imaging, including DCE-Ultrasound (US), DCE-MRI, DCE-CT and DCE-FI [79,80]. In 

DCE imaging, contrast agent works as indicator of blood behavior, and therefore its kinetic 

distribution and signal enhancement patterns can reflect several hemodynamic features 

including regional blood flow and vessel density [81]. The first tomographic method of 

quantifying blood flow used DCE-PET and H2
15O [82]. Theoretical groundwork for DCE-

CT was published in 1980 that implemented a sequence of scans following an intravenous 

bolus injection of contrast agent to determine CBF [83]. These past historical works have 

built foundations for the recent imaging and analytical techniques on DCE in blood flow 

measurement. 

 

2.3.2. Overview of current DCE applications and techniques 

Dynamic contrast-enhanced imaging acquires a series of images over time after an 

intravenous bolus injection of contrast agent, and refer to baseline images without contrast 

enhancement. The presence of contrast agent within regional blood vessels and tissues 

reflect as signal enhancement in a linear or non-linear manner. Analysis of the temporal 

changes in signal enhancement from the time-concentration curves can quantify 

physiological parameters reflecting the status of vascularity and adjacent tissues. By fitting 

specific compartment model, the pharmacokinetics of contrast agent during the first-pass 

circulation can represent perfusion, relative blood volume and mean transit time. 

In general, DCE imaging has become increasingly applicable to several clinical and 

research problems, such as tumor imaging [84,85], vasculature imaging [86,87], perfusion 

measurement [88,89] and malignance determination [90,91]. In clinics, DCE imaging gain 

increasing popularity as the imaging protocols are easily implementable in standard clinical 
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settings [81,92], and several contrast agents have certificated for clinical use [93–95]; In 

research, DCE imaging systems are also promising because they have high spatiotemporal 

resolution, wide availability and reasonable cost, and thus making them suitable for studies 

such as antiangiogenic therapy and complex physiological models [96]. 

Multiple imaging modalities have leveraged DCE, including DCE-CT, DCE-MRI, 

DCE-FI and DCE-US [80,97]. DCE-CT uses contrast agent nonionic iodine for contrast 

acquisition. DCE-CT has main advantages of simplicity in terms of image acquisition and 

processing, linear relationship between contrast agent concentration and signal attenuation, 

wide availability, low cost and high spatial resolution. DCE-CT can be incorporated into 

CT angiography, and can be integrated into PET/CT system that enables tumor vascularity 

and glucose metabolism to be simultaneously evaluated [98]. DCE-MRI uses contrast 

agent gadolinium. The changes in MRI signals are non-linear. DCE-MRI can be acquired 

using either T2* or T2 weighting (known as T2 weighted DCE-MRI or dynamic 

susceptibility contrast MRI) or T1 weighting (known as T1 weighted DCE-MRI).  

Among those techniques, DCE-FI has gained the fastest growth in clinical 

applications, including cancer imaging, sentinel lymph nodes imaging, neurological 

diseases, cardiovascular diseases, skeletal processes, ureter imaging and bile-duct imaging 

[99–111]. DCE-FI outstand others in clinical acceptance with the following reasons: 

Ultrasonography cannot incorporate targeted contrast agents to apply precise visualization. 

It also induces ionizing radiation and direct dose to patients and surgeons; MRI and CT are 

complex and costly, and predominantly used preoperatively [112]; PET and SPECT are 

sensitive to deep depth but have low contrast and cannot take real-time imaging [113,114]. 

In contrast, fluorescence imaging uses near infrared (NIR, wavelength ranges 700-900 nm) 
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contrast agents that have high sensitivity to targets below the surface, are safe without 

ionizing radiation, are invisible so won’t interfere with the surgical field, and are capable 

of visualizing tissue in real time [112]. In summary, NIR fluorescence imaging will 

increase surgical accuracy and decrease postoperative morbidity.  

 

2.3.3. Tracer kinetic modeling: review of theory 

Tracer kinetic modeling is an approach of measuring tissue blood flow, and it has 

been widely used in DCE imaging to obtain quantitative parameters. Tracer kinetic 

modeling is based on linear time-invariant (LTI) system theory. In detail, a tissue region-

of-interest (ROI) can be treated as an LTI system. Following an ideal bolus injection of 

dye approximating a Dirac delta function input, the response of the system will characterize 

the hemodynamics of the tissue [115]. In this context, the dye acts as a blood flow tracer. 

The transport of the dye through the microvasculature of the tissue can be described by 

constructing a kinetic model and applying it to time-dependent measurements of the dye 

concentration. In LTI system, the dye concentration of tissue ROI, Q(t), is given by the 

convoluted tracer kinetics [115]: 

𝑄(𝑡) = 𝐶𝑎(𝑡) ∗ 𝐹𝑅(𝑡)                                           (2.1) 

Where Ca(t) is the time-dependent concentration of dye in the arterial system (i.e. AIF), F 

is the volumetric blood flow, and R(t) is the impulse residue function (IRF). IRF is defined 

as the fraction of dye remaining in the system at time t. Both Q(t) and Ca(t) can be extracted 

directly from DCE fluorescent video data.  

There are two main solutions to the above equation. First one is deconvolution 

method (as known as nonparametric analysis). In this method, no explicit assumptions 
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regarding the tracer and the compartments is required. However, this method is 

mathematically difficult, requiring long computational time, and sensitive to system noise. 

Second solution is nonlinear lest squares. Here the function FR(t) can be estimated by 

minimizing: 

‖𝑄𝑖(𝑡) − 𝐹𝑖𝐶𝑎(𝑡) ∗  𝑅𝑖(𝑡)‖2                                    (2.2) 

Where Qi(t), Fi, and Ri is the ith pixel from the DCE fluorescent video. This method is also 

highly susceptible to experimental noise. 

Various tracer kinetic models all follow the same LTI theory, but the main variation 

among those is how to approximate R(t) (Table 2.1). R(t) is the fundamental function 

describing the tissue hemodynamics.  In general, R(t) can be regarded as a sum of Rv(t) 

(Table 2.1, Column 2) which is for vascular phase and Rp(t) (Table 2.1, Column 3) which 

is for extravascular phase, and different models have different expressions of Rv(t) and Rp(t). 

Among all the models, Tofts model [90] is the simplest one, with an assumption of 

negligible vascular phase. Extended Tofts model [116] is an expansion of Tofts model, and 

it allows for the separate estimation of vascular and extravascular phases. The adiabatic 

approximation to the tissue homogeneity (AATH) model [117,118] describes the vascular 

phase as plug-flow system and the extravascular phase as a well-mixed compartment, and 

assumes that the vascular-extravascular exchange only occurs at the capillary end. AATH 

model accounts for the fact that the dynamics in the vascular space in much faster than in 

the extravascular space. The two-compartments exchange model assumes the vascular 

space as a well-mixed compartment [119]. 

Table 2.1: Vascular and extravascular response functions for various compartment models. 

Adapted from [120]. Reprinted by permission from Schabel, M.C. A unified impulse response 

model for DCE-MRI. Magn Reson Med, 68: 1632-1646. Copyright © 2012 Wiley Periodicals, 

Inc. 
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Model Rv(t) Rp(t) 

Tofts 0 (
𝐾𝑡𝑟𝑎𝑛𝑠

𝐹
)𝑒−𝑘𝑒𝑝𝑡 

Extended Tofts (
𝑣𝑏

𝐹
)𝛿(𝑡) (

𝐾𝑡𝑟𝑎𝑛𝑠

𝐹
)𝑒−𝑘𝑒𝑝𝑡 

AATH 1 − 𝜃(𝑡 − 𝑡𝑐) 𝐸𝑒−𝑘𝑒𝑝(𝑡 − 𝑡𝑐)𝜃(𝑡 − 𝑡𝑐) 

Two compartment 

exchange 
(1 − 𝐸+)𝑒−𝑡/𝑇−1 𝐸+𝑒−𝑡/𝑇+ 

 

2.3.4.  DCE in assessing bone perfusion  

In this section, we will discuss the techniques of DCE-MRI, DCE-PET and DCE-

FI in assess bone perfusion. 

Dynamic contrast-enhanced MRI use small (SMCM) or macro (MMCM) 

molecular contrast media, and the extraction of perfusion-related physiological parameters 

is dependent on the size and binding affinities of the contrast media. In SMCM, contrast 

media has molecular weight of approximately 538 Da and clearance time of 12 minutes 

[57]. SMCM based DCE-MRI has been applied in studying osteoarthritis [116], bone 

marrow lesions [121], osteoporosis [47] and osteonecrosis [122]. In SMCM DCE-MRI, 

T1-weighted time-intensity curves for each voxel in the field of view are analyzed using 

tracer kinetic modelling, so that physiological perfusion parameters in bone can be 

quantifying from signal intensity. In MMCM, contrast media has molecular weight of 

approximately 92,000 Da and clearance time of 3 hours. Due to the large molecular weight, 

MMCM yields flow-independent estimates of permeability surface area product, plasma 

volume, and fractional leak rate [123]. Because MMCM only accumulates in areas with 

increased vascular permeability, and quantitative measures of permeability are not subject 

to contributions from flow. Therefore, MMCM DCE-MRI has great potential in studying 
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advanced states of osteoarthritis where intraosseous pressure is increased [124]. In MMCM 

DCE-MRI, two-compartment tracer kinetic models are used, as the reflux rate from the 

extravascular extracellular space to the plasma space is negligible [123]. 

Dynamic contrast-enhanced PET using 18F-Fluoride can assess bone blood flow. 

Complete extraction of 18F-Fluoride during the first few minutes after infection can reflect 

bone blood flow, and 18F-Fluoride binding to hydroxyapatite in the bone matrix at the time 

of maximal uptake can demonstrate bone turnover [57]. Analysis methods of 18F-Fluoride 

DCE-PET use the three-compartment tracer kinetic models [125]. The accuracy of 18F-

Fluoride DCE-PET in bone blood flow measurement has been validated with H2
15O PET 

[126,127]. 

Theoretically in DCE-FI, the dynamic indocyanine green (ICG) inflow/outflow 

curves were found to be respectively proportional to superficial (periosteal)/deep 

(endosteal) blood flows using a specific bone blood flow model [37]; Kinetic analysis using 

the faster early component (early bone perfusion) and the slower late component (late bone 

perfusion) of the dynamic ICG fluorescence curve can quantitatively measure bone 

perfusion from both periosteal and endosteal sources, with predictable and reproducible 

changes after debridement [14,15].  

 

2.3.5. Tracer kinetic models of bone perfusion 

When applying tracer kinetic models to bone, special consideration is needed 

because the blood supply system in bone is more complex than other tissue types. Therefore, 

an appropriate bone-specific kinetic model should exhibit two criteria: First, the difference 

in arrival times of dye in the periosteum and endosteal compartment; Second, the porous 
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nature of endosteal vessels which freely exchange material with the medullary cavity of 

the bone [21]. Hybrid plug/flow compartment (HyPC) model [21], developed by Dr. Elliott 

and our research team, applies specifically to the bone periosteal/endosteal perfusion 

system and fulfills both criteria. HyPC model separates the periosteal and endosteal 

components and articulates the slow-flow component of the endosteal medullary cavity. 

HyPC model represents the superposition of a plug flow model in periosteal compartment 

(P), and has a two-compartment model in endosteal compartment (E), with independent 

bolus arrival time. The time-dependent tissue concentration of dye, QP(t) and QE(t) 

represent the periosteal and endosteal compartments, respectively. In the HyPC model, the 

time-dependent bone tissue dye concentration Q(t) can be considered a summation of 

partial volumes of QP(t) and QE(t): 

𝑄(𝑡) =  𝑑𝑃𝑄𝑃(𝑡) + 𝑑𝐸𝑄𝐸(𝑡)                                              (2.3) 

Where dP and dE are the fractional volumes. In practice, it is not always possible to 

determine the dP and dE, so we use periosteal blood flow (PBF) and endosteal blood flow 

(EBF), for a specific imaging geometry and assumed partial volume distribution. Then Q(t) 

is given by: 

𝑄(𝑡) = [𝑃𝐵𝐹𝑅𝑝(𝑡) + 𝐸𝐵𝐹𝑅𝑒(𝑡)] ∗ 𝐶𝑎(𝑡)                               (2.4) 

Where PBF is the instrument-independent periosteal blood flow, EBF is the quantitative 

endosteal blood flow, Ca(t) is the arterial input function, and Rp(t) and Re(t) are the IRFs in 

periosteal and endosteal, respectively, which are defined as: 

𝑅𝑝(𝑡) = {

0                       𝑡 < 𝑇𝑝

1  𝑇𝑝 < 𝑡 < 𝑇𝑝 + 𝑀𝑝

0            𝑡 > 𝑇𝑝 + 𝑀𝑝

                                        (2.5) 

𝑅𝑒(𝑡) = {
0                       𝑡 < 𝑇𝑒

𝑒−𝑘2(𝑡−𝑇𝑒)       𝑡 > 𝑇𝑒
                                         (2.6) 
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Where Tp is the arrival time of the bolus to the periosteal vasculature centered, Mp is the 

minimum time required for dye to travel across the periosteal vasculature, and Te is the 

arrival time of the bolus to the endosteal vasculature in the area of interrogation. 

Model-dependent and model-independent methods of DCE-FI quantitative analysis 

can provide necessary clinical information about bone, such as blood flow and blood 

volume. However, there are some limitations [128] in both methods: First, an explicit 

model, like the HyPC model or other models such as the AATH model, extract 

physiologically-meaningful parameters regardless of the sufficiency of the fit or the 

veracity of its interpretation. Interpretations of these data might be location-specific and 

pathology dependent. Second, model-independent approaches such as physiologically-

constrained deconvolution [129] assume, among other things, that the vascular unit 

represented in a pixel or ROI have a single arterial input and single venous output—a 

constraint violated by the overlapping nature of endosteal and periosteal blood flow 

contributions. Third, inter-subject variations caused by dye injection dose and rate, patient 

cardiac and circulation conditions, or human artifacts haven’t been addressed much yet.  

 

2.4. Microsphere Dilution to Measure Perfusion 

2.4.1. Introduction to microsphere techniques 

As discussed in the previous three sections, multiple imaging modalities and 

instruments can measure tissue perfusion by different physical quantities. However, they 

are indirect measurements, and there is no ‘gold standard’ for validating the measurements. 

To establish a reliable and accurate perfusion measurement, microsphere technique with 

radioactive label has been first introduced in 1967 [130]. Radioactive microsphere 
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technique was further improved to ensure the microsphere well-mixing [131], to optimize 

the size and minimum injected number [131,132], and to reach 13.2% difference against 

molecular tracer [133]. However, radioactive microspheres are toxin and unsafe, which has 

encouraged the development of fluorescent labels. Fluorescent microsphere (FM) 

technique was first introduced in 1993 [134]. FM has similar accuracy with radioactive 

microspheres [134], but it is less expensive, safer, and better retention of label [135]. 

Microsphere technique is based on the fundamental hypothesis that the number of 

microspheres within one region is proportional to the blood flow in the region. However, 

there are several assumptions [136] for this hypothesis to hold true: 1) Microspheres must 

be well mixed and evenly distributed within the blood stream so that the concentration in 

all arteries is equal; 2) Microspheres are complete entrapped during the first circulation, 

and remain entrapped until counted; 3) Blood supply to organ(s) of interest is single; 4) 

Microsphere distribution should approximate red blood cell distribution; 5) Injection and 

entrapment of microspheres must have no effect on physiology. 

Established protocol of microsphere technique is based on the measurement of 

blood flow to reference organ [137], and minimum of 400 microspheres are injected per 

tissue piece. 10-15 micrometer diameter polystyrene beads are injected into the animal’s 

atrium or left ventricle from where they are distributed in the central circulation. Then 

microspheres are then entrapped on the first pass in the capillaries of the tissues. Then the 

tissue samples are removed from euthanized animal and counted the number of 

microspheres within the tissue samples as relative perfusion. To convert the measured 

relative perfusion to absolute perfusion, a reference arterial blood sample is withdrawn at 
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a constant known rate R (ml/min) during the microsphere injection. Then the blood flow to 

piece i, Qi (ml/min), is given by: 

𝑄𝑖 = 𝑁𝑖/𝑁𝑟𝑒𝑓 × 𝑅                                            (2.7) 

Where Ni is the number of microspheres counted in the piece i, and Nref is the number of 

microspheres counted in the reference blood sample. 

 

2.4.2. Fluorescence microspheres for tissue perfusion quantification 

Traditional microspheres methods use radioactive-labeled microspheres. 

Radioactive-labeled microspheres do not need to be physically recovered but can be 

measured in situ using a scintillation counter [138]. In contrast, FMs work on the same 

principal as radioactive-labeled spheres, but tissue samples containing entrapped FMs need 

harvest and digestion, and the number of FMs is measured by fluorimetry after filtration. 

Regardless of the above limitations, FM techniques have become more prevalent in recent 

years. FM techniques have several crucial advantages: Firstly, FMs are safer and contain 

no ionizing radiation. Secondly, blood flow in other organs can be determined 

simultaneously in a single measurement. Thirdly, comparisons between different 

physiological conditions can be achieved by injecting multiple color microsphere species.   

As FM technique has been improved and investigated in multiple pre-clinical 

models, it becomes one of the most reliable methods to measure organ’s perfusion, and it 

is a primarily used tool to validate new imaging modalities and techniques. Early 

evaluation of microsphere techniques as tissue perfusion quantification included 

correlating colored microspheres with radioactive microsphere [137], and correlating with 

CT measurement [139]. Until recently, FM technique has been accepted as standard 
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technique in multiple organ perfusion studies [138,140–143]. As for bone perfusion 

quantification, FM techniques have been applied in several animal models including 

chicken [144], mice [145], rabbits [146] and rats [147]. In summary, FM techniques have 

proven to be valid in bulk tissue perfusion quantification.  

 

2.4.3. Fluorescence microspheres and cryo-imaging 

Application of FM techniques has bloomed since the incorporation with cryo-

imaging. Traditionally, the method of counting microspheres within tissue piece is by 

measuring the fluorescent intensity from digested microspheres. However, this method can 

only provide numerical values but lacks information about how microspheres distribute 

within the tissue volume. Compared to the traditional method, cryo-imaging can improve 

quantitative analysis and spatial visualization of FMs in the following three ways: Firstly, 

the digestion of solid tissue sample is skipped. FMs in tissue samples are counted directly 

by cryo-imaging rather than being estimated indirectly by fluorescence intensity. Secondly, 

the step of measuring tissue volume can be placed at the end of analysis instead of at the 

beginning. Thirdly, the process of measuring the number of microspheres is completely 

automated, and therefore it can avoid manual errors. Lastly, cryo-imaging can produce a 

3D volumetric spatial density map of FMs, which enhance the visualization of tissue 

samples with complex structures.  

 Cryo-imaging system has been firstly introduced to FM techniques in 2000 [148], 

and it can specify the location of microspheres deposited in the tissue volume. Therefore, 

cryo-imaging system can further expand the usability of FM techniques by visualizing the 

spatial distribution of perfusion with high quality and high speed. The high correlation of 
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measured perfusion by cryo-imaging system with traditional microsphere counting has 

been validated in small animals [149]. In this thesis, we used a whole-body multi-channel 

hyperspectral fluorescence cryo-imaging system [150]. This system acquires densely-

sampled spectra at each pixel in the 3D stack, and has high sensitivity in FM detection and 

more specific measurements. During image acquisition, frozen tissue sample is held fixed 

with respect to the camera and is advanced along the z-axis for serial sectioning. Then 

hyperspectral image stack has formed from the acquisition sequence, which can then be 

processing and volumetric rendering to recover the 3D structure. Therefore, FM techniques 

with cryo-imaging is a promising tool of perfusion quantification and visualization.  

 

2.5. Theoretical Overview of Tissue Optics in Fluorescence Imaging 

 Leaving for a moment the methodology related to perfusion imaging and 

measurements, discussed in the previous section, the remaining part of this chapter will 

focus on the use of optical techniques to characterize the properties of tissue, including its 

perfusion-related or ‘dynamic’ (also called kinetic) properties. Therefore, it will be 

necessary to build a foundation of understanding with respect to the interaction of light 

with tissue, since the signal used to characterize the clinically relevant parameters of 

perfusion arise physically from the interaction of light with endogenous and exogenous 

molecules. 

 

2.5.1. Tissue light scattering and absorption 

When light shines on tissue, it will penetrate, scatter, absorb or reflect by tissue. 

These processes are determined by both the energy of the light and the optical properties 
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of the tissue. In the settings of medical imaging, it is important to understand how tissue 

interacts with light for both diagnostic and therapeutic applications, especially in optical 

imaging system design, image processing and interpretation, and therapeutic planning. In 

this section, the optical properties of tissue will be discussed. Tissue optical properties 

mainly include the absorption coefficient µa (cm-1) and the scattering coefficient µs (cm-1), 

which sums up to be the total attenuation coefficient µt (cm-1): 

µ𝑡 = µ𝑠
′ + µ𝑎                                                     (2.8) 

As for the scattering properties, µs’ is the reduced scattering coefficient. µs’ 

incorporates the scattering coefficient, µs, and the anisotropy factors, g, and is defined by 

µ𝑠
′ = (1 − 𝑔)µ𝑠 . The anisotropy factor g characterized tissue scattering in terms of the 

relative forward versus backward direction of scatter, and is defined as 𝑔 =< cos 𝜃 > 

where θ is the deflection angle of scatter. As a result, µs’ can be regarded as an effective 

isotropic scattering coefficient that represent the cumulative effect of several forward-

scattering events.  

As for the absorption properties, absorption is the process of extracting energy from 

light, and it occurs when the photon wavelength matches the tissue’s energy. There is a 

linear relationship between light absorbance and concentration of absorbing object, 

described by Beer-Lambert Law: 

𝐴 = εCl                                                          (2.9) 

Where A is the absorbance of light, and is defined as 𝐴 = − log(𝑇) = log (
𝐼0

𝐼
). T is the light 

transmission of the object. I0 is the incident intensity and I is the transmitted intensity. ε 

(M-1cm-1) is the molar absorption coefficient of the object, and is given by 𝜀 =
µ𝑎

𝑁𝑎
 . C (M) 

is the is molar concentration of the object. And l (cm) is the optical path length. Therefore, 
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according to Beer-Lambert Law, the concentration of the object can be measured by the 

light absorbance. 

 

2.5.2. Light propagation modeling in tissue 

The above section discussed light-tissue interaction macroscopically, and this 

section will discuss it microscopically. In nano-meter scales, light movement in tissue can 

be modelled in multiple ways [151]. Firstly, if light is treated as ballistic photons, each 

with a direction of travel that can be redirected by scattering used in Monte Carlo 

simulation. Monte Carlo simulation launches photons into a scattering medium and 

propagates the photons according to probability density functions for the step size between 

photon/tissue interaction sites and the angles of deflection. Secondly, if light is treated as 

a concentration of optical energy that diffuses down a concentration gradient using 

diffusion theory simulation, Diffusion theory assumes that the quantity that is diffusing 

does not have a preferential direction of travel and is down a concentration gradient. 

Diffusion theory also assumes that photons are able to participate in a random walk and 

thus photons should be able to undergo several scattering events before get absorbed. 

However, diffusion theory is not good near sources, and not good in tissues with strong 

absorption where µ𝑠 (1 − 𝑔) µ𝑎 > 10⁄ . 

As discussed above, light will attenuate in tissue and the attenuation is increased 

with depth. Therefore, design of fluorescent imaging system should consider how light 

propagate in both tissue and air. In order to deliver enough light, the tissue penetration 

depth will need to be larger than the depth of tissue. As a result, one key element of 

fluorescent imaging system is the fluorescence excitation light. The fluence rate (the 
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number of photons illuminating a unit surface over time) should be maximized while 

keeping human exposure and photochemical bleaching low [152]. On the other hand, light 

distortion and attenuation in light should also be accounted in selecting the optics in 

fluorescent imaging system. Optimized optics specifically for NIR light can overcome the 

light propagation issue in air. 

 

2.5.3. Principles of fluorescence 

The technique described in this thesis makes use of fluorescence imaging. Knowing 

how fluorescence works is essential for the designs of experimental and analytic methods 

for this thesis. Fluorescence is a particular form of light that includes near ultraviolet, 

visible, and near infrared light. Fluorescence occurs when light apply to a molecule, and 

then the molecule absorb energy from light photons, and at the end emits light photons as 

it returns to its ground state. This energy conversion is explicitly described in Jablonski 

diagram. Specifically, the molecule absorb energy which causes excitation of electrons 

bound in the molecule, and the electrons then transit to a different eigenstate corresponding 

to the amount of energy transferred. The absorbed energy must be equivalent to the energy 

difference between the initial and high electronic state, and the corresponding wavelength 

is the excitation wavelength of the molecule. After the molecule absorbs photon energy, it 

is unstable and returns to its initial state with emitting photons. The energy of the photon 

emitted in fluorescence is equivalent of the difference between two energy states, and is 

less than that of the exciting photons due to heat or vibration. The corresponding 

wavelength is the emission wavelength of the molecule, and the difference between the 

excitation and emission wavelengths is the Stokes shift. 
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When fluorescence is emitted, the emission from molecules becomes polarized 

when the fluorophores are excited with plane-polarized light, and the level of polarized 

emission is described as anisotropy. When a fluorophore absorbs an incident photon, the 

excitation event arises from an interaction between the oscillating electric field component 

of the incoming radiation and the transition dipole moment created by the electronic state 

of the fluorophore molecular orbitals. Fluorophores preferentially absorb those photons 

that have an electric field vector aligned parallel to the absorption transition dipole moment 

of the fluorophore. 

 

2.5.4. Exogenous and endogenous chromophores and fluorophores 

What molecules can absorb and/or emit fluorescence? Fluorescence happens in 

exogenous fluorophores such as ICG and 5-aminolevulinic acid (5-ALA), and endogenous 

fluorophores such as hemoglobin and flavins. For example, ICG is a water-soluble 

compound that has been used clinically for diagnostics of cardiac output, hepatic function 

and other blood related diseases [153]. The peak absorption/excitation wavelength of ICG 

is 780 nm, and the peak fluorescence/emission wavelength is 840 nm (Figure 2.2). These 

wavelengths are in NIR window, and they can penetrate into tissue deeper compared with 

visible wavelength. Hemoglobin is a protein in red blood cells that carries oxygen. 

Hemoglobin molecule without bound to anything is called as deoxy-hemoglobin, and 

bound to oxygen is called oxy-hemoglobin. They have different absorption spectra (Figure 

2.2). Moreover, autofluorescence is a main source of error in in vivo fluorescence imaging. 

Autofluorescence describes the background fluorescence from intrinsic endogenous 

fluorophores of cells and tissues, which is distinguished with exogenous fluorophores that 
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binds cell and tissue structures. When excited with photon of suitable wavelength, 

endogenous fluorophores will emit fluorescence, which can decrease signal-to-noise ratios.  

 

Figure 2.2: Absorption spectrum of common chromophores and fluorophores. Deoxy-

hemoglobin is in dark blue, Oxy-hemoglobin is in red, ICG excitation is in green and emission is 

in orange, and water is in black. x-axis is wavelength (nm), and y-axis is absorption (a.u.). Image 

from [154]. Reproduced with permission from Springer Nature. 

 

2.5.5. Optical properties of bone 

Knowledge of light-tissue interactive properties of bone is required for designing 

and optimizing bone imaging system. The optical properties of bone have been studied in 

the visible, near infrared and infrared ranges [155]. Techniques and instruments for bone 

optical property measurement include integrating sphere [156], computerized CCD camera 

image analysis [157], diffuse reflectance and frequency domain photon migration [158], 

and time-resolved transmittance spectroscopy [159]. The absorption and reduced scattering 

coefficients of bone at 635 nm were determined to be 0.0359 mm-1 and 1.6160 mm-1, 

respectively [160]. Specifically. bone structures including cortex and marrows have 

absorption coefficients of 0.038 mm-1 and 0.7 mm-1, respectively; scattering coefficients of 

bone structures are same as whole bone because scattering in bone is determined by 

homogenous bone cavity.  
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2.5.6. Dynamic contrast-enhanced fluorescence imaging  

Taking the knowledge of DCE, tracer kinetics, fluorescence and tissue optics 

discussed from the section 2.3 and section 2.5.1-2.5.5 together, we need to be cautious 

when designing the DCE-FI system, both in research and clinic settings. There are several 

important factors influencing the system performance and final results: 

First, the designs of instrumentation need to consider for increasing detection 

sensitivity and signal specificity. The main problems in sensitivity and specificity are from 

the demand of detecting lowest possible concentration probes and the existing distractive 

background signal [161]. Fortunately, several existing hardware improvement approaches 

can solve the above problems, for example: Geometry and filter optimization can limit light 

leakage and increase signal efficiency [162]; Temporal gating can remove ambient light 

and gate to the excitation pulse [163]; Wavelength filtering and bandwidth restricting can 

remove the broad background [164–168]; Spectral fitting can remove background 

contamination [169].  

Second, the selection of fluorescent contrast agent needs to consider the perfusion 

supply, clearance and nonspecific binding of the agent, as these factors dominate the 

performance of the agent [170–172]. In molecular imaging, single molecule agents tend to 

have nonspecific binding issues, and conjugation with antibody can increase the binding 

specificity [173–175]. However, the size of antibody will affect the pharmacokinetics, as 

larger antibodies have longer plasma retention times [176–178]. As a result, there are only 

a few agents approved in clinics. One of the few agents that are fully approved by the FDA 

is ICG, which is the contrast agent used in this thesis. ICG is intravenous administrated and 

cleared by the liver. ICG binds to plasma proteins and increases its hydrodynamic diameter. 
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The injection of ICG should be an ideal bolus injection, in order to ensure the quick targeted 

concentration and approximate a delta input [179].  

Third, proper method of measuring AIF should also be used. Possible problems 

with AIF measurement include low temporal resolution for capturing fast AIF dynamics 

and saturation problems due to high contrast concentration in the artery [96]. When the 

artery is visible in the imaging plane, the AIF is measured from the DCE-FI images by 

fitting a model-based function [180]. When a suitable artery is not present in the imaging 

plane, then AIF can be retrieved using analytical form [181,182] or a population averaged 

AIF [183–185].  In this thesis, we are going to measure AIF using pulse dye densitometer 

[186,187] that is a modified pulse oximeter sensitive to ICG concentration. By this way, 

patient-specific AIF can be obtained intraoperatively by assembling the pulse dye 

densitometer to the DCE-FI system, and AIF can be extracted the offline [128]. Figure 2.3 

are numerical simulated AIFs produced under different perturbations. 

Lastly, special attention should be paid towards what data interpretation and 

quantitative analysis approaches to use. The two main categories of approaches are model-

dependent and model-independent approaches [188]. In model-dependent approaches, the 

physiology of tissue will be approximated in the form of mathematic equations, which 

provide the benefits of explicitly describing and quantifying the dynamic behavior of tissue 

[188]. Example of model-dependent approaches is compartment models, as described in 

section 2.2.3 and 2.2.5. In model-independent approaches, semiquantitative parameters are 

directly extracted from the tissue dye concentration curve (Figure 2.4). These parameters 

are related to physiological quantities of tissue, such as fractional blood volume, blood 

flow, permeability and interstitial volume [89,189]. The advantages of model-independent 
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approaches include free from prior assumptions and straightforward to implement [96]. 

Example of model-independent approaches is first-pass kinetic analysis, as will be 

introduced in Chapter 5. In first-pass kinetic analysis, peak enhancement (PE)/ maximum 

intensity (Imax) is extracted as the peak of the tissue dye concentration curve; time-to-peak 

(TTP) is the time from the arrival of dye to the PE/Imax; ingress slope (IS) and egress slope 

(ES) are calculated by fitting a line to the curve of ingress portion and egress portion, 

respectively. 

 

Figure 2.3: AIF perturbations. AIFs generated by modifying (a) dose, (b) speed of injection 

(TTP of the AIF), and (c) the “deadspace” in the intravenous tubing, which causes the bolus to 

enter the circulatory system in two phases. Image from [128]. Reprinted with permission from 

Society of Photo‑Optical Instrumentation Engineers. © The Authors. [DOI: 

10.1117/1.JBO.25.6.066002]. 

 

 

Figure 2.4: Extraction of first-pass kinetic parameters. The simple curve analysis produces 

typically one or more of the following parameters: Imax, TTP, ingress slope, and egress slope. 

Image from [128]. Reprinted with permission from Society of Photo‑Optical Instrumentation 

Engineers. © The Authors. [DOI: 10.1117/1.JBO.25.6.066002]. 
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2.6. Classification and Machine Learning  

2.6.1. Overview of classification problem 

In both clinical and operational settings, it is desirable to classify patients into 

whether they have particular disease as early as possible. Early classification can reduce 

the subsequent uncertainty and variability in the health care system and increase the 

efficiency of medical management and resource arrangement. Beside traditional 

classification by clinicians, computer-aided classification using machine learning/ artificial 

intelligence has gained increasing popularities. Current applications of using machine 

learning/ artificial intelligence include disease diagnose [190,191], tumor detection 

[192,193], and organ activity prediction [194–197]. Important criterion for computer-aided 

classification is accurate and insightful [198].  

In general, the classification problem can be summarized as followed [199]: X is 

the measurement space where each xi (i = 1, 2, …, n) is a measurement taken on a case. In 

each measurement xi, predictive features/variables can be numerical or categorical. One of 

the classes (1, 2, …, J) has been assigned to xi as labels in supervised learning, and no 

labels have been assigned in unsupervised learning. Classification process can be divided 

into training step and testing step. In training step, a classifier is trained by training data xj 

(j ⊆ i) which is a subset of xi. Then in testing step, the classifier assigns classes (1, 2, …, 

J) to testing data xk (k ⊆ i) which is the exclusive from xj. Classification metrices are 

computed by comparison of predicted classes of testing data with their true classes.    

 

2.6.2. Image processing 
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Image processing refers to a sequence of operations on raw images to get enhanced 

images or extract information from images. In 2D image slices and 3D image stacks, the 

smallest unit in image processing is a pixel or voxel, respectively. Pixels and voxels contain 

intensity value at each channel of the image. In multi-channel images, channels may be 

combined or converted to a single channel. Image processing steps depend on the specific 

imaging modality and purpose, but there are some common steps as followed: (1) Image 

post-acquisition processing. This step is crucial in enhancing image quality. Current 

techniques in post-acquisition processing include denoising, image registration, artifact 

correction, and illumination correction [200–204]. (2) Image segmentation. Image 

segmentation is defined as the process of partitioning an image into nonoverlapping and 

homogeneous regions with respect to intensity or texture [205–207]. Common 

segmentation approaches are thresholding, region growing, clustering and artificial neural 

networks [208]. (3) Interpolation. Interpolation is required in texture feature extraction for 

isotropic voxel spacing and in comparison between different batches of image data. 

Interpolation algorithms include nearest neighbor, trilinear, tricubic convolution and 

tricubic spline interpolation [209]. 

 

2.6.3. Overview of features 

One of the key components in machine learning classification is the selection of 

features/variables. The general term for features extracted from digital medical images is 

“radiomics”. Radiomics describes the conversion of images into multi-dimensional data, 

and is motivated by that medical images contain information about underlying 

pathophysiology [210]. Application of radiomics can provide insights that are distinct from 
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clinical repots or laboratory tests, and can improve patient outcome by contributing to 

decision support, aiding cancer detection and predicting disease status. 

There are two types of features in radiomics: “semantic” and “agnostic” features, 

where semantic features include common radiology lexicon terms and agnostic features are 

quantitative description of lesion heterogeneity [210]. Semantic features include size, 

shape, location, vascularity, speculation, necrosis and attachments or lepidic, and they are 

commonly used by radiologists to describe lesions quantitatively. Agnostic features 

include histogram, Haralick textures [211], Laws textures, wavelets, Laplacian transforms 

[212], Minkowski functionals [213] and fractal dimensions, and they are mathematically 

extracted quantitative descriptors of multi-order outputs. Among agnostic features, first-

order features describe the distribution of values of individual voxels, second-order 

features describe statistical interrelationships between neighboring voxels and intratumoral 

heterogeneity, and higher-order features describe repetitive or non-repetitive patterns. 

 

2.6.4. Texture analysis in bone imaging 

Texture analysis [211] belongs to computer-aided classification and has been 

recently extended into bone imaging. By using texture analysis, important clinical and 

physiological information about the bone can be revealed. For example, texture analysis 

can reflect the spatial heterogeneity of lumbar vertebral bone marrow [214], reduced 

mineral bone density [215], osteoporosis [216,217], and operated/nonoperated femur [218]. 

Moreover, texture analysis combined with machine learning techniques have become 

accurate tools for classifying bone disorders, such as osteoporosis classification [219,220], 
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osteoarthritis control [221], bone fracture prediction and mineral disorders detection [222–

224].  

In this thesis, we used grey level co-occurrence matrix (GLCM) based features [211] 

for texture analysis in bone imaging. GLCM is a matrix describing how grey levels (i.e. 

discretized intensities) of neighboring pixels are distributed along one image direction, and 

the neighboring pixels refer to an 8-connected neighborhood (Figure 2.5). Therefore, there 

are four unique direction vectors for Chebyshev distance δ = 1: (1, 0) (0°), (1, 1) (45°), (0, 

1) (90°), and (-1, 1) (135°). A GLCM is calculated for each direction vector.  

 

Figure 2.5: Example input image and the corresponding GLCM matrix. Image from [225]. 

Reproduced with permission from Springer Nature. 

 

Let Mm be the Ng × Ng grey level co-occurrence matrix, with Ng the number of 

discretized grey levels in the region of interest, and m the particular direction vector. 

Element (i, j) of the GLCM contains the frequency where combinations of discretized grey 

levels i and j occur in neighboring pixels along direction m. In order to compute GLCM 

features, we need further calculate the probability distribution of the elements in the GLCM. 

The probability distribution of grey level co-occurrences, Pm, is derived by normalizing 

Mm by the sum of all elements. Therefore, each element pij of Pm is then the joint 
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probability of grey levels i and j occurring in the neighboring pixels along direction m. At 

the end, GLCM features aggregated by computing from each 2D directional matrix and 

averaging over all directions. Four example GLCM features that have been included in this 

thesis: Contrast (describes intensity contrast between a pixel and its neighbor), Correlation 

(describes how correlated a pixel is to its neighbor), Energy (describes the sum of squared 

elements in the GLCM) and Homogeneity (describes the closeness of the distribution of 

elements in the GLCM to the GLCM diagonal), and their formulas are listed as followed: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗                                         (2.10) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑
(𝑖−µ𝑖)(𝑗−µ𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗                                     (2.11) 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗                                                 (2.12) 

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =  ∑
𝑝(𝑖,𝑗)

1+ |𝑖−𝑗|𝑖,𝑗                                            (2.13) 

 

2.6.5. Feature dimensionality reduction 

After extracting features, one big challenge is the large dimensionality associated 

with the large number of features. Large dimensionality will cause difficulty in 

computation speed and memorization space. In this case, dimensionality reduction, which 

is to find a matrix that contains same information but has fewer feature columns, is needed.  

One type of the dimensionality reduction approaches is feature selection, which 

describes the process of keeping relevant features and discarding irrelevant or redundant 

ones. Feature selection methods include filters, embedded methods, and wrappers. Filters 

method, including Correlation-Base Feature Selection [226], Consistency-Based Filter 

[227], Information Gain [228], and ReliefF [229], focus on the general characteristics of 

the data and are independent of the learning algorithm. Embedded methods, including 
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Recursive Feature Elimination [230] and Lasso regularization [231], are performed during 

the training process and therefore are less computationally costly. Wrappers, including 

Wrapper Support vector machine [232], evaluate candidate subsets of features while 

interacting with the training classifier. The choice of feature selection should depend on 

which classifier is used, and sometimes combine two or more feature selection algorithms 

may work better [233]. 

Another common dimensionality reduction approach is principle component 

analysis (PCA). PCA is a mathematical algorithm that reduces the dimensionality of the 

data while retaining most of the variation in the data [234]. Principle components (PCs), 

along which the maximal variation in the data is, are identified and substituted the original 

features in the training process. By this way, the size of data can be reduced by reducing 

the number of features. For a dataset that contents p numerical variables and n observations, 

yielding an n * p data matrix X, PCs are the linear combinations of the columns of matrix 

X with maximum variance. PC can be computed [235] as:  

𝐗𝐚𝐤 = ∑ 𝑎𝑗𝑘𝐱𝐣
𝑝
𝑗=1                                             (2.14) 

Where ak (k=1,…, p) is the eigenvector of the covariance matrix S in which a1 is 

corresponding to the largest eigenvalue, ajk is the vector of constant a1, a2,…, ap of jth 

column, and xj is pn-dimentional vector. 

 

2.6.6. Predictive analytics on post-trauma infection  

Predicting patient’s risk for developing SSI after orthopaedic trauma surgery is the 

first step in preventing SSI. Early prediction of SSI can avoid surgery when there are 

reasonable nonoperative treatment options, spur prophylactic measures and alter 
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management strategies [236,237]. Based on identification factors of high-risk procedures 

and patient characteristics [238,239], a postoperative infection prediction model that 

predicts risk of infection at time of initial treatment has been developed by a shock trauma 

team recently [18]. In this predictive model, 8 independent variables were identified as 

significant association with increased risk of postoperative deep SSI, and they are age, male 

sex, obesity (body mass index (BMI) ≥ 30), diabetes mellitus, alcohol abuse, fracture 

region, Gustilo–Anderson type III open fracture, MRSA nasal swab result, and American 

Society of Anesthesiologists (ASA) class (Table 2.2). These variables were then used to 

create a risk score that can stratify patients based on infection risk with area-under-curve 

of 0.74, and estimate the percent risk of infection. 

Table 2.2: Prediction model of postoperative infection. Table from [18]. Reprinted with 

permission from Wholters Kluwer Health, Inc.: Wise, Brent T.; Connelly, Daniel; Rocca, 

Michael; Mascarenhas, Daniel; Huang, Yanjie; Maceroli, Michael A.; Gage, Mark J.; Joshi, 

Manjari; Castillo, Renan C.; O'Toole, Robert V.. A Predictive Score for Determining Risk of 

Surgical Site Infection After Orthopaedic Trauma Surgery. Journal of Orthopaedic Trauma 

33(10):p 506-513, October 2019. DOI: 10.1097/BOT.0000000000001513. Copyright © 2019 

Wolters Kluwer Health, Inc. 

Predictive variables Points 

Demographics 

Gender 

Female 0 

Male 1 

BMI 

<30.0 0 

≥30.0 1 

Comorbidity 

Diabetes 2 

Alcohol abuse 2 

Fracture characteristics 

Bone region 

Upper extremity 0 

Hip and femur 1 

Patella, talus, forefoot, and midfoot 2 

Tibial plateau, tibial shaft, pilon, ankle, 

and calcaneus 
2 

Pelvis/acetabulum 4 
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Open/closed Gustilo type 

Closed 0 

Open, Gustilo I-II 0 

Open, Gustilo III 3 

Injury and treatment characteristics 

MRSA nasal swab testing 

Not tested 1 

Negative 0 

Positive 5 

Preoperative ASA class 

I 0 

II 1 

III 3 

IV-V 3 

 

Beside the above statistical predictive analytics, machine learning is also a useful 

tool in infection prediction on orthopaedic trauma surgery. When deciding on the treatment 

plan for patients presenting with trauma, clinicians should focus on factors revealing the 

presence of infection as many as they can. These factors have been found to be 

multidimensional, including imaging features, the informatic features as discussed above, 

and kinetic features. Features from these three categories can reveal important clinical 

information in different aspects, and they all have been applied to several related studies: 

Firstly, imaging features are mainly referring to the texture features in radiomics. Several 

recent studies on orthopaedic surgery have applied texture-based machine learning 

classification, which include bone age detection [240], osteoporosis detection [216], bone 

disorder classification [215] and fracture risk prediction [219]. Second, beside pure 

statistical analysis, machine learning classification based on informatic features have also 

been developed as predictive tools for clinical decision-making. Current applications are 

mainly in periprosthetic joint infection prediction including non-recurrent infection [241] 

and recurrent infection [242]. Last, kinetic features are extracted from tracer kinetic theory 
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of fluorophore temporal curves. The predictive performance of kinetic features has been 

proved by several pre-clinical studies [14,15,37].  
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Chapter 3  

Validation of DCE-FI by mQUIC in the rabbit femur 

This chapter highlights the work published in "Validation of dynamic contrast-

enhanced bone blood flow imaging technique with fluorescent microspheres" by Han X, 

Demidov V, Wirth D, Byrd B, Davis SC, Gitajn IL, and Elliott JT, published in Proc. SPIE 

volume 11943, Molecular-Guided Surgery: Molecules, Devices, and Applications VIII in 

2022, and "Initial experience of perfusion assessment in a rabbit model of orthopaedic 

trauma surgery using fluorescent microspheres and hyperspectral imaging 

cryomacrotome" by Han X, Demidov V, Wirth D, Byrd B, Davis SC, Gitajn IL, and Elliott 

JT, published in Proc. SPIE volume 12146, Clinical Biophotonics II in 2022. Jonathan T. 

Elliott provided supervision of the project, gave intellectual input and reviewed the 

manuscript. I. Leah Gitajn provided clinical instructions and review the manuscript. Scott 

C. Davis provided the cryo-imaging system. Brook Byrd assisted with the image 

acquisition and preprocessing. Dennis Wirth performed the image acquisition and assisted 

with sample preparations. Valentin Demidov provided intellectual input and assisted with 

manuscript writing. The author of this thesis designed and conducted animal experiments, 

processed and recovered images, programmed the analytic software, analyzed the data, and 

wrote the manuscript. This chapter has met copyright permission requirements under The 

International Society for Optics and Photonics copyright. 

This chapter introduces a proof-of-concept validation for dynamic contrast-

enhanced fluorescence imaging (DCE-FI) in bone perfusion measurement. The approach 

is a modified fluorescent microsphere quantification technique using a custom-built multi-

channel cryomacrotome, which we have termed “mQUIC”. Phantom study, ex vivo blood 
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sample study and in vivo animal study have been included to examine the performance of 

mQUIC. mQUIC can provide volumetric bone perfusion maps in endosteal and periosteal 

compartments separately, which will be applied as a ground truth to assess bone perfusion 

changes detected via DCE-FI. 
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3.1. Introduction 

In orthopaedic trauma surgery, timely assessment of bone tissue perfusion plays a 

vital role in successful treatment outcome. Perfusion is an important indicator of the 

viability of bones during orthopaedic surgery [14] For bones with inadequate perfusion, 

timely and thorough debridement is necessary, otherwise bacterial infection can become 

established, form biofilms and result in persistent infection and conversion to amputation 

[15,16,43,45]. With the most popular assessment approach still being the surgeon’s eyes, 

contrast enhanced imaging modalities like computed tomography (CT) and magnetic 

resonance imaging (MRI) can provide useful information. However, their intraoperative 

use is very limited in this type of surgery. CT requires large radiation dose. MRI is time 

consuming, susceptible to metallic implant artifacts, and overall expensive [112]. In light 

of this, fluorescence-guided surgery (FGS) is gaining increased clinical interest [243] 

generally, and more recently, with respect to hemodynamic assessment of bone [19]. FGS 

works by introducing fluorescent contrast into the circulatory system, and then imaging the 

labeled blood circulating through tissue. Although the technique can be quite powerful, 

FGS is often only used in a qualitative manner, but can be made quantitative to extract 

perfusion information [19,21]. As we recently reported, intraoperative DCE-FI and 

subsequent analysis using kinetic models may not only visualize the perfused areas of the 

injured bone, but can also provide a valuable quantitative information to the surgeon about 

periosteal and endosteal blood flow [21]. Currently, there is no ‘gold standard’ for 

validating the performance of DCE-FI in quantifying perfusion. 

As the next step in the development of the blood flow fluorescence imaging 

technique, we are validating DCE-FI with a modified fluorescent microsphere (FM) 
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quantification approach [244] called mQUIC. FMs are uniform sized spherical contrast 

agent that can emit fluorescence signals of various wavelength. The method used in this 

study is based on the observation that the number of FMs entrapped in capillary bed is 

proportional to blood flow [144]. Perfusion is computed by identifying the density of 

deposited microspheres in reconstructed imaging volumes, which are proportional to 

regional blood flow, and are compared to a ‘reference organ’—a syringe drawing arterial 

blood at a known rate (e.g., ~1 mL/min). FM techniques have been developed to act as a 

‘gold standard’ to measure perfusion in other FGS categories [32]. FM technique has been 

developed to measure blood flow and has applied in multiple organs [145]. In this study, 

we are further expanding the application of FM technique in orthopaedic surgery. 

The methodology of this study involves the following steps: (1) phantom study, (2) 

whole blood study, and (3) rabbit femur study. The cryo-imaging was first tested in 

phantoms to have linear response to the number of microspheres, be independent of the 

color of microspheres, and can detect FMs in controlled environment. Whole blood study 

was included to evaluate detection accuracy in real blood samples, since whole blood is 

the reference sample for perfusion measurement.  

In the rabbit femur model, cryo-imaging was used to scan six rabbit femurs (three 

left femurs under surgery and three right femurs without surgery), which were injected with 

three colors of microspheres corresponding to three conditions: baseline, post-osteotomy 

and post-periosteal stripping. Based on the image stacks from multiple imaging channels 

of the cryo-imaging system, we have successfully segmented bone and its surrounding 

muscle, and then incorporated these volumetric renderings into the visualization. 

Meanwhile, FMs from bone segmentation as well as muscle segmentation were been 
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recovered. Image processing, including top-hat transform and object-based colocalization 

analysis, was used to clean up noise and improve counting accuracy. Finally, individual 

FMs were plotted in 3D space with color-coded spatial density. In this way, the bone 

perfusion level in both endosteal and periosteal regions are estimated by converting from 

the FM density level based on the reference organ method. The volumetric FM density map 

is converted to bone perfusion units (mL/min/100 g) using the reference organ technique. 

This proposed fluorescent microsphere technique will be applied as a gold standard for 

measuring bone perfusion in orthopaedic surgery in planned validation studies. 

 

3.2. Methods and Materials 

3.2.1. Phantom and whole blood study  

Fluorescent microspheres of 15 μm diameter (ThermoFisher FluoSpheres, Thermo 

Fisher Scientific, Waltham, MA) were used in this study. Four colors were selected in 

according to the near infrared (NIR) channel of the cryo-imaging system as well as their 

relatively high quantum efficiency, low spillover and high signal-to-noise ratio [140]: 

yellow-green (Ex 505/Em 515), orange (Ex 540/Em 560), crimson (Ex 625/Em 645) and 

scarlet (Ex 645/Em 680). FMs have been 2-fold serially diluted from 125 to 2000 beads/mL. 

Each serial dilution was added into (a) optimal cutting temperature compound (OCT 

compound, Fisher Scientific, Pittsburgh, PA), and (b) Na-Heparin bovine whole blood 

(Lampire Biological Laboratories, Inc., Pipersville, PA). Well-mixed FM solutions (a) 

were solidified at -20 °C, and scanned by a custom-built hyperspectral cryo-macrotome 

imaging system [150] at -20 °C. Briefly, the whole animal cryo-macrotome Leica CM3600 

(Leica Biosystems, Germany) was modified by the Davis Lab at Thayer, adding a custom-
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built multi-channel hyperspectral optical imaging system containing three LED light 

sources (470 nm, 530 nm and 633 nm). OCT compound-embedded mixture (a) was 

sectioned into 100 μm sections and scanned to obtain 93×93×30 mm3 volumetric images 

and to count FMs using ImageJ software (National Institutes of Health, USA). 

Microspheres-blood mixture (b) was digested overnight by 89.2% potassium hydroxide 

(KOH) and filtered out next day by negative pressure filtration method using 10 μm 

polypropylene membrane (Sterlitech, Kent, WA). Each membrane with captured FMs was 

then dissolved into 2-ethoxyethyl acetate solution for fluorescent dye extraction and 

fluorescence quantification by fluorimeter (FluoroMax-4, Horiba, Ltd., Kyoto, Japan). 

 

3.2.2. Animal study 

We performed animal experiments (IACUC number-00002227) to evaluate the 

suitability and performance of mQUIC in bone blood flow. In this non-survival rabbit 

model (~3.0 kg, ~12 weeks, female New Zealand White rabbit, Charles River). Animals 

are anesthetized using isoflurane, prepared for microsphere injection and blood draws, and 

their left femurs are surgically exposed for imaging (Appendix A). Fluorescence camera 

is placed directly in front of the surgical site with a dye densitometer probe placed on the 

hind paw of the non-affected leg. 7.5 mL FMs of one color is injected into the right femoral 

artery at three conditions (Figure 3.1): (1) baseline, (2) osteotomy, and (3) osteotomy and 

periosteal tissue stripping. During the FM injection and washout, blood is withdrawn from 

the femoral artery at the rate of 0.33 ml/min. This blood draw represents the ‘reference 

blood sample’ [244]. Microspheres-blood mixture was digested overnight by 89.2% KOH 

and filtered out next day by negative pressure filtration method using 10 μm polypropylene 
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membrane. Each membrane with captured FMs was then dissolved into 2-ethoxyethyl 

acetate solution for fluorescent dye extraction and fluorescence quantification by 

fluorimeter. We measured the femur blood flow Qi in mL/min at each condition using the 

following equation: 

𝑄𝑖 =
𝑛𝑖𝑘𝑖

𝑓𝑙𝑟𝑒𝑓,𝑖
𝑅, (i=1,…,4)                                             (3.1)                                    

Where the withdrawal rate of the reference blood sample is R (= 0.33 mL/min in this study), 

flref,i is the measured fluorescence intensity of reference blood sample, ni is the number of 

detected microspheres in the femur, and ki is the intensity-FM concentration slope [244]. 

Here, the slope ki for each FM color has been measured during whole blood study. FM-

based rates Qi versus DCE-FI-measured blood flow rates have then be analyzed and 

compared. 

Following FM injection, DCE-FI involved acquiring femur images during the ear 

vein injection, wash-in, wash-out of indocyanine green (ICG) dye (0.1 mg/kg) at each 

condition with 30 min intervals to allow ICG to clear plasma (Figure 3.1). At the end, 

animals are euthanized, their left and right femurs (surgery-side and no-surgery-side, 

respectively) were removed, frozen in OCT compound of 120 × 60 × 30 mm3 size and 

processed in the 3D cryo-macrotome for slicing into 100 μm sections and imaging. The 

main goal of this procedure is to see if we can reliably recover the microspheres in situ to 

produce then volumetric maps of bone blood perfusion and to compare these results with 

DCE-FI blood flow measurements. 
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Figure 3.1: Conceptual diagram of surgical procedures in animal study. FMs were injected 

via intra-atrial catheter. After each FM injection, there is 30 minutes waiting time for dye wash-

out. 

 

3.2.3. Dynamic contrast-enhanced imaging system 

For each condition—baseline, transverse osteotomy, transverse osteotomy with 

periosteal stripping—ICG based DCE-FI images were acquired five minutes after the 

fluorescent microspheres were injected and collected, so that the physiological state of the 

animal is sufficiently similar. An in-house developed imaging system was used to capture 

the DCE-FI time-series of images. The system consists of a Zeiss OPMI 1-FC operating 

microscope head (Carl Zeiss Meditec AG, Jena, Germany) fitted with an F-200 mm 

objective lens. Attached to the dovetail interface of the top of the head is a custom form 

containing a 45-degree silver coated mirror directing the light to a SM-1 flange interface. 

Attached to this is a lens tube containing an acromat lens (Edmund Optics), a 770-nm 

dichroic filter to reject excitation light (T770lpxr, Chroma Technology Corp, Rockingham, 

VT) and a 780-nm long-pass filter to further reject any bleedthrough (et780lp, Chroma). 

Light is focused on a CMOS Panda 4.2 camera (PCO GmbH, Kelheim, Germany). 

Excitation is achieved with a 740-nm high-powered LED source (10 W, 22 mm Type B, 

Mightex, Toronto, Canada) fitted with a bandpass filter (et740/40x, Chroma). During each 

condition, 0.1 mg/kg of ICG was injected intravenously. The dynamic fluorescence was 

captured with a 200-ms exposure time, continuously for 5 minutes. A total of 20 minutes 



60 
 

was allowed between ICG injections to allow for elimination of the dye from plasma 

circulation. 

 

3.2.4. Multi-channel cryo-macrotome imaging system  

The custom-built cryo-imaging system [150] consists of a whole animal 

cryomacrotome Leica CM3600 (Leica Biosystems, Germany) fitted with a custom-built 

multi-channel hyperspectral optical imaging system. Frozen specimens are automatically 

sectioned with 100 µm thickness within the CM3600 cabinet at -20 °C. The optical imaging 

system consists of a mounting plate that accommodate four light sources: A 6500 K white 

light LED, a 470 nm LED, a 523 nm LED, and a 635 nm laser. Light emitted from the 

specimen is collected using a 500 mm focal distance objective lens (Thorlabs, Newton, NJ) 

and then split into two detection channels; a visible channel and a NIR channel, using a 

750 nm short pass dichroic mirror (Thorlabs, Newton, NJ). Light transmitted through the 

visible detection channel is detect by on a cooled, 16-bit scientific CMOS camera (Edge 

4.2, PCO, Bavaria, Germany). Light transmitted through the NIR channel is filtered by 

long pass filters (500 nm, 550 nm, and 650 nm cut-on, ThorLabs, Newton, NJ) before 

detection with a 2nd PCO scientific CMOS camera. The field of view is 93 × 93 mm and 

the depth of focus is 30 mm, with a lateral resolution of 71 µm. 

 

3.2.5. Image pre-processing, processing, and volumetric rendering 

A sequence of hyperspectral images from the cryo-imaging system were pre-

processed to improve the image quality [245]. First, different NIR channels were unmixed 

according to different FM colors: 470 nm channel for yellow-green FM, 523 nm channel 
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for orange FM, and 635 nm channel for crimson and scarlet FM. Second, we corrected 

images by background subtraction, illumination field correction and radial distortion. 

Third, we performed spectral remixing [246], unmixing [247], and ‘Next Image’ correction 

[248] to separate background signals.  

Following the pre-processing steps, image stacks for each NIR channel (Figure 

3.2(a)), merged NIR channel (Figure 3.2(b)) as well as the bone from visible channel were 

processed using MATLAB (R2020b, MathWorks, Natick, MA). White top-hat filtering 

transform [249] was applied to each image slice, with a disk-shaped structuring element, 

to remove the background illumination from tissue auto-fluorescence. Following that, 

subcellular colocalization algorithm [250] was used to count the number of each color FM 

and produce the volumetric center-of-mass-of-FM map (Figure 3.2(c)) using ImageJ. 

Besides, the region of bone from image stack of visible channel was segmented by 

threshold and region growing methods, and then volumetric rendered using 3D Slicer 

software (version 4.11, Kitware Inc., Clifton Park, NY, USA). 

 

Figure 3.2: Image stacks from cryo-imaging of phantoms. Scale bars are 2 cm. (a) Image 

stacks of four FM colors from three NIR channels, from left to right: yellow-green (470 nm), 
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orange (523 nm), crimson (635 nm), and scarlet (635 nm). (b) Image stacks of merged all FM 

colors. (c) 3D reconstructed volumetric center-of-mass-of-FM map of all colors. 

 

The volumetric center-of-mass-of-FM map of each color FM was then processed 

as followed to create volumetric density-of-FM maps: First, the size of single FM was 

determined according to phantom scans as 10 pixels. Second, spatially overlaid FMs were 

unmixed to number of that divided by 10. Third, the unmixed FMs were grouped into 8 

bins according to their spatial density. Lastly, the FMs were color-coded according to the 

bins they belong to. 

 

3.3. Results 

3.3.1. Phantom study demonstrates the linear response of 3D microsphere detection in 

OCT phantom 

Cryo-macrotome imaging system is capable of detecting FMs with high spatial 

resolution throughout 30 mm thickness. As we can see from Figure 3.3(a), individual FM 

were clearly visualized and separated from each other in 3D. Image analysis for 

microspheres counting demonstrated linear dependence of detected (counted) numbers of 

microspheres from true (injected) numbers (Figure 3.3(b)). The optimal linear fitting 

equation is 𝑦 = 0.93𝑥 − 21.7, with r2 of 0.98. We also performed Bland-Altman analysis 

between detected microspheres of one individual color and their true number (Figure 

3.3(c)), and observed that there is no difference among colors. We can then conclude that 

cryo-macrotome imaging system has a perfectly linear response to FMs in 3D.  
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Figure 3.3: Fluorescence microsphere OCT phantom study. (a) 3D cryo-matrocome images of 

OCT compound frozen phantom with color coded FM of mixed four colors, ranges from 125 to 

1000 beads per sample. Color dots are arbitrary colors not actual FM colors. Scale bars are 2 cm. 

(b) Linear relationship of detected number and true number. (c) Bland-Altman plot of detected 

microspheres of one color versus their true numbers. CI: confidence interval. 

 

3.3.2. Development of calibration standard for accurate whole blood measurement 

Whole blood study has shown that FM is a stable contrast agent that can be used in 

a blood sample and thus can be further applied in pre-clinical studies. After filtration, blood 

have been filtered out with only microspheres remaining on the filter membrane surface 

(Figure 3.4(a)). Fluorescent intensity detection and quantification of the released 

encapsulated fluorescent dyes after dissolving microsphere shells with organic solvent 

(Figure 3.4(b)) showed the linear increase in fluorescence proportional to true 

concentration of microspheres of each color to the blood (Figure 3.4(c)). Meanwhile, the 

measured fluorescence intensity-FM concentration slop ki (i = 1, 2, 3, 4, in counts per 
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second (CPS)*mL/beads) for all color have been calculated (k1 = 2800 for yellow-green, k2 

= 950 for crimson, k3 = 1820 for orange, and k4 = 226 for scarlet), and will be used as 

internal standard for the following animal study. 

 

Figure 3.4: Fluorescence microsphere whole blood study. (a) Polypropylene filter membrane 

attached with “Scarlet” FMs (125 to 2000 beads per sample, FMs are labeled with red dots). Scale 

bars are 5 mm. (b) “Scarlet” FM dye extracted from polypropylene filter membrane (125 to 2000 

beads per mL) in sample tubes. Scale bars are 4 mm. (c) Fluorescence intensity measured from 

each FM color dye extraction solution. 

 

3.3.3. Color and monochrome images acquired with system 

Color and monochrome images have been acquired by multiple channels of cryo-

imaging system. RGB images (Figure 3.5(a)) and white light images from visible channel 

(Figure 3.5(b)) displayed the internal structures of femurs with and without surgery. 

Monochrome images from NIR channel (Figure 3.5(c)) showed the fluorescent signals 
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from FMs, as well as some auto-fluorescence from tissues. From cross-sectional views 

(Figure 3.5(d)), FMs were distributed evenly in bone and surrounding muscles. 

 

Figure 3.5: Color and monochrome images from cryo-imaging. Left: surgery-side femur, 

Right: no-surgery-side femur. Scale bars are 1.5 cm. (a) RGB images of specimen. Black dashed 

lines are axes (I ~ IV) of cross-sectional views in (d). Bone cortex and marrow are denoted by 

black and white arrow head, respectively. (b) Example slice from visible channel of cryo-imaging 

scans. (c) Example slice from 635 nm NIR channel. (d) Cross-sections of cryo-imaging scans, by 

axes I~IV from (a) on visible (left) and 635 nm NIR (right) channels. 
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3.3.4. Volumetric center-of-mass-of-FM maps after top-hat transform can visualize 

perfusion 

Unlike in the OCT phantoms, signal from tissue auto-fluorescence obscured FMs 

and reduced the signal-to-noise ratio (Figure 3.6(a)). The regions of auto-fluorescence 

were often larger and less homogenous than those of FMs. Therefore, top-hat transform 

was employed to efficiently eliminate auto-fluorescence and only leave FM signals (Figure 

3.6(b)).  

Figure 3.6(b) shows the actual detected microspheres for the entire volume 

acquired on the surgery-side femur. From left to right, the images represent three serial 

injections under baseline, post-osteotomy and post-stripping conditions. Corresponding to 

these conditions of increasing severity, the number of FMs recovered from the volume 

decreases (5525, 2965, and 196, respectively). As expected, since the second condition 

(osteotomy) involves a disturbance of endosteal flow (i.e., blood flow from within the 

middle of the bone), and some disturbance of the periosteum, whereas the third condition 

involves complete disturbance of both endosteal and periosteal supply for most of the 

femur, this increasing devascularization of the bone resulted in the number of FMs 

entrapped being reduced. The volumetric center-of-mass-of-FM map provides a 

visualization of this reduction in bone perfusion.  
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Figure 3.6: Volumetric center-of-mass-of-FM maps from surgery-side femur. Maps are 

displayed in three FM colors, corresponding to three bone conditions. Left: orange FM, baseline; 

Center: scarlet FM, osteotomy; Right: yellow-green FM, periosteal strip. Scale bars are 2 cm. (a) 

Raw map before processing. Tissue auto-fluorescence (in large and irregular shape) and FM signals 

(in small spherical shape) were overlapped. (b) Processed map after top-hat transform. Only FM 

signals were visualized. 

   

3.3.5. Converting volumetric center-of-mass-of-FM maps into quantitative perfusion maps 

To ensure the reproducibility of our technique, and account for any differences in 

the recovery of the different colors of microspheres from tissue imaging, we used the 

contralateral femur as a control (i.e., no surgical procedures were performed on the 

contralateral side). In Figure 3.5(a), the specimen of surgery-side is bone with a few 

muscles at femoral head, while the specimen of no-surgery-side is bone covered with a 

thick layer of muscle. In addition, the surgery-side bone was cut into two pieces with a 

disconnection in the middle and showed some degree of deformation, while the no-surgery-

side bone was intact. The ipsilateral femur microsphere counts were adjusted by a 

correction factor based on the assumption that the recovered spheres on the contralateral 

side should be equal for each color. 

Quantitative bone perfusion maps (Figure 3.9) were produced by image processing 

and visualization steps on NIR (Figure 3.7(a)) and visible (Figure 3.7(b)) channels 
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separately and then overlaying together. On NIR channel, volumetric center-of-mass-of-

FM maps were firstly converted into volumetric density-of-FM point cloud maps by color-

coded with spatial density (#/100 g, see details in section 3.2.5). Then the bone perfusion 

(in mL/min/100 g) were estimated by comparing with the withdrawal rate and fluorescence 

quantification of reference blood sample [244,251]. On visible channel, volumetric 

rendering was achieved on segmented bones. Sequentially, the perfusion-coded volumetric 

FM point cloud maps were overlaid with volumetric rendered bones to produce quantitative 

bone perfusion maps (Figure 3.8). Finally, the volumetric FM density map is converted to 

bone perfusion units (mL/min/100 g) using the reference organ technique (Figure 3.9).     

In the surgery-side femur (Figure 3.8(a)), only endosteal perfusion was visualized 

because all periosteal tissue has been removed in specimen. In Figure 3.8(a) top, FMs 

were distributed in all endosteal area, with medium perfusion (0.4~1.2 mL/min/100 g) on 

the sides and higher perfusion (> 1.2 mL/min/100 g) in the middle. All blood vessels were 

intact; In Figure 3.8(a) center, FMs were distributed in two disconnected bone pieces, 

with medium perfusion (0.4~0.8 mL/min/100 g) on the sides and no perfusion in the 

middle. Endosteal blood vessels in distal bone have been cut off; In Figure 3.8(a) bottom, 

FM have lowest perfusion (< 0.4 mL/min/100 g), with only a few distributed at femoral 

head. All endosteal and periosteal blood vessels have been disrupted. In comparison, in the 

no-surgery-side femur (Figure 3.8(b)), both endosteal and periosteal perfusion was 

visualized. So FM is distributed inside the bone as well as outside the bone. Moreover, the 

FM density as well as bone perfusion (0.4~1.6 mL/min/100 g) stay constant among 

different FM color because all blood vessels were intact and unchanged. In summary, 
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volumetric FM point cloud maps can assess bone perfusion in both endosteal and 

periosteal, and the FM density can accurately reflect the level of perfusion.  

 

Figure 3.7: Flowchart of generation volumetric perfusion maps. (a) Flowchart of converting 

NIR channel image stacks into volumetric density point clouds. (b) Flowchart of converting 
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visible channel image stacks into volumetric rendering of segmented bone structures. (c) Merged 

quantitative perfusion level maps from NIR and visible channels. 

 

 

Figure 3.8: Perfusion-coded volumetric FM point cloud maps. Volumetric FM point cloud 

maps are overlaid on segmented bone (in gray), and color-coded with estimated perfusion (in 

mL/min/100 g). Top: orange FM, baseline; Center: scarlet FM, osteotomy; Bottom: yellow-green 

FM, osteotomy +periosteal strip. (a) Surgery-side femur. (b) No-surgery-side femur. Bones from 

all three colors were intact. (c) Bar graphs of average perfusion. Error bar = standard deviation. 

 

 

Figure 3.9: Volumetric perfusion maps. The maps are generated by mQUIC based on density 

of identified microspheres. Values are in mL∙min-1∙100 g-1. 
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3.3.6. Animal study modified FM technology for DCE-FI validation 

In this pilot animal study, the FM technology has been modified from literature of 

other animal models [144,145,148] to rabbit femur, and used as a validation tool for our 

proposed DCE-FI kinetic model. In the DCE-FI model, we could interpret the level of 

perfusion by referring to the fluorescent intensities. By comparing the fluorescence images 

under three conditions (Figure 3.10(a)), we can see the fluorescence intensities of the 

femur decreased as more vasculature being disrupted. Besides, temporal profiles of two 

circular regions-of-interests (ROIs) under same conditions also showed this trend (Figure 

3.10(b)). Furthermore, the fluorescence microsphere volumetric maps (Figure 3.10(c)) 

have validated this trend. The number of microspheres detected from three conditions are: 

20002, 6523, 2361, respectively. According to Equation 3.1, the perfusion for three 

conditions are (in mL/min): 0.624, 0.502, 0.014. As a result, the FM technology has 

validated the accuracy of DCE-FI perfusion measurement. 
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Figure 3.10: Fluorescence microsphere and DCE-FI animal study of three conditions. Left: 

Baseline, Center: Osteotomy, Right: Osteotomy and stripping. (a) Fluorescence images from 

DCE-FI at 200 s after imaging start time for each condition. Scale bars are 1 cm. (b) Temporal 

profiles of the average intensities of two ROIs for each condition. ROI1 is at distal side of the 

femur and ROI2 is at the proximal side. (c) 3D cryo-matrocome images of color-coded 

fluorescence microsphere volumetric density map for each condition. Scale bars are 2 cm. 

 

3.4. Discussion and Conclusions 

Assessing bone perfusion is important in orthopaedic surgery, because the success 

of procedures involving osteotomy and debridement are influenced by perfusion level. FGS 

utilizes the optical properties of fluorescent contrast agent to provide guidance. FM 

techniques have been developed to act as a ‘gold standard’ to measure perfusion in other 

FGS categories [252]. This study is the first one that applying FM technique in 

fluorescence-guided-orthopaedic-surgery. In this study, we aim to establish a repeatable 
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and accurate fluorescent microsphere-based blood flow measurement approach to validate 

our earlier developed dynamic contrast-enhanced fluorescence imaging technique for 

femur periosteal and endosteal blood flow detection. We successfully determined that 

fluorescent microspheres of four different colors could be accurately detected in controlled 

phantoms and evaluated their detection accuracy in real blood samples. Moreover, in the 

animal study, we have successfully segmented bone and its surrounding muscle, and then 

incorporated these volumetric renderings into the visualization. Meanwhile, FMs from 

bone segmentation as well as muscle segmentation has been recovered, their number has 

been counted, and they have been plotted in 3D space with color-coded spatial density. In 

this way, the bone perfusion level in both endosteal and periosteal regions can be estimated 

by converting from the FM density level based on the reference organ method. mQUIC 

direct comparison with DCE-FI technique have proved that FM technology is a useful 

validation tool, and DCE-FI technique is capable of accessing bone perfusion. 

This study is the first animal study that can visualize bone perfusion in 3D. 

Compared to other fluorescence microsphere quantification methods such as direct 

counting and fluorescence intensity measurement, cryo-macrotome can not only provide 

quantitative information, but also produce volumetric density map about the spatial 

distribution and thus visualize the vasculature. Fluorescence microsphere was examined as 

a stable and accurate contrast agent that can be used both in vitro and in vivo. This property 

ensures the repeatability and usability of our proposed FM technology in pre-clinical and 

clinical study. DCE-FI model was validated by FM technology to be an accurate 

measurement of bone perfusion. It is the first time that we can prove a gold standard for 

DCE-FI.  
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In the future, we hope to enroll more animals to update this preliminary study into 

full study. Unfortunately, due to the difficulty gaining access to the macrocyrotome during 

the COVID 19 pandemic, since the team operating the system were not operating at full 

capacity, we could not complete the full set of planned experiments. Once we have more 

animals enrolled, then the quantitative perfusion results from mQUIC will be used to 

validate the dynamic contrast-enhanced fluorescence imaging method we have been 

developing in our lab. Establishing a reliable and high throughput FM technique based on 

mQUIC will also enable basic research into understanding the relationship between 

infection, trauma and perfusion in rodent models. 

In conclusion, a mQUIC technique has been developed in this study, which used 

cryo-imaging system to produce 3D structural scanning and quantified perfusion by 

recovering FMs in situ. Bone perfusion can be visualized by FM distribution maps, and the 

level of FM density can reflect the level of bone perfusion. Therefore, mQUIC can work 

as a “gold standard” for bone perfusion measurement, and in particular, can validate the 

performance of DCE-FI derived perfusion-associated features.  
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Chapter 4  

Low-Energy Fractured MRSA-Contaminated Rodent Femur Model for 

Correlating DCE-FI With Bioluminescent Imaging 

This chapter is based on the work entitled “Dynamic contrast-enhanced 

fluorescence imaging characterization of MRSA-contaminated low-energy fracture model 

and correlated with bioluminescent imaging” by Han X, Demidov V, Sottosanti JS, Jiang 

S, Gitajn IL, and Elliott JT, which will be submitted to a peer-reviewed journal in the near 

future. Jonathan T. Elliott supervised the project and designed the experiments. I. Leah 

Gitajn and Shudong Jiang provided intellectual inputs. J. Scott Sottosanti designed 3D-

printed hardware for phantom study. Valentin Demidov conducted the animal surgery, 

provided intellectual inputs, and assisted with data collection. The author of this thesis 

conducted phantom and animal experiments, collected and analyzed the data, and wrote 

the manuscript. This chapter has meet relevant copyright permissions. 

This chapter presents the design of a low-energy fractured Methicillin-resistant 

Staphylococcus aureus (MRSA)-contaminated rodent femur model and its characterization 

by first-pass kinetics of dynamic contrast-enhanced fluorescence imaging (DCE-FI). 

Furthermore, the accuracy of DCE-FI analysis has been validated by correlation with the 

growth curves of bioluminescent labelled MRSA. This work extends from the 

characterization of bone viability in Chapter 5-6, and validates the clinical study of bone 

infection prediction in Chapter 7.  
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4.1. Introduction 

Orthopaedic surgery is one of the most rapidly growing surgical procedure 

categories. One of the main post-surgery complications is bone infection that makes up 

15.6% [4] of total complications. Bone infection can significantly reduce patient outcome 

and life quality, and may result in an amputation or even death. Furthermore, it is 

responsible for serious social and economic burdens [5]. Bones are more vulnerable to 

infection when nonviable regions and their surrounding tissues aren’t sufficiently debrided, 

leaving behind non-viable tissues and foreign bodies. To provide guidance to surgical 

debridement for preventing bone infection, imaging modalities such as computed 

tomography and magnetic resonance imaging are used preoperatively. However, most of 

the current systems in imaging bone have complex systematic components that are difficult 

to be incorporated in surgical procedures, and acquiring images intraoperatively will lead 

to prolonged operational time [112]. 

Our group has been working on developing an intraoperative imaging modality, 

DCE-FI, that can provide precise debridement during orthopaedic surgery. DCE-FI works 

by administrating fluorescent contrast agent into patient’s blood vessel and therefore blood 

perfusion can be traced and visualized. One advantage of DCE-FI is that it can provide 

both qualitative and quantitative information of perfusion. Tracer kinetic models such as 

adiabatic approximation to tissue homogeneity model [117,118] and Tofts model [90] have 

been developed to extract the quantitative information. Based on those models, our group 

has brought up with a bone specific model, hybrid plug/compartment (HyPC) model [21], 

to quantify endosteal and periosteal perfusion.  



77 
 

In this chapter, we propose a rodent osteomyelitis model, where we used 

bioluminescent imaging (BLI) to track the infection development of bone, and used DCE-

FI to quantify perfusion changes before and after infection. Our central hypothesis is that 

DCE-FI can assess osteomyelitis-induced perfusion changes quantitatively in a predictable 

manner. Specifically, we will accomplish the following aims:  

First, the technique to produce continuous growth of MRSA biofilm on titanium 

washer will be validate. A titanium implant will be used for fixing fractured bone pieces 

after trauma, which will receive MRSA inoculation. The goal of this part of the study is to 

validate that MRSA can form stable biofilm on titanium under the current laboratory setting. 

To achieve this goal, the formation of MRSA biofilm will be examined by measuring 

emitted bioluminescence signals from the titanium surface by BLI, which is further 

compared by the biofilm volume measured by optical coherence tomography (OCT), and 

the in vitro colony forming unit (CFU) counting.  

Second, to establish a rodent osteomyelitis model after low-energy trauma. We 

have previously developed a new type of injury model-the blast overpressure tube injury 

to have a controlled level of trauma [253]. Here we propose to further incorporate the low-

energy trauma injury with infection, due to its suitability for survival model. To complete 

this aim, we will 1) introduce low-energy fracture by the weight-dropped platform [254], 

2) do surgery of bone stabilization, and 3) inoculate bioluminescent MRSA at fracture site. 

Third, to develop the first-pass kinetic model for perfusion assessment in 

osteomyelitis. To complete this aim, we will 1) extract model-independent first-pass kinetic 

parameters including maximum intensity (Imax), time-to-peak (TTP), and ingress slope 
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(IS) from DCE-FI, 2) characterize the perfusion changes before and after osteomyelitis, 

and 3) compare with MRSA biofilm growth results from BLI. 

 

4.2. Methods and Materials 

4.2.1. Bacteria strain preparation 

The bacterial strain used in this study is MRSA strain SAP231 with bioluminescent 

protein LuxCDABE. The bacteria were firstly streak plated from frozen bacteria overnight 

on Tryptic Soy Agar (TSA) at 37 °C. Then a single colony was picked and incubated in 10 

ml Tryptic Soy Broth (TSB) at 37 °C 200 rpm overnight. The optical density (OD)600 of 

bacteria culture were measured for CFU estimation. A final OD600 of 1 were subsequently 

adjusted for resulting a 109 CFU. 

 

4.2.2. Biofilm formation on titanium under static and dynamic condition 

Autoclaved Titanium washers (0.14” inside diameter, 0.5” outside diameter) were 

first rubbed against sandpaper (grit 80, 3M Co.), cleaned with deionized water in an 

ultrasonic bath for 4 mins, and treated with 70% ethanol. For growth under static condition, 

Titanium washers were then transferred in a 24-well plate with flat bottom. Overnight 

bacteria culture was added to 1 mL of TSB to achieve the final concentration of 

approximately 108 CFU, and the culture were added into each well. The plate was then 

incubated at 37 °C, 5% CO2 under static conditions. Bacteria culture media were changed 

every 24 hours for up to 3 days. For growth under dynamic condition, Titanium washers 

were then transferred in in-house designed 3D-printed microfluidic devices (Figure 4.1). 

Overnight bacteria culture was added to 1 mL of TSB to achieve the final concentration of 
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approximately 108 CFU, and the culture were added into each channel. The microfluidic 

channels were then incubated at 37 °C, 5% CO2 under static conditions. Fresh broth was 

continuously pumped in at 1 µl/min, and waste solution was continuously pumped out at 1 

µl/min. 

 

Figure 4.1. In-house built microfluidic device for biofilm growth under static condition. The 

device consists of an OCT system (Ganymede II, Thorlabs, Newton, NJ; 930 nm central 

wavelength, 36 kHz scan rate), a 3D-printed microfluidic channel with six repeated wells, and 

two programmable syringe pumps (BS-8000; Braintree Scientific, Braintree, MA). Fresh broth is 

continuously pumped in at 1 µL/min, and waste solution is continuously pumped out at 1 µL/min. 

 

4.2.3. Bioluminescent imaging on titanium using IVIS system 

At 0, 24, 48, and 72 hours after bacteria inoculation, bacteria culture media in one 

well was removed. Then the washer was washed by rinsing in Phosphate-buffered saline 

(PBS) to remove non-attached bacteria. The washers were then imaged by IVIS® Spectrum 

In Vivo Imaging System (PerkinElmer Inc. Waltham, MA) for measuring the radiance of 

bioluminescence (total flux, photons per second(s), [p/s]), using Living Image 4.7.3 

software (PerkinElmer Inc. Waltham, MA). A circular region of interest with constant 

location and size over the washers was measured for its total bioluminescent signal.  
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4.2.4. OCT imaging 

Microfluidic devices with titanium washers were imaged with commercial OCT 

system (Ganymede II, Thorlabs, Newton, NJ; 930 nm central wavelength, 36 kHz scan 

rate). OCT axial and lateral resolutions in air were 6 and 15 μm, respectively. White-light 

microphotographs of each well were taken prior to imaging with the camera built in the 

OCT probe. Three-dimensional images of each well containing 500 x 500 x 5000 voxels 

(1.4 mm deep x 1 mm wide x 10 mm long) were prepared for further processing by 

compensating for exponential depth-decay of the OCT signal and manually segmenting 

each well in MATLAB. Full details in OCT image processing and segmenting were stated 

in [255]. Biofilm volume was visualized by setting a 10% threshold to cut off the noise 

originating from the flowing medium.  

 

4.2.5. In vitro colony forming units counting 

The biofilm was removed by placing the washers into 10 ml of PBS in a 50 ml 

Falcon tube (Corning Inc.) and sonicating at a frequency of 35 kHz for 15 min in an 

ultrasonic water bath. Sonication was repeated three times with a 30 s interval for vortexing 

in between. A 10-fold dilution was prepared from the solution, and the diluted samples 

were plated onto a TSA for enumeration of MRSA CFUs after 24 h of incubation at 37 ˚C, 

5% CO2. The colonies were expressed on the basis of calculated washer area as CFU/cm2. 

 

4.2.6. Animal study 

We seek to establish and refine a rodent osteomyelitis model following low-energy 

trauma (Institutional Animal Care and Use Committee (IACUC) number-00002265). This 
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model includes weight-dropped injury to the femur, surgical stabilization by plate fixation, 

and bacteria inoculation in trauma sites. This is a pilot proof-of-concept study and contains 

2 animals. 

At day of injury and survival surgery (Day 0), animals were induced and maintained 

with isoflurane. Animals were given a perioperative dose of analgesia to ensure 

uninterrupted analgesic coverage. The first bioluminescence imaging (BLI #1) was 

acquired. The rat legs were shaved and prepped for surgery. The first DCE-FI imaging 

(DCE-FI #1) was acquired. Animal legs were placed over the platforms of the fracture 

device (ventral side up). A blunted blade placed at the midshaft of the femur. The blade is 

carbon steel with a width of 15 mm and a thickness of 2 mm. The notch that fits over the 

femur measures 13.35 mm. A weight of 0.94 kg was dropped from 15.3 cm, which impacts 

the blunted blade delivering a calculated force of 104.80 Newtons. The legs were opened 

and blunt dissected to expose femur. Up to 8 mg/kg bupivacaine was injected 

subcutaneously at the site of planned incision. Under continuous anesthesia, the incision 

was made at the location of the penetrating wound, and the bones were exposed, taking 

care not to worsen the soft-tissue and periosteal damage. The second DCE-FI imaging 

(DCE-FI #2) was acquired. Bioluminescence-labelled MRSA inoculation was done at this 

time, and 10 uL of inoculum containing 108 CFUs was placed directly onto the wound by 

a 22-gauge Hamilton syringe after the ends of the fracture were exposed and left for 1 h. 

Then devitalized bones and tissues were removed. Debridement were conducted using a 

ronjuer, curette and pneumatic burr drill. Animals were fixed using titanium plates. A 4-

hole plate, 23 mm long, 3 mm wide and 0.5 mm in thickness, was positioned on the 

anterolateral femoral shaft and held in place by 1.2-mm self-tapping bicortical screws in 
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proximal and distal holes. Holes were pre-drilled prior to placement of each screw. Animal 

legs were sutured closed and placed in post-operative recovery. The wound was then closed 

using the following suture material: for muscle or subcutaneous tissue, an absorbable suture 

of size 4-0 to 6-0 with a simple continuous closure pattern; skin was closed using a non-

absorbable suture of size 4-0 to 6-0 with a simple interrupted suture pattern. Following 

closure, the wound was aseptically cleaned. The second bioluminescence imaging (BLI #2) 

was acquired. Rats were individually housed and allowed special chlorophyll-free rat chow 

water ad libitum. 

At healing period (Day 1-6), analgesia doses were administered to the animals, and 

BLI #3-5 were captured every three days from Day 1 to Day 6 to monitor bacteria growth. 

At day of euthanasia (Day 7), animals were induced and maintained with isoflurane. 

BLI #6 was acquired, and quantification of bacteria was compared with in vitro CFU. The 

legs were opened and blunt dissected to expose femur. After induction with anesthesia, the 

incision was made at the same site as the previous incision, and the femur was re-exposed. 

Hardware was removed, and imaging was performed (DCE-FI #3). Isoflurane was 

increased to cause overdose, and animals were euthanized. 

 

4.2.7. DCE-FI imaging 

In Vivo imaging was performed using a custom-built wide-field fluorescence 

imaging system. An operating microscope was modified to include two PCO Panda 

fluorescent cameras measuring emission at 700 nm and 800 nm, respectively. A color 

camera was also mounted, which can measure RGB under white-light illumination, and 

780 nm emission from indocyanine green (ICG). Using this system, all three channels were 
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simultaneously recorded to allow for the in vivo imaging. RGB images are acquired 

throughout, allowing for motion correction, and co-registration to the static images of ICG. 

These occurred during the survival surgery (Day 0) and the non-survival surgery prior to 

euthanasia (Day 7). 

Rodents were placed under a surgical plane of anesthesia with isofluorane (1-3% 

in O2 at 0.5 – 1.0 L/min). They were placed on a heating pad (temperature will be checked 

and kept between 35.9 and 37.5 ˚C) and the above fluorescence imaging system was 

positioned over the imaging field. During image acquisition, 0.2 mL 0.1 mg/kg ICG was 

injected intravenously, given by catheter injection. Imaging was performed for 

approximately 5 minutes. To allow ICG to clear, approximately 20 minutes were allowed 

between each ICG Imaging session.  

 

4.2.8. Image processing, kinetic analysis, and statistical analysis 

Fluorescence images from fluorescence imaging system were exported as 

stacked .tiff files and processed by custom MATLAB (The MathWorks, Natwick, MA) 

programs: fluorescence images were normalized by subtracting the median intensity of 

images from the first 10 seconds, designed to remove the residual ICG signal from previous 

injections; Then fluorescence images and white-light images were co-registered using the 

modified Image Processing Toolbox of MATLAB. 

Processed images were then analyzed of their first-pass kinetics. In each time series 

of fluorescence images, equal-sized regions-of-interest (ROIs) covering all exposed femur 

regions were selected. For each ROI, model-independent first-pass kinetic parameters (FI 

parameters): maximum intensity, time-to-peak, and ingress slope of dye wash-in phase 
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(denoted by Imax, TTP, and IS, respectively) were extracted from temporal fluorescence 

intensity (FI) curve that was averaged over the pixels covered by the ROI: Imax was 

obtained as the intensity at the time of peak of whole image series; TTP was obtained as 

the time from dye arrival time (Ta) to the time of peak of whole image series; IS were 

obtained by fitting a straight line to the ingress curve of wash-in phase. 

Bioluminescent images from IVIS imaging were exported as DICOM files, and 

were processed by MATLAB. Total flux (p/s) of each ROI were recorded. For visualization 

purpose, same range of color bar should be used to represent the temporal changes in 

bioluminescent signals. For each ROI, total flux and FI parameters were compared using 

bar graph. 

 

4.3. Results 

4.3.1. MRSA biofilm growth on titanium washers 

Under both static (Figure 4.2) and dynamic (Figure 4.3) culture conditions, the 

surfaces of MRSA-contaminated titanium washers showed increasing bioluminescent 

signals from 0-72 hours. In vitro CFU counting (Figure 4.2(c)) of 0 hour yields 0 CFU, 

and > 10,000 CFU after 24 hours, which proved the continuous growth of MRSA biofilm. 

OCT imaging (Figure 4.3(c)) also showed that biofilm has formed after 72 hours. The 

resulted MRSA growth curves (Figure 4.2(b) and Figure 4.3(b)) are consistent with the 

biofilm coverage curve from literature [256]. 
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Figure 4.2. MRSA biofilm growth under static condition. (a) Bioluminescent images of three 

repeated experiments (Row 1~3) from 0, 24, 48, and 72 hours culture duration (Column 1~4). (b) 

MRSA biofilm growth curve. Averaged total flux over three repeated experiments is plotted 

against the culture duration. Scale bar is standard deviation. n = 3. (c) In vitro CFU counting. 

Samples were 10-fold diluted. Scale bar = 1 cm. 
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Figure 4.3. MRSA biofilm growth under dynamic condition. (a) Bioluminescent images of six 

repeated wells from 0, 48, and 72 hours culture duration (Column 1~3). (b) MRSA biofilm 

growth curve. Averaged total flux over three repeated experiments is plotted against the culture 

duration. Scale bar is standard deviation. n = 6. (c) OCT imaging. Top: photograph of one well 

after 72 hours culture; Center: OCT raw image of the same well; Bottom: 10% threshold OCT 

image of the same well. Scale bar = 1 mm. 

 

4.3.2. MRSA biofilm growth on low-energy fractured femur 

Before MRSA inoculation, the femur was judged to be free from MRSA and no 

bioluminescent signals were detected (Figure 4.4(a), Column 1). Right after MRSA 

inoculation, bioluminescent signals were detected (Figure 4.4(a), Column 2), 

demonstrating that MRSA has successfully attached to the surface of low-energy fractured 

femur. During the 1st to the 7th day after inoculation, a continuous increase of 

bioluminescent signals was detected from the femur (Figure 4.4(a), Column 3-5, and 

Figure 4.4(b)), showing that a stable MRSA biofilm has grown on the low-energy 

fractured femur.  
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Figure 4.4. MRSA biofilm growth on low-energy fractured femur. (a) Bioluminescent images 

of rodent No. 1 before MRSA inoculation, and at 0, 3, 5, and 7 days after MRSA inoculation 

(Column 1~5, respectively). (b) MRSA biofilm growth curve. Total flux from the same region-of-

interest covering the femur is plotted against the culture duration.  

 

4.3.3. DCE-FI in low-energy fracture associated MRSA infection 

As the rodent femur goes from baseline (Figure 4.5, Left) to low-energy fracture 

(Figure 4.5, Center) and then to MRSA infection (Figure 4.5, Right), the overall 

fluorescence intensity of DCE-FI was continuously decreased (Figure 4.5(a)), and the 

average intensity curves have changed from regular to irregular (Figure 4.5(b)). First-pass 

kinetic parameters—Imax, TTP, and IS—have also shown constant changes in these three 

conditions (Figure 4.5(c)). In details, Imax and IS are decreased, and TTP is increased 

(Figure 4.5(d)). This change in first-pass kinetic parameters is consistent with the results 

from the human fracture-associated infection study in Chapter 7. As a result, DCE-FI can 

quantitatively characterize the vascular changes in fracture-associated MRSA infection. 
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Figure 4.5. DCE-FI images, temporal curves, and first-pass kinetics in low-energy fracture 

associated MRSA infection from Rodent No. 1. (a) DCE-FI fluorescence images of three 

conditions. Left: Baseline, Center: Fractured, Right: Fractured + Infected. White solid lines 

denote the ROIs. (b) DCE-FI temporal curves of each ROI. (c) DCE-FI first-pass kinetics. Top: 

Imax, Middle: TTP, Bottom: IS. (d) Bar graph of comparing DCE-FI first-pass kinetic parameters 
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under three conditions. Blue = Baseline, Dark red = Fractured, Dart yellow = Fractured + 

Infected.   

 

4.3.4. Perfusion decrease characterized by DCE-FI first-pass kinetics is correlated with 

infection 

After MRSA contamination, the perfusion levels were decreased, as characterized 

by DCE-FI first-pass kinetic parameters (Figure 4.6, Column 1-3). In comparison, MRSA 

infection levels were increased, as demonstrated by BLI signals (Figure 4.6, Column 4). 

Therefore, perfusion decrease is correlated with infection development, and DCE-FI is able 

to quantify the change. 

 

Figure 4.6. Changes in DCE-FI first-pass kinetic parameters and BLI signals after bone 

infection. Column 1-3: DCE-FI first-pass kinetic parameters Imax, TTP, and IS. Column 4: BLI 

signal in total flux. Blue = uninfected bone, Dark red = infected bone. 

 

4.4. Discussion and Conclusions 

This is the first pilot preclinical study to evaluate the performance of DCE-FI in 

assessing bone perfusion status related to infection. The study consists of two parts: 

phantom study and animal study. In the phantom study, we designed a MRSA biofilm 

growth model using titanium washers. Titanium is one of the prevalent metals in 

orthopaedic implants, due to its biocompatibility, high corrosion resistance and mechanical 
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properties [257]. Currently, many groups have studied the MRSA biofilm formation on 

titanium implants [258–260]. However, the MRSA growth curves have shown variations 

under different culture conditions. To establish a stable growth curve under the current 

laboratory settings, we conducted this titanium phantom study. A stable growth on titanium 

is the basis for the following animal study, because in the animal study we will inoculate 

MRSA on titanium implant and track the biofilm formation in vivo. For producing the 

MRSA growth curve, we used BLI for tracking the growth of MRSA biofilm, and validated 

it by in vitro CFU counting or OCT scan.  

In the animal study, we demonstrated a DCE-FI quantitative first-pass analysis 

method in a rodent osteomyelitis model. In this model, the microvascular changes 

associated with osteomyelitis were captured by DCE-FI, and the infection development 

was tracked by BLI. A comparison of these two imaging modalities has demonstrated that 

perfusion level decreased as infection developed. Therefore, DCE-FI can be potentially 

used to track the status of osteomyelitis by the way of tracking the decrease in perfusion.  

In the future, we will further develop the DCE-FI osteomyelitis model to segment 

the bones into infected/uninfected regions, and most importantly, will display accurate 

contours between the segments. These contours will provide guidance for debriding 

infected bones, which makes our proposed model a useful tool that has high clinical 

potential. 

In conclusion, DCE-FI can quantify infection-induced perfusion decrease post bone 

fracture, by first-pass kinetic analysis.  
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Chapter 5  

First-pass Kinetic Parameters and Arterial Input Function 

Characterization of Amputation  

This chapter adapted from the content of work entitled “First pass kinetics of 

dynamic contrast-enhanced fluorescence imaging in lower limb amputations: model-

independent characterization and classification in perfusion states” by Han X, Elliott JT, 

Tang Y, Sottosanti JS, Hall A, Jiang S, and Gitajn IL, submitted to The Journal of Bone 

and Joint Surgery in 2023. I. Leah Gitajn, Shudong Jiang, and Jonathan T. Elliott co-

supervised the project, provided intellectual insights and reviewed the manuscript. Amy 

Hall assisted with clinical trial and data collection. J. Scott Sottosanti developed hardware 

and 3D-printed parts for the imaging system. Yue Tang contributed to image processing 

and arterial input function (AIF) processing. The author of this thesis analyzed the patient 

data, processed the images, wrote analytic software and wrote the manuscript. This chapter 

has met copyright permission requirements. 

This chapter describes the development of first-pass kinetic analysis and AIF 

characterization on dynamic contrast-enhanced fluorescence imaging (DCE-FI) of 

orthopaedic amputation surgery. First-pass kinetic analysis approach is based on model-

independent quantitative analysis of DCE-FI, where maximum intensity, time-to-peak, 

ingress slope, and egress slope were extracted from temporal intensity curves. To account 

for the intersubjective variations caused by AIF-associated factors, here we also proposed 

an AIF simple correction algorithm that will correct the first-pass kinetic parameters by 

average AIFs. This approach has shown high classification scores in respect of stratifying 
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bone injury levels. Therefore, this approach will have possible applications in assisting the 

orthopaedic amputation surgery with precise debridement.  
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5.1. Introduction 

Adequate perfusion is necessary for the proper functioning of the skeletal system’s 

physiological activities—including growth and strength, fracture repair and healing—by 

delivering oxygen, nutrients, antibiotics and immune cells to bone [14,33,34,36,37]. 

Inadequate perfusion, especially in the context of trauma, can lead to infection, necrosis 

and other complications [40–42]. Poorly perfused bones will form microbial biofilm and 

deficit function, which may lead to recurrent infection, repeat surgery and prolonged 

morbidity [6–9,40–42]. Therefore, quickly and accurately assessing bone perfusion is a key 

unmet need in orthopaedic surgery.  

Dynamic contrast-enhanced (DCE) imaging modalities, such as DCE-computed 

tomography (DCE-CT), DCE-magnetic resonance imaging (DCE-MRI), and DCE-FI, are 

used in tumor detection [85] and characterization of vasculature [86]. DCE works by 

measuring the temporal intensity changes of injected contrast agent, and computing 

quantitative spatial and temporal information. Compared to MRI and CT, DCE-FI has the 

advantage of being non-ionizing, low-cost and providing real-time information in the 

operating room [112].  

To assess bone perfusion and provide guidance for surgical debridement, a few 

research groups have explored DCE-FI using the contrast agent indocyanine green (ICG). 

While these have been described in recent preclinical studies [19,21,97,261–263], only a 

limited number of clinical investigations have demonstrated the method intraoperatively. 

Approaches commonly used in DCE-FI analysis include Tofts model [182] and Adiabatic 

approximation to the tissue homogeneity (AATH) model [117,118]. These explicit 

methods of analysis provide some additional quantitative information, but are limited in 
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their complexity, and therefore, do not account for differences between patients in the 

delivery of the dye to the tissue of interest. The lack of an AIF in most of these reports 

suggests a high amount of variance in the resulting data [128]. This variance will make it 

impossible to define threshold based on kinetic parameters. 

In this paper, we propose a simple quantitative approach to analyzing DCE-FI data 

obtained from a clinical investigation of lower-limb amputations. Three surgical conditions 

were created in each patient’s tibia who underwent amputation surgery, designed to mimic 

three levels of bone blood flow disruption: (1) baseline (intact bone, low blood flow 

disruption); (2) osteotomy (bone cut 15cm from the medial malleolus to disrupt endosteal 

blood flow, middle blood flow disruption); (3) osteotomy and stripping (extensive soft 

tissue stripping proximal and distal to the osteotomy to disrupt both endosteal and 

periosteal blood flow, high blood flow disruption). ICG was administered during each of 

three conditions, for correlating DCE-FI data to specific level of blood flow disruption. 

The approaches in this paper are using first-pass kinetic parameters [264–269] of DCE-FI 

data to characterize and classify bone perfusion, and using an AIF simple correction 

algorithm to reduce inter-subject variations. To our knowledge, this is the first published 

DCE-FI investigation in humans. This paper examined the application of DCE-FI in 

intraoperative bone state assessment, and will inspire future studies on DCE-FI in 

orthopaedic surgeries.  

 

5.2. Methods and Materials 

5.2.1. Patient study 
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The study design is prospective cohort study. The patient study was conducted at 

Dartmouth-Hitchcock Medical Center (DHMC), and approved by the Institutional Review 

Board of DHMC and listed on ClinicalTrials.gov as NCT04250558. Fifteen participants 

with confirmed below knee amputation (BKA) were included in this study. Eligible 

participants are selected as 18 years of age or older who present to DHMC and scheduled 

for a lower extremity amputation. Iodine allergy and pregnant or breastfeeding woman 

have been excluded from this study. Information about the recruited participants is listed 

in Table 5.1. 53.3% of participants have their foot removed prior to imaging (i.e., Foot-off 

patients without retro blood supply). Recruitment, exposure, and data collection periods of 

participants were January 2020 to August 2022, and this study is a one-time imaging during 

the subject’s surgery so no follow-up visits. Informed consent was obtained from the 

participants and/or their legal guardians. All methods were performed in accordance with 

the relevant guidelines and regulations. 

Table 5.1: Study participants information. BKA – below knee amputation. pt-patient. BMI-

body mass index, HR-heart rate, RR-respiratory rate, SaO2-oxyhemoglobin saturation, Hb-

hemoglobin concentration, EF-ejection fraction. 

 BKA patient cohort 

Foot removal prior to 

imaging 
 

No 7 (pt1~7) 

Yes 8 (pt8~15) 

Gender  

Male 13 

Female 2 

Pre-operation diagnosis  

left BKA 3 

Right BKA 12 
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Age (years) 55.2±13.2 

BMI (kg/m2) 30.9±8.0 

HR (beats per minute) 79.3±14.4 

RR (breaths per minute) 15.2±3.7 

SaO2 (%) 97.4±2.6 

Hb (g/dL) 10.8±1.9 

EF (%, if applicable) 55.7±11.1 

 

In the study, three surgical conditions were created in each patient’s tibia, designed 

to mimic three levels of bone blood flow disruption after low-to-high energy fracture. An 

intravenous injection of 0.1 mg/kg ICG was as administered during each of three 

conditions: (1) baseline; (2) osteotomy (bone cut 15cm from the medial malleolus to disrupt 

endosteal blood flow, similar to a low-energy fracture); (3) osteotomy and stripping 

(extensive soft tissue stripping proximal and distal to the osteotomy to disrupt both 

endosteal and periosteal blood flow, similar to a high-energy fracture). Imaging was 

performed during the wash-in and wash-out of contrast. These manipulations did not add 

appreciably to the duration of surgery.  

 

5.2.2. Fluorescence imaging instrumentation and acquisition  

Time series of fluorescence images were recorded from 20 seconds before to 4 

minutes after ICG injection in each condition, using SPY Elite imaging system (Stryker 

Corp., Kalamazoo, MI, USA). After fluorescence images were acquired, a white-light 

image was taken. The working distance was 300 mm, and light intensity and integration 

times were kept constant during the whole imaging process. During each imaging session, 
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an in-house built ICG pulse dye densitometer has been placed on the patient’s finger to 

acquire an AIF during ICG injection based on the pulse oximeter.  

 

5.2.3. Image processing 

5.2.3.1. Motion correction 

DCE-FI images were exported as DICOM files from SPY Elite imaging system and 

loaded to custom MATLAB (The MathWorks, Natwick, MA) programs to correct for 

motion artifacts. The correction was achieved by finding the highest mutual information 

between every two reference-target frame pair, continuously from start frame to last frame. 

In detail, first, the start frame was located by skipping any earlier frames that have an 

average intensity of less than 10, and the start frame was set as the reference frame. Second, 

the next frame after the reference frame was set as the target frame, and was aligned to the 

reference frame by finding the maximum mutual information along x and y-axis using a 3 

× 3 kernel search. Third, the aligned frame was set as the new reference frame, and repeated 

step 2~3 until reached the last frame. At the end, the whole series of aligned DCE-FI images 

were saved. Further details can be found at [270].  

 

5.2.3.2. Image pre-processing 

Motion corrected images were then pre-processed by custom MATLAB programs: 

Firstly, images were normalized by subtracting the median intensity of images from the 

first 10 seconds, for removing the residual ICG signal from previous injections. Secondly, 

images were trimmed by deleting the frames of the first 20 seconds, to account for the light 
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sources warm-up period. Thirdly, fluorescence images and white-light image were co-

registered using Image Processing Toolbox. 

 

5.2.3.3. First-pass kinetic analysis  

For each time series of fluorescence images, six circular regions-of-interest (ROIs) 

with the same radius (1 ± 0.2cm, varied with bone width) were selected to startle the 

osteotomy proximally (P1-P3) and distally (D1-D3). For each ROI, model-independent 

first-pass kinetic parameters (FI parameters) were extracted from temporal fluorescence 

intensity (FI) curve that was averaged over all pixels in the ROI (Figure 5.1(a)): Maximum 

intensity (Imax) was obtained as the intensity at the time of peak of whole image series; 

Time-to-peak (TTP) was obtained as the time from dye arrival time (Ta) to the time of peak 

of whole image series (Tp); Ingress slope (IS) was obtained by fitting a straight line to the 

ingress curve of wash-in phase. 

 

Figure 5.1: First-pass kinetic parameters extraction. (a) Extraction of FI parameters. Averaged 

fluorescence intensity of bone ROI is plotted over time. FI parameters-Imax, IS and TTP were 

extracted out of the curve as indicated. (b) Extraction of AIF parameters. AIF of an imaging 

session is plotted over time. AIF parameters-Ymax and Tmax were extracted out of the curve as 

indicated. 

 

5.2.4. Arterial input function simple correction 
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5.2.4.1. AIF pre-processing 

Arterial input functions were measured by in-house built ICG pulse dye 

densitometer based on the pulse oximeter. Within the densitometer, the AIFs were 

calculated from the ratio of amplitudes of two channels of the pulse oximeter, extinction 

coefficients of oxyhemoglobin, deoxyhemoglobin and ICG at given wavelengths, 

clinically-recorded arterial oxygen saturation, and total hemoglobin concentration. The raw 

AIFs were then preprocessed by subtracting the median of the baseline before the ICG 

injection, aligning the arrival time point to the origin and extrapolating if the length of 

recorded AIF was not long enough.  

 

5.2.4.2. AIF parameter extraction and cleaning 

Arterial input function first-pass parameters—maximum concentration and time-

to-peak (denoted by Ymax and Tmax, respectively)—were extracted from AIF curves of 

each imaging session (Figure 5.1(b)). However, the AIF curves from some participants 

were partially or completely problematic due to the artifacts (i.e., missing, low signal-to-

noise ratio, or motion) in AIF acquisition process. To address this problem, we cleaned raw 

AIF parameters by the following method according to a previous study, which shown that 

substituting individual AIF with a population averaged AIF has no significant differences 

between pharmacokinetic parameters [271]. Standard AIF parameters (denoted by Ymax’ 

and Tmax’ respectively) were calculated by averaging over nine participants whose AIF 

curves were completely without artifacts. Then data falls outside the 95% confidence 

interval was regarded as outlier and replaced with standard AIF parameters. 

 



100 
 

5.2.4.3. AIF simple correction 

Arterial input function perturbations caused by the variations of dye dose, dye 

dispersion time and injection fraction can result in 60% to 200% error in first-pass kinetic 

parameters [128]. Therefore, comparing raw first-pass kinetic parameters may introduce 

bias. To account for the AIF-dependent effects and allow intra- and inter-subject 

comparison, tissue temporal FI curves are usually processed by convolutional correction 

[128].  

However, there are some limitations of the convolutional correction, such as 

prolonged computational time, sensitivity to de-convolution/re-convolution algorithm, and 

requiring complete AIF curve. To overcome the above limitations, here we proposed a 

model-free simple correction approach that correct only the first-pass kinetic parameters 

instead of the whole FI curves. The corrected bone first-pass kinetic parameters Imax_c, 

TTP_c and IS_c are computed by: 

𝐼𝑚𝑎𝑥_𝑐 = 𝐼𝑚𝑎𝑥/𝑌𝑚𝑎𝑥 × 𝑌𝑚𝑎𝑥′                                      (5.1) 

𝑇𝑇𝑃_𝑐 = 𝑇𝑇𝑃 − 𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑎𝑥′                                       (5.2) 

𝐼𝑆_𝑐 = 𝐼𝑚𝑎𝑥_𝑐/𝑇𝑇𝑃_𝑐                                               (5.3) 

Where Imax, TTP and IS are the raw first-pass kinetic parameters, Ymax and Tmax are the 

individual AIF parameters, and Ymax’ and Tmax’ are the standard AIF parameters acquired 

in section 5.2.4.2.  

 

5.2.5. Statistical analysis and machine learning classification 

First-pass kinetic parameters were grouped according to their ROI location and 

patients’ foot removal status: Group1-distal ROI, foot-on, Group2-distal ROI, foot-off, and 
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Group3- proximal ROI, foot-on and foot-off. The three groups were determined as the foot 

removal status has influenced on the distal ROIs but not on the proximal ROIs. In each 

group, mean and standard deviation were calculated and compared within baseline, 

osteotomy, and osteotomy + stripping states. All results were statistically examined by 

paired student’s t-test using MATLAB Statistics and Machine Learning Toolbox, and 

results with p-value less than 0.05 were regarded as statistically significant. Missing data 

and outliners were deleted from the dataset. 

For machine learning classification in perfusion states, ROIs were labeled as 

“Normal”, “Minor Injured” or “Major Injured” classes according to the degree of 

disruption to bone perfusion resulting from manipulations: “Normal” and “Minor Injured” 

ROIs were defined as having arterial and/or retrograde perfusion, resulted from no bone 

damage or bone damage from either osteotomy or foot cutting. ROIs from these two classes 

both have sufficient healing potentials. “Major Injured” ROIs was defined as having 

neither arterial nor retrograde perfusion, caused by any two co-occurring bone damages 

from osteotomy, soft tissue stripping and foot cutting. ROIs from this class have 

insufficient healing potentials due to reduced blood supply. Corrected first-pass kinetic 

parameters were statistically tested by two-sample student’s t-test. Using corrected first-

pass kinetic parameters as predictive variables, a one-vs-one three-class classification and 

two one-vs-rest binary-class classifications have been done by Gaussian Naïve Bayes 

classifier (Scikit-learn, Python 3.9). 10-fold cross-validation was used to evaluate the 

classifier. Accuracy, sensitivity, specificity and area-under-curve (AUC) from receiver 

operating characteristic (ROC) curves have been recorded and averaged over all cross-

validation rounds. 
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5.3. Results 

5.3.1. DCE-FI is able to demonstrate the vasculature changes both spatially and 

temporally 

Dynamic contrast-enhanced fluorescence imaging can locate the vasculature 

changes. As shown in the fluorescence images (Figure 5.2), fluorescence intensities in 

baseline (Figure 5.2 Column 1), osteotomy (Figure 5.2 Column 2), and osteotomy + 

stripping (Figure 5.2 Column 3) states was significantly decreased, consistent with the fact 

that blood flow by endosteal and periosteal supply has been increasingly disrupted during 

orthopaedic surgery. Moreover, perfusion at proximal and distal sites was the same in foot-

on patients (Figure 5.2 (a)) who have retrieved perfusion from foot, while it was different 

in foot-off patients (Figure 5.2 (b)) who have no retrieved perfusion. 

 

Figure 5.2: DCE-FI images. (a) A foot-on patient (pt4, a 52-year-old woman with right BKA) 

and (b) a foot-off patient (pt10, a 53-year-old woman with right BKA). Row 1: White light 

images from white light camera; Row 2-4: Fluorescence images from near infrared camera at 

global time of peak intensity (t = Tp), peak intensity plus 60 seconds (t = Tp + 60 s), and peak 

intensity plus 120 seconds (t = Tp + 120 s), respectively; Circles indicate the ROIs (P1~P3, 
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D1~D3, respectively). Column 1-3: Baseline, Osteotomy, and Osteotomy + Stripping. Scale bars 

= 3cm. P: Proximal, D: Distal. 

 

Temporal intensity changes in DCE-FI can also reflect vasculature conditions. As 

shown in Figure 5.3, compared to baseline condition: Imax and IS showed continuously 

decreasing in osteotomy and osteotomy+stripping conditions, with the largest decreasing 

percentages in foot-off patients’ distal bones (Figure 5.3 (b)); TTP showed no significant 

changes in osteotomy, but in osteotomy+stripping have increased. In comparison, averaged 

AIF keep constant in different states of both foot-on and foot-off patients (Figure 5.3, Row 

7), demonstrating that AIF is independent of bone vasculature. 
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Figure 5.3: Bone fluorescence intensity temporal profiles and their arterial input functions. 

(a) Foot-on patients and (b) foot-off patients. Row 1~6: Fluorescence intensity temporal profiles 

of bone ROIs (P1~P3, D1~D3, respectively); Row7: Arterial input functions. Colored lines 

represent individual patients, black lines represent the averaged values over foot-on or foot-off 

patients, and gray shadows represent the standard deviation. Column 1-3: Baseline, Osteotomy, 

and Osteotomy + Stripping. P: Proximal, D: Distal, AIF: arterial input function, pt: patient. 
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5.3.2. AIF simple correction reduced the population variation  

Arterial input function simple correction can efficiently eliminate the population 

variation. Comparing the distributions of Imax (Figure 5.4 (a)) and IS (Figure 5.4 (b)) 

before correction (in black) with after correction (in blue), the ranges in all three states 

have been reduced. The reduced standard deviations after correction (in 67% of dataset, 

Table 5.2) also showed that the population variation has decreased.  

 

Figure 5.4: Distribution of first-pass parameters. (a) Imax and (b) IS. Column 1-3: Group 1-

Distal ROI, Foot-on (n = 21), Group 2-Distal ROI, Foot-off (n = 24), Group 3-Proximal ROI, 

Foot-on and Foot-off (n = 45). Boxplots represent the min, first quartile, median, third quartile, 

and max of first-pass parameters in three perfusion states. Parameter values before AIF simple 

correction (black dots) are compared with those after AIF simple correction (blue dots). B: 

Baseline, O: Osteotomy, O+S: Osteotomy + Stripping. 

 

5.3.3. Corrected first-pass kinetic parameters Imax_c and IS_c distributed differently with 

perfusion states, and they could classify bone perfusion according to healing potentials 

From the baseline state to osteotomy and to osteotomy+ stripping state: Imax_c 

(Figure 5.4(a) in blue) and IS_c (Figure 5.4(b) in blue) were consistently decreasing in all 

groups, which reflected the importance of maximum capacity of blood volume and transit 

rate of ICG in blood vessel, respectively, in bone perfusion. Statistical tests showed that 
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TTP_c was not as significant as Imax_c and IS_c (Table 5.2), meaning that the transit time 

of ICG in blood vessel is not a determinant factor. 

Table 5.2: Statistical analysis results after AIF correction. Mean, standard deviation and p-

values of first-pass kinetic parameters in different groups, states and after simple correction. 

Group 1: Distal ROI, Foot-on (n = 21), Group 2: Distal ROI, Foot-off (n = 24), Group 3: 

Proximal ROI, Foot-on and Foot-off (n = 45). B: Baseline, O: Osteotomy, O + S: Osteotomy + 

Stripping. * Statistically significant. 

Corrected 

First-pass 

parameters 

Group 

# 
B O O+S 

p-value 

(B-O) 

p-value 

(B-O+S) 

p-value 

(O-O+S) 

Imax_c 

1 138±57 86±27 39±30 <0.01* <0.01* <0.01* 

2 98±31 61±47 11±8 <0.01* <0.01* <0.01* 

3 121±56 97±39 39±28 <0.01* <0.01* <0.01* 

TTP_c 

1 82±70 112±77 171±89 0.03* <0.01* 0.04* 

2 106±76 112±85 103±83 0.57 0.90 0.66 

3 92±77 77±74 160±80 0.11 <0.01* <0.01* 

IS_c 

1 4.6±4.6 1.4±1.1 0.3±0.4 <0.01* <0.01* <0.01* 

2 2.0±2.4 1.8±2.6 0.1±0.1 0.59 <0.01* <0.01* 

3 4.0±4.2 2.9±2.4 0.3±0.2 0.04* <0.01* <0.01* 

 

 

Figure 5.5: Overlaid fluorescence images and overlaid parametric maps of first-pass kinetic 

parameters after AIF correction. (a) A foot-on patient (pt4, a 52-year-old woman with right 

BKA) and (b) a foot-off patient (pt10, a 53-year-old woman with right BKA). Row 1: Overlaid 

fluorescence images at t = Tp with white light images; Row 2: Overlaid parametric maps of 

Imax_c with white light images; Row 3: Overlaid parametric maps of IS_c with white light 

images. Column 1-3: Baseline, Osteotomy, and Osteotomy + Stripping. Scale bars = 3cm. 
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Corrected Imax_c and IS_c in combination can classify bone perfusion states. The 

values of Imax_c and IS_c of baseline, osteotomy, and osteotomy + stripping bones are 

significantly different (Figure 5.5). Similarly, the values of Imax_c and IS_c of normal, 

minor injured, and major injured bones are also significantly different (Figure 5.6(a, b)). 

When using Imax_c and IS_c as machine learning predictors, the AUC is the highest (= 

0.93) in Binary-class Classification 2 (Figure 5.6(c) and Table 5.3), which yields averaged 

metrics over 10-fold cross-validation as: accuracy of 0.81, sensitivity of 0.71 in 

Normal/Minor injured and sensitivity of 0.91 in Major injured (Figure 5.7). Due to the 

fact that normal, minor injured, and major injured bones are justified according to the 

increased blood supply damage levels, therefore first-pass kinetics can classify bone 

perfusion states.  

 

Figure 5.6: Corrected Imax_c and IS_c distribution in classified bone perfusion classes. (a-

b) Corrected distribution of (a) Imax_c and (b) IS_c between classified bone perfusion classes of 
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different classification methods. Left: Three-class Classification, Center: Binary-class 

Classification 1, Right: Binary-class Classification 2. * P-values < 0.01. (c) ROC curves of three 

classifications. Black solid line = no method. Three-class classification used macro-averaged over 

classes. (d) Diagrams of labeling of bone regions-of-interest. From left to right: Baseline, 

Osteotomy, Osteotomy + Stripping. Top: Foot-on patient; Bottom: Foot-off patient. White line 

indicates the location of osteotomy. Green, yellow and red surface indicate the labels of Normal 

(++), Minor Injured (+-/-+) or Major Injured (--) blood supply, respectively. Left plus/minus sign: 

with/without arterial blood supply. Right plus/minus sign: with/without retrograde blood supply 

P: Proximal, D: Distal. 

 

Table 5.3: Classification results from three classification approaches. Classification 

approaches include: Three-class classification (left), Binary-class classification 1 (center), and 

Binary-class classification 2 (right). Classification metrics include accuracy, sensitivity, 

specificity and AUC, which are all averaged over cross-validation rounds. Three-class 

classification used macro-averaged over classes for AUC calculation. Classifier is Gaussian 

Naïve Bayes. 

 Three-class Classification 
Binary-class 

Classification 1 

Binary-class 

Classification 2 

Classes Normal 
Minor 

Injured 

Major 

Injured 
Normal 

Minor/Major 

Injured 

Normal/Minor 

Injured 

Major 

Injured 

Accuracy 0.65 0.74 0.81 

Sensitivity 0.35 0.54 0.92 0.60 0.88 0.71 0.91 

Specificity 0.94 0.79 0.71 0.88 0.60 0.91 0.71 

AUC 0.84 0.82 0.93 

 

 

 

Figure 5.7: Binary-class Classification 2 results. Two-dimensional scatter plot of ROIs is 

plotted on axes of Imax_c and IS_c with decision boundary (solid black line). The shape of the 

marker indicates the group of the ROI: Circle = Group 1-Distal ROI, Foot-on patients, Triangle = 

Group 2-Distal ROI, Foot-off patients, Square = Group 3-Proximal ROI, Foot-on and Foot-off 
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patients. The color of the marker indicates the true perfusion state of the ROI: Green = Normal, 

Red = Injured. Background and top-left corner are the 95% confidence interval (CI) ellipses of 

each true perfusion state. 

 

5.4. Discussion 

Determining the location and degree of debridement is challenging in orthopaedic 

surgery. The most common way of making the determinations is by looking at the “clinical 

signs” [12]. However, this visual determination is subjective and highly dependent of 

surgeon’s experience. To solve this problem, fluorescence-guided surgery (FGS), which 

has been utilized in multiple clinical applications such as tumor imaging [272–275], 

sentinel lymph node mapping [276–280], and nerve imaging [281,282], has been 

developed in orthopaedic surgery as well. FGS is able to visualize the spatial distribution 

of fluorescent dye, while DCE-FI, which adds temporal changes on FGS, can reflect 

quantitative information about perfusion. The most common investigation of DCE-FI is by 

explicit kinetic models, such as Tofts model [182] and AATH model [117,118]. However, 

most models are based on well-defined physiological assumptions that are difficult to 

achieve in real patient data. To alternate model-dependent methods, we have developed a 

model-independent quantitative analysis method based on first-pass kinetic parameters. 

DCE-FI has shown perfusion differences in both space and time. Specifically, AIF 

corrected first-pass kinetic parameters from DCE-FI, Imax and IS, could characterize and 

classify bone perfusion states, which demonstrated that first-pass kinetics can reflect the 

level of bone vasculature damage.  

The proposed method has several advantages over others: It is assumption-free, 

robust, fast and easy in clinical translation: Firstly, no prior knowledge of the physiology 

nor precise assumptions are needed. This approach uses parameters that are shape-of-curve 
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associated and have been investigated in DCE-MRI and DCE-CT perfusion studies as 

semi-quantitative methods [283–286]. Secondly, this approach will remain robust in 

various patient physiological conditions, because it includes correction of inter-subject 

variations. Thirdly, the simple correction approach developed in this study is 50 times 

faster than the convolutional correction, while maintaining the same performance. Lastly, 

this approach is easy to be translated to clinics. The imaging system of this study is 

commercially available, and the analysis does not interfere with the imaging system and 

not cause reduced image quality or prolonged imaging time. 

This study has some limitations that are worth mentioning. Firstly, the size of study 

is limited and convenience sampling is used, due to the natural difficulty in recruiting 

participants. Secondly, the quantitative analysis is sensitive to the quality of AIF 

measurement. Currently there is no commercially available intraoperative AIF device 

nationwide [128], and we used an early-stage in-house built AIF detector. Thirdly, noisy 

signals from surface blood or low-permeability tissues can reduce the accuracy of first-

pass analysis. Lastly, the kinetic parameters selected in this study have not covered all 

possible ones. Other first-pass parameters such as AUC and egress slope are not included 

in this study. Future study will include recruiting more participants, improving the AIF 

detector, increasing signal-to-noise ratios in DCE-FI and including more kinetic 

parameters. 

 

5.5. Conclusions 

This is the first clinical study that investigated first-pass kinetic parameters from 

DCE-FI in differentiating bone perfusion states. AIF correction can further enhance the 
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analysis by reducing the between-patient variations. Maximum intensity and Ingress slope 

are decreased as bone perfusion is reduced, and can be used for perfusion classification 

according to bone’s healing potentials.  

In this chapter, first-pass kinetic analysis has been applied to clinical amputation 

models. It is demonstrated that the first-pass parameters, whether individually or in 

combination, can assess bone perfusion. Therefore, we have found first-pass parameters as 

one category of perfusion-associated features from DCE-FI. Parameters maximum 

intensity and ingress slope are the two most significant features correlated with perfusion. 

In addition, logistic regression model built on the two parameters has shown great 

probability as a debridement guidance tool. In the future, first-pass parameters will be 

combined with other perfusion-associated features to further improve the current 

fluorescence-guided surgery model.  

 

 

 

 

 

 

 

 

 

 



112 
 

Chapter 6  

First In-human Use of Dynamic Contrast-Enhanced Texture Analysis 

for Orthopaedic Trauma Classification 

This chapter has been adapted from the journal article published in 2022, entitled 

"Spatial and temporal patterns in dynamic-contrast enhanced intraoperative fluorescence 

imaging enable classification of bone perfusion in patients undergoing leg amputation" by 

Han X, Demidov V, Vaze VS, Jiang S, Gitajn IL, and Elliott JT in Biomedical Optics 

Express volume 13, issue 6. Jonathan T. Elliott supervised the project, made intellectual 

contributions, provided grant support and reviewed the manuscript. I. Leah Gitajn, 

Shudong Jiang, and Vikrant S. Vaze all provided intellectual inputs and assisted with the 

review of the manuscript. Valentin Demidov provided key intellectual contributions in 

methodology and assisted in manuscript writing. The author of this thesis was responsible 

for analyzing the data, writing programs and writing the manuscript. This chapter has met 

copyright permission requirements under Optica Publishing Group Open Access 

Publishing Agreement. 

This chapter presents the first clinical study using texture analysis in dynamic 

contrast enhanced fluorescence imaging (DCE-FI) for orthopaedic trauma classification. 

Here a classification strategy for guiding proper surgical debridement according to bone 

perfusion levels has been developed. Bone perfusion levels have been classified by 

unsupervised machine learning based on spatiotemporal features extracted from DCE-FI 

images. The machine learning approach outperformed the standard method of using 

fluorescence intensity only to evaluate tissue perfusion by a two-fold increase in accuracy. 

The generalizability of the machine was evaluated in image series acquired in an additional 
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three patients, confirming the stability of the model and ability to sort future patient image-

sets into viability categories. This chapter validated the performance of texture features in 

assessing bone perfusion, and opened up possibilities to use the spatiotemporal property in 

more complex clinical problems. 
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6.1. Introduction 

Maintaining adequate bone and soft tissue perfusion is essential in orthopedic 

trauma surgery [14]. Poor bone and tissue perfusion promote bacterial biofilm formation 

and subsequent antibiotic treatment resistance [15,16]. Poorly perfused bone, also called 

devitalized bone, must be identified and debrided to remove bacterial biofilm, allow 

antibiotics and endogenous immune cells to enter, treat atrophic nonunion [10,11]. 

Currently, determinations regarding the extent of debridement relies mainly on the 

surgeon’s visual inspection. Visual clues include stripped soft tissue, darkness and color of 

bone, presence of multiple drill holes and lack of “paprika” sign [12]. This subjective 

assessment places surgeons at a risk of debriding too much or too little tissue; at the present, 

there are many “gray regions” that do not fit nicely into the “black-or-white” clinical 

decision around sparing tissue or removing it [13].  

To inform and improve treatment methods, bone vascularization and necrosis can 

be assessed using imaging. While other modalities have been traditionally used for imaging 

tissue perfusion [287–289], dynamic contrast-enhanced (DCE) imaging based on optical 

fluorescence (either visible or infrared emission) is becoming increasingly popular in other 

clinical applications such as tumor detection [85], vasculature evaluation [86] and 

perfusion assessment [89]. Furthermore, it is well suited to novel application in orthopaedic 

surgical guidance because of challenges obtaining sufficient contrast-to-background in 

computed tomography (CT) and magnetic resonance imaging (MRI) of bone. The DCE-FI 

method proposed in this paper uses near-infrared (NIR) fluorescent light (700-900 nm), 

that has good penetration through blood and tissue. Compared to other imaging modalities, 

DCE-FI does not use ionizing radiation and updates in real-time, making it a safe and 
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versatile imaging technique for continuous intraoperative use. Furthermore, additional 

contrast based on tissue perfusion is obtained by deconvolving the concentration of contrast 

agent over time in tissue with an arterial input function that is measured from a finger 

detector. Compared to pure intensity-based methods, DCE-FI can not only provide 

qualitative information that can be captured by human eyes, but also provide quantitative 

information such as blood flow and blood volume. Indocyanine green (ICG) contrast agent-

based DCE-FI techniques on bone perfusion have been developed by several preclinical 

studies [19,21,97,261–263]. Among these, maximum fluorescence intensity (FI) at the 

peak intensity time is the most commonly used parameter [97,261,262], but it cannot 

always significantly differentiate bone perfusion [97,263]. From our previous in vivo 

animal studies [19,21], kinetic parameters such as total bone perfusion and late perfusion 

fraction have been proved to be capable of quantitatively evaluating bone perfusion 

changes. However, those parameters of DCE-FI have not been evaluated in human clinical 

applications. 

In this study, we explore the capability of DCE-FI to predict bone perfusion in 

patients undergoing surgery. The surgical procedure is amputation of the leg; however, the 

study allows for intermediary steps before amputation (transverse osteotomy and periosteal 

stripping) to create artificial conditions representing fracture and degloving injury. In 

addition to acquiring the first DCE-FI dataset on 12 patients each with 3 conditions (total 

36 image series), this paper develops a classification strategy to predict whether a particular 

region is damaged or not. Specifically, we propose a fast unsupervised machine learning 

approach to predict the perfusion or viability level of any bone region-of-interest (ROI) 

based on spatiotemporal features. This was accomplished by obtaining the 36 series of 
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fluorescence images from patients undergoing limb amputation surgery and manipulation; 

2.5 × 106 segmented ROIs at bone region were included to train the model; 1 × 106 ROIs 

were used for testing the model using a cross-validation approach where output labels were 

compared to model predictions and to a benchmark fluorescence intensity thresholding-

based label. 

The reported unsupervised classification approach, using a combination of 

extracted spatial features—which have been utilized in multiple image classification 

studies microscopically [290] and macroscopically [291,292]—and temporal features from 

DCE-FI fluorescence images, demonstrated the ability to reliably stratify ROIs into three 

perfusion levels: “appearing normal”, “appearing suspicious” (further attention warranted) 

and “appearing compromised” (debridement recommended to completely remove the 

devitalized bone), and produce outlines that are comparable to segmentation boundaries 

performed by an experienced surgeon. The classification is fast (accelerated by including 

principal component analysis for dimension reduction), robust and straight-forward 

(simple to train because k-means clustering classification is used which need fewer data 

and no input labels), and can be applied with commercially available intraoperative 

imaging systems without any additional hardware. This first translational bone perfusion 

classification approach, applied to a highly unique patient dataset, can be readily deployed 

in other centers and has significant clinical potential not only in lower-limb amputation but 

in a wide variety of orthopaedic trauma settings.  

 

6.2. Methods and Materials 

6.2.1. Patient Study  
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The patient study was approved by the Institutional Review Board of the 

Dartmouth-Hitchcock Medical Center and listed on ClinicalTrials.gov as NCT04250558. 

Informed consent was obtained from twelve participants with confirmed below knee 

amputation (BKA) and/or their legal guardians. Imaging occurred between January 2020 

and March 2022. Information about these participants is listed in Table 6.1. In six subjects 

(50%), the foot distal to the site of amputation was removed prior to imaging. All methods 

were performed in accordance with the relevant guidelines and regulations. Before the 

definitive lower leg osteotomy, the limb to be amputated was manipulated to create three 

conditions, designed to mimic low energy and high energy fracture, and time series of 

fluorescence images were acquired in each condition: (1) baseline; (2) osteotomy (bone cut 

15cm from the medial malleolus to disrupt endosteal blood flow, similar to a simple low 

energy fracture); (3) osteotomy and debridement (extensive soft tissue stripping proximal 

and distal to the osteotomy to disrupt both endosteal and periosteal blood flow, similar to 

a higher energy fracture). These manipulations did not add appreciably to the duration of 

surgery.  

Table 6.1: Patient information. BKA – below knee amputation. Patients 1-9 were used for 

machine cross-validation, and Patients 10*-12* were used to evaluate generalizability 

Patient ID Age Gender Pre-operation diagnosis 
Foot removed 

prior to imaging 

1 53 Male Amputation: left BKA No 

2 62 Male Amputation: right BKA Yes 

3 66 Male Amputation: left BKA Yes 

4 40 Male Amputation: right BKA No 

5 33 Female Amputation: left BKA No 

6 51 Male Amputation: right BKA No 

7 53 Female Amputation: right BKA Yes 

8 73 Male Amputation: right BKA Yes 

9 51 Male Amputation: right BKA Yes 

10* 27 Male Amputation: right BKA Yes 

11* 62 Male Amputation: right BKA No 

12* 52 Female Amputation: right BKA No 
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6.2.2. Image acquisition by DCE-FI 

For 20 seconds before and for 4 minutes after 0.1 mg/kg intravenous injection of 

ICG, fluorescence images of surgical areas were recorded using SPY Elite imaging system 

(Stryker Corp., Kalamazoo, MI, USA) equipped with 805 ± 10 nm laser diode for ICG 

excitation and NIR charge-coupled device camera with pre-installed 820-900 nm band pass 

filter (Figure 6.1(a)) for fluorescence detection (Figure 6.1(b)). The working distance was 

approximately 300 mm, and light intensity and integration times were kept constant. 

Additional white light camera connected through the beam splitter was used to capture 

white light photographs (Figure 6.1(c)). Image sequences recorded in DICOM format had 

the following specifications: 1024 frames; frame size – 1024 × 768; frame rate – 4.25 

frames per second; image depth – 8 bits per pixel; field of view – 19 × 14 cm2; lateral 

resolution – 223 µm. 

 

Figure 6.1: Dynamic contrast-enhanced fluorescence imaging. (a) Imaging setup. (b) NIR 

image from NIR camera on the tibia bone after osteotomy at the peak time of fluorescence 

intensity. Scale bars are 3 cm. Top right corner are ICG kinetic curves in the four regions of 

interest shown in (b) - proximal ROI1 (red curve), proximal ROI2 (magenta dashed curve), distal 

ROI3 (yellow dash-dotted curve), and distal ROI4 (white dotted curve). (c) White light image 

from white light camera on the same bone shown in (b). 

 

6.2.3. Training and validating the spatiotemporal classification machine with an 

unsupervised learning approach 
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After acquisition, images were transferred to a local computer and processed using 

the MATLAB (The MathWorks, Natwick, MA) software. The proposed bone perfusion 

classification method is based on spatiotemporal feature extraction and unsupervised 

machine learning, shown schematically step-by-step in Figure 6.2.  

Image normalization and ROI selection (step 1 in Figure 6.2): Images were first 

normalized and then ROIs were selected. For this, raw fluorescence images (step 1 in 

Figure 6.2, left) associated with each ICG injection were converted to relative changes in 

fluorescence (step 1 in Figure 6.2, right) by subtracting the median fluorescence in the 

initial 10 seconds of image recording. Images selected for training are all frames from 

global peak intensity time to 120 seconds after (step 1 in Figure 6.2, top). After that, the 

relevant part of the image corresponding to the tibia bone (red dashed rectangle in step 1 

in Figure 6.2, right) was selected and split into approximately 320-400 ROIs (depending 

on the bone size) of 20 × 20 pixels (black squares in step 1 in Figure 6.2, right, side = 

4.5 mm). The size of ROIs was determined to achieve an optimal balance between the high 

classification performance and the low computational time. Each ROI represented one data 

point in the subsequent analysis, and total number of data points in training dataset is 2.5 

× 106.  

Feature extraction (step 2 in Figure 6.2): After data preprocessing, 21 first and 

second order spatiotemporal features (f1~f21) summarized in Appendix B, Table B.1 were 

extracted from each ROI. They included six intensity-based features, thirteen gray-level 

co-occurrence matrix (GLCM)-based features and two Gamma distribution parameters. 

First-order image intensity features were important to consider because of their dependence 

on distribution of pixel intensities within regions of interest and reflection of local intensity 
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changes. GLCM features provided information on different scale of interest, describing 

how joint probability of paired gray levels of neighboring pixels was distributed along 

specific image directions [209]. Gamma distribution fitting parameters were considered 

among other features because of their excellent sensitivity to local changes in optical 

properties of imaged tissues [293–295], such as tissue effective scatterer number density 

and size [296,297]. Detailed parameters in computing each feature were stated in 

Appendix B. 

Principle component analysis (step 3 in Figure 6.2): Features extracted from each 

fluorescence image in series for three conditions of all training patients created a large 

dataset, which would require long computational time. In order to reduce the number of 

variables while preserving most of the information, we used principle component analysis 

(PCA). PCA reduced the high number of predictor variables by linearly transforming them 

into fewer principle components (PC), at the same time preserving the information (i.e., 

data variance) provided by the features without significant loss, while consolidating 

redundant information across variables into a more manageable number of features 

[235,298]. Top principle components with cumulative percentage of explained variance 

larger than 85% were retained, yielding three PCs (PC1~PC3), in order to prioritize 

computational speed while still maintaining sufficient proportion of data variance. Linear 

transformation coefficients (i.e., PC coefficients) of each feature-PC pair were recorded 

and plotted on axes of three PCs (step 3 in Figure 6.2). The values in three PCs (PC scores) 

of each ROI were defined as a new n × 3 data matrix Y for the next step of machine learning 

classification. 
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K-means clustering (step 4 in Figure 6.2): K-means clustering algorithm was 

applied to the data Y to separate it into three clusters to obtain a reasonable and clinically 

meaningful level of stratification in bone status (normal, suspicious, and compromised). 

Each PC was weighted by its importance (i.e., square root of variance explained) for scaling 

the axes. Every data point from the testing set was allocated to the one cluster which 

corresponds to shortest Euclidean distance from the cluster centroid (black crosses in step 

4 in Figure 6.2) to that data point. Each PC value of the centroid was defined by taking the 

average values on the corresponding PC values over the data points within the cluster. Then 

algorithmically generated labels were generated as: Among three clusters, by comparing 

the ranges of feature values and referring to their physical interpretations, the relationship 

between clusters (Cluster 1, Cluster 2 and Cluster 3) and perfusion levels (normal, 

suspicious and compromised) was established.  

Feature statistical significance evaluation and ranking (step 5 in Figure 6.2): After 

all ROIs were partitioned into three clusters, each feature’s input into each cluster was 

analyzed statistically using the one-way three-group ANOVA test. Features with P-value 

< 0.05 were considered statistically significant and selected. Features were then ranked 

based on the absolute values of their respective PC coefficients for the first principal 

component (denoted by PC1coeff): Features with absolute PC1coeff > 0.3 were considered to 

have high rank, with absolute 0.1 < PC1coeff < 0.3 were considered as middle ranks, and 

those with absolute PC1coeff < 0.1 were considered low rank. Significantly contributing 

features (features contributing most significantly to the components) were also selected by 

their respective PC coefficients for the three PCs (absolute PC1coeff or PC2coeff or PC3coeff 

> 0.1).  
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Figure 6.2: Workflow of bone perfusion classification. Step 1: Image normalization and ROI 

selection. Left: Representative raw image at peak fluorescence time from patient No.3 under 

osteotomy conditions. Top: Images selected for training are all frames from global peak intensity 

time to 120 seconds after. Right: Normalized fluorescence image from the same patient. In order 

to compensate for possible residual fluorescent signal from previous injections, median 

fluorescence of the first 10 seconds were subtracted from all images. The region of the tibia bone 

(red dashed rectangle) was split into 20 × 20-pixel ROIs (black squares). Scale bars are 3 cm. 

Step 2: Feature extraction. Twenty-one extracted features were listed. Step 3: PCA. PC 

coefficients of 21 texture features (f1 to f21) were plotted. Bottom is color-coded table of PC 

coefficients showing three categories of features separately. Step 4: K-means clustering. K-means 

clustering partition training data points into three clusters. Each data point (green, yellow or red 

dot) represents the corresponding PC scores, weighted by the square root of total variance PCs 

explained and assigned to a given cluster closest to the corresponding centroid (black crosses). 

Step 5: Feature statistical significance evaluation and ranking. Step 6: Classifier evaluation. 

Predictive traffic-light map by k-means classifier (right) were compared with FI thresholding 

map (left). Normal-green, Suspicious-yellow, Compromised-red. Labels are ground truth by 

surgeon’s delineation of bone perfusion status. N-normal, S-suspicious, C-compromised. Step 7: 

Evaluating the generalizability of the method on unseen patients (Patients 10-12). 

 

Classifier evaluation using leave p out cross validation (step 6 in Figure 6.2): In 

order to evaluate the performance of the k-means classifier, the resulting predictive maps 

produced on testing data (step 6 in Figure 6.2, right) were compared to benchmark 

classification method (step 6 in Figure 6.2, left). The ‘ground truth’ labels were defined 

by an experienced orthopedic surgeon according to clinical signs. In this case, the leave-p-

out cross-validation (p = 2 and n = 9) was used in order to keep the training data and testing 

data separate from different patients in each iteration. The machine performance across all 

patients—and representing 3.5 million ROIs— was evaluated in 36 validation rounds so 

that all possible combinations of training (n = 7) and testing (n = 2) data were covered: 

First, 3 × 3 confusion matrices (Figure 6.3(a)) from two classifiers were computed by 

comparison to ROI labels from ground truth map. Then, classification performance was 

evaluated by comparison of a pre-determined set of metrics (Figure 6.3(b)) including four 

penalty terms, computed from the confusion matrices: (i) accuracy, (ii) sensitivity, (iii) 

specificity, and (iv) cost functions consisted of F1-scores and surgeon’s burden (SB). Each 
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of them reflects one type of clinical cost, respectively: (i) overall error rate, (ii) the penalty 

associated with inappropriate tissue sparing leading to potential infection, (iii) unnecessary 

tissue removal resulting in larger deficit and increased recovery time, and (iv) F1-scores: 

harmonic means of detection precision and sensitivity; SB: inappropriately assigning pixels 

to ‘suspicious’ when they are ‘normal’ and ‘compromised’, resulting in a greater-than-

needed burden to the surgeon’s attention.  
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Figure 6.3: Classification metrics and benchmark classification method. (a) Confusion matrix 

for classifier evaluation and testing. N-normal, S-suspicious, C-compromised; (b) Pre-determined 

metrics. SEN(N)-sensitivity to normal class, SEN(S)-sensitivity to suspicious class, SEN(C)-

sensitivity to compromised class, SPE(N)-specificity to normal class, SPE(S)-specificity to 

suspicious class, SPE(C)-specificity to compromised class, F1(N)-F1 score for normal class, 



126 
 

F1(C)-F1 score for compromised class, SB-Surgeon’s burden that examines the ratio of 

incorrectly predicted as suspicious class over the actual suspicious class; (c) Results of three cost 

functions from all the combinations of two thresholds. Top left: 1 - F1(N), Top right: 1 - F1(C), 

Bottom right: SB. (d) Results of total cost functions (2 - F1(N) - F1(C) + SB) from all 

combinations of two thresholds. The optimal threshold combination that yields lowest total value 

was found to be T1 = 0.29, T2 = 0.32, indicated by the red X; (e) FI thresholding classifier. 

Histogram of normalized FI from three bone perfusion levels of training set is showed with 

optimal thresholds indicated by black dashed lines. Predicted classes and actual classes are 

indicated by diagonal faces and solid faces, respectively. 

 

The benchmark classification method used fluorescence intensity thresholds 

applied to images of fluorescence intensity acquired at the peak intensity—the typical 

approach used in fluorescence guided surgery. Two FI thresholds approach were 

established, to enable classification into three categories as in the machine learning (ML) 

approach (normal, suspicious, and compromised). It was accomplished by firstly 

normalizing FI of ROIs into [0,1] within each patient, and then searching the optimal FI 

threshold combination (0 < T1 < T2 < 1) that yielded lowest total cost function (2 - F1(N) 

- F1(C) + SB, Figure 6.3(d)). The cost functions were selected to ensure equally high F1-

scores to normal and compromised class as well as low surgeon’s burden (Figure 6.3(c)). 

From all possibilities, the optimal threshold combination was: T1 = 0.29 and T2 = 0.32 

(indicated by red X in Figure 6.3(d)). As a result, the FI thresholding classifier (Figure 

6.3(e)) worked by: Range 0 < FI < 0.29 was predicted as compromised, 0.29 < FI < 0.32 - 

as suspicious, and 0.32 < FI < 1 - as normal. 

Evaluating the generalizability of the classification method on unseen patients (step 

7 in Figure 6.2): Finally, a final evaluation round including three additional unseen 

patients’ data was conducted (Figure 6.4), using the classification parameters (i.e., PC 

coefficients and centroid coordinates) averaged from the top 10% of the cross-validation 

rounds. In this way, the generalization ability of the proposed classifier can be evaluated.  
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Figure 6.4: Flowchart of testing model generalizability. Step 1: Loop through all 36 possible 

training/testing combinations of leave-two-group-our cross-validation. Step 2: Select the top 10% 

rounds. Step 3: Take the average PC coefficients and centroids of selected rounds. Step 4: Apply 

the three unseen patients’ data into the average PC coefficients and centroids.  

 

6.3. Results 

6.3.1. Extracted spatiotemporal features provide additional information beyond 

fluorescence intensity alone  

Fifteen out of total 21 significantly contributing features are shown in the Figure 

6.5, which was acquired during a bone osteotomy condition (Figure 6.5(a)). They 

represent image properties not visible to the naked eye from conventional fluorescence 

images, such as homogeneity, uniformity, linearity, coarseness and dependency, based on 

the spatial distribution and statistics of pixel intensities [209,299]. These properties are 

influenced by the dynamic behavior of fluorescence, which distributes both spatially and 

temporally according to underlying perfusion characteristics. 

In the case of normal perfusion (green box in Figure 6.5(b)), where the vasculature 

is intact and blood flow is efficient, fluorescence intensities are spatially distributed more 

evenly and consistently. Therefore features describing similarities (f1~3, f11, f14~16, f21 

in Figure 6.5(b)) have high values in normal perfusion regions. In contrast, tissue with 

compromised perfusion (red box in Figure 6.5(b)), having damaged vasculature and 
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disrupted blood flow, exhibits a markedly different distribution of fluorescence intensity 

which is lower in value and temporally delayed and disorganized. So features describing 

differences (f7, f12, f17~19 in Figure 6.5(b)) have high values in compromised regions. 

In summary, extracted spatiotemporal features allow for quantification of these differences, 

containing more information than fluorescence images alone. 

 

6.3.2. K-means classification is fast and reproducible, resulting in boundaries that are 

physiologically meaningful 

Principle component analysis resulted in a 56% reduction in computational time, 

by the way of reducing the dataset size by 7-fold while keeping 88.2% of the data 

information, compared to scenario without PCA. Considering each PC as a linear 

transformation of extracted features, before linear transformation (Figure 6.6(b)), 21 

spatiotemporal features display patterns that can differentiate the three clusters, where 

features with higher ranking show clearer patterns. While after linear transformation 

(Figure 6.6(a)), 3 PCs display patterns that can partition the three clusters as well. The first 

three PCs (total variance explained: 46.1%, 32.9%, 9.2%, respectively, Figure 6.6(a), 

bottom) represented most of the information of the training dataset. Therefore, using 3 PCs 

instead of 21 spatiotemporal features as classification predictors can significantly speed up 

the method, while meantime reserve most of the data information. As a result, k-means 

classification predictions can be provided to the surgeon in less than 5 minutes (1~2 min 

to global peak intensity plus 2~3 min image processing and classification). 
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Figure 6.5: Feature parametric maps. Colored boxes are regions with labels from ground truth 

map: Green box-normal, yellow box-suspicious, red box-compromised. (a) White light (left) and 

ICG fluorescence (right) images of bone in the osteotomy condition. Right site of the bone is 

proximal and left is distal. (b) Color-scaled parametric maps of 15 significantly contributing 

features, extracted from the ICG fluorescence image shown in (a). Scale bars are 3 cm. 

 

   By K-means clustering, all training dataset ROIs (represented by weighted PC 

scores) were partitioned into three clusters, each assigned to the closest centroid. This 

classification method is simple because no input labels are required, while each cluster can 

be straightforwardly explained as corresponding to perfusion level by referring to its PC 

scores and feature ranges: Cluster 1 (green in Figure 6.6, left column) has the lowest PC1 

scores (Figure 6.6(a)) thus having the lowest average values of high-ranked features 

((Figure 6.6(b), left bracket); Cluster 2 (yellow in Figure 6.6, left column) has the highest 

PC2 scores (Figure 6.6(a)) and, hence, the highest average values in middle-ranked 

features (Figure 6.6(b), middle bracket); Cluster 3 (red in Figure 6.6, left column) 
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comprises high PC1 scores and low PC2 scores (Figure 6.6(a)), thus having lowest average 

values in low-ranked features (Figure 6.6(b), right bracket). High-ranked features are 

mostly related to spatial variation, middle-ranked features to spatial uniformity, and low-

ranked features are a mix of both variation and uniformity. As normally perfused bones 

have low spatial variation and bones with compromised perfusion have low spatial 

uniformity, the clusters were tagged with perfusion levels as followed: Cluster 1 represents 

normal perfusion, Cluster 2 - suspicious perfusion, and Cluster 3 - compromised perfusion.  

 

Figure 6.6: Heatmap of principle components and ranked features. (a) Heat map of the first 

three principle components (PC1-PC3) rescaled to [0,1] range and partitioned into three clusters 

(labeled with green, yellow and red on the left). PC values of each data point are represented by 

its weighted scores on PC axes. The percentage of total variance explained by each PC is shown 

in the bar graph at the bottom. (b) Heat map of extracted texture features rescaled to [0,1] range 

and arranged in the descending ranking order in reference to the absolute value of PC1coeff (see 

color bar at the bottom). Three clusters visualize feature patterns, being most prominent at the 

higher-ranked region and hardly distinguishable at the lower-ranked region. 

 

6.3.3. Spatiotemporal k-means classification outperformed the fluorescence intensity-only 

benchmark 

At every cross-validation round, K-means clustering-based bone perfusion 

classification was tested on ROIs from two patients completely unseen in the training 
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cohort. Figure 6.7(a) showed an example testing round of round 1, where the classifier 

was trained by ROIs from patient 1~7, and tested by ROIs from the baseline and osteotomy 

cases of patients 8 and 9 (Figure 6.7(a), column 1). The resulted four perfusion 

classification maps (Figure 6.7(a), column 4) were compared to three-level FI-

thresholding classification maps (Figure 6.7(a), column 3), with ground truth maps 

(Figure 6.7(a), column 2) to be three-level clinical signs-based delineations by an 

experienced orthopaedic surgeon. FI thresholding classifier appears to be extremely 

sensitive to fluorescence intensity variations caused by systematic and environmental 

settings, thus prone to visually distinguishable errors (compared to ground truth) in bone 

perfusion classification. In contrast, K-means clustering classifier predicts bone perfusion 

levels more accurately, regardless of fluorescence intensity variations.  

Quantitative comparison using pre-determined set of metrics (Figure 6.3(b)) 

further demonstrates differences in performance. Figure 6.7(b) compared these metrics, 

averaged over all cross-validation rounds (all results from two classifiers were statistically 

different): K-means clustering consistently reported high overall accuracy (0.72 ± 0.10), 

high sensitivity of all classes (normal = 0.88 ± 0.15, suspicious = 0.63 ± 0.22, compromised 

= 0.62 ± 0.22), high specificity of two classes (normal = 0.88 ± 0.08, compromised = 0.87 

± 0.09), and high F1-scores (normal = 0.82 ± 0.14, compromised = 0.55 ± 0.17); In 

comparison, the FI thresholding classifier had lower overall accuracy (0.37 ± 0.07), lower 

sensitivity of all classes (normal = 0.74 ± 0.18, suspicious = 0.09 ± 0.06, compromised = 

0.44 ± 0.12), lower specificity of two classes (normal = 0.44 ± 0.19, compromised = 0.73 

± 0.16), and lower F1-scores (normal = 0.53 ± 0.08, compromised = 0.32 ± 0.09). Despite 

the fact that K-means clustering demonstrated slightly lower metrics than FI thresholding 
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classifier in specificity to suspicious pixels (k-means = 0.81 ± 0.12 VS FI = 0.90 ± 0.05) 

and surgeon’s burden (k-means = 1 - 0.82 ± 0.10 VS FI = 1 - 0.88 ± 0.07), K-means had 

overall much superior performance because its generality and its absence of bias, which is 

very important clinically. On the other hand, FI thresholding classifier exhibited high bias 

against the suspicious class. 

 

Figure 6.7: Cross-validation results. (a) Cross-validation round 1. Comparison of tibia bone 

perfusion maps for patients 8 and 9 before and after osteotomy. Column 1: Normalized 

fluorescence image at peak intensity time; Column 2: Ground truth maps delineated by 

experienced surgeon: green are outlines the bone region with normal perfusion, yellow – 

suspicious region, red - compromised region; Column 3: Perfusion map predicted by FI 

thresholding classifier; Column 4: Perfusion map predicted by K-means clustering classifier. 

Scale bars are 3 cm. (b) Averaged accuracy, sensitivity, specificity and 1-cost functions over all 

cross-validation rounds of K-means clustering-based and FI thresholding classification. Each 

round was tested on approximately 1 × 106 pixel-to-pixel ROIs. Error bars = mean ± standard 
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deviation of 36 rounds. All results from two classifiers are statistically different with p-values < 

0.001. 

 

6.3.4. The trained classification machine exhibited generalizability when applied to a 

blind set of newly collected surgical datasets 

To confirm the generalizability of the classification machine when applied to new 

imaging data representing a ‘blind set’ that model had not seen. This was done to rule out 

overfitting, also referred to as “developing to the test set” during the initial model 

evaluation and selection. The classification model defined in the first nine patients, and 

evaluated using cross-validation, was tested on a blind set of nine image series acquired in 

three additional patients. Finalized centroids defining the classification model were 

determined to be: centroid of normal = (-1.378, -0.167, 0.014), centroid of suspicious = 

(0.175, 0.472, -0.014), and centroid of compromised = (0.718, -0.449, 0.007). In the 

additional ‘blind set’ patients, label predictions using the k-means clustering model defined 

by these centroids was able to reliably classify the ROIs into “normal”, “suspicious” and 

“compromised” categories that were consistent with their clinical conditions (Figure 6.8): 

As the manipulation of blood flow became more severe, the predicted categories changed 

to more severe conditions, demonstrating good generalizability. Note that, for half of the 

patients who received a removal of the distal foot before baseline imaging, it is not expected 

that baseline will be completely “normal”.  
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Figure 6.8: Evaluating classification generalizability on an additional unseen patient 

(Patient 10). Left: Baseline, Center: Osteotomy, Right: Osteotomy+Debridement. Row 1: 

Fluorescent images, Row 2: Perfusion predictive map. Green-normal perfusion, yellow-

suspicious perfusion, red-compromised perfusion. Scale bars are 3 cm. 

 

6.4. Discussion 

Contrast-enhanced fluorescence imaging is being deployed across surgical 

specialties, including surgical oncology [300], gastrointestinal surgery [301] and plastic 

surgery [302], but only recently have there been attempts to use quantitative methods to 

guide orthopaedic surgery [19,21,128,303]. Kinetic analysis requires continuous 

fluorescence imaging and advanced mathematical computation which is not available in 

the software of current commercial imaging units. For this reason, the most common 

implementation of ICG imaging is to simply use the maximum or single time-point 

intensity image to assess perfusion [304]. Another reason why explicit kinetic models may 

be challenging in all but a handful of well-defined pathologies, is the common scenario 

where regions of tissue are supplied by multiple vascular inputs and where a variety of 

disease processes may act together to produce competing effects. For these reasons, it is 

useful to explore alternative approaches to both simple parameters and explicit kinetic 
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models. To this end, we leverage texture-based and kinetic-driven features as part of a 

machine learning classification. The exact kinetic mechanisms of the underlying 

pathophysiology need not be known, so long as the spatiotemporal behavior in diseased or 

compromised tissue is distinct from normal tissue. In this paper, we deploy unsupervised 

K-means clustering of principle components reduced from twenty-one spatiotemporal 

features, and report its performance as a classifier of bone viability, but also regard this 

approach as paradigmatic of a class of approaches that could be brought to bear on this 

problem-space.  

The proposed approach is simple, fast, works well intraoperatively with high 

generalizability, and can be easily translated to the clinic: No input labels are required, and 

features are a subset of well-defined radiomic features [210,305], thus this approach is 

easy-to-use and easy-to-interpret; This approach relies on first-pass wash-in and early 

wash-out process, as opposed to kinetic modelling methods that require longer imaging to 

capture wash-out [19,21]—an important consideration for intraoperative use. Additionally, 

the computational speed has been accelerated by PCA-based feature dimensional 

reduction, resulting in a rapid and timely read-out which could be used to guide surgeon 

decision-making. Compared to classification by fluorescence-intensity alone (i.e., a single 

continuous variable), with optimal thresholds that are fast but less accurate, K-means 

clustering shows superior performance in all important benchmarks. It has high sensitivity 

to bone across all perfusion levels, while FI thresholding has very low sensitivity to low-

to-moderately perfused bones. Likewise, the specificity of K-means clustering is 

consistently high across perfusion levels, while FI thresholding has high specificity to only 

moderately perfused bones. More importantly, K-means clustering increases the surgeon’s 
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burden (number of pixels labeled ‘suspicious’ which must be examined closely by the 

surgeon) only modestly and without bias while FI thresholding classifier demonstrates high 

bias against middle level bones. Moreover, when centroids defined by the first 9 patients 

were used to classify a ‘blind set’ of 9 image series from 3 additional patients, the 

performance was reproducible showing strong generalizability to future cases of real-world 

data. Cross-validation using testing patients excluded from training also proves the high 

generalization ability of this approach (Table 6.2). Utilizing the clinically well-used SPY 

Elite imaging system further increases the possibility of clinical translation, and since the 

classification is performed independent program of the imaging system, has no effect on 

the imaging performance or workflow. Taking all the above metrics into account, the 

unsupervised model has the potential to enhance the identification and removal of 

devitalized bone during debridement surgery, which could reduce ongoing infection, 

minimize unnecessary tissue removal and subsequent deficit, and reduce cognitive burden 

on the surgeon.  

Table 6.2: Summary of validation procedures. 

Validation 

Approach 

Patient 

IDs 

No. of 

injections 

No. of 

Training 

ROIs 

No. of 

Testing 

ROIs 

Result 

Leave p out 

Cross-

Validation 

01-09 27 2.5 × 106 1 × 106 

Accuracy of 72%, 

Sensitivity of 62-88%, 

and Specificity of 87-

88% 

Blind 

Validation 
10-12 9 n/a 8 × 105 

Generalizability and 

Stability confirmed. 

 

There are a few limitations, however, that are important to mention. First, while 

this is the largest ICG imaging study of amputation patients to date, with twelve patients 

undergoing imaging during three conditions each (containing 3.5 × 106 ROIs from 27 time-
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series of 1020 images), from machine learning perspective, the data from each pixel is not 

perfectly independent. Nevertheless, this study focused mainly on 1) a novel framework to 

combining spatial and temporal features of DCE-FI to classify bone viability and 2) 

showing its generalizability in a very unique human clinical dataset. Evaluation of this 

approach in a larger and more independent dataset is forthcoming.  

Second, the feature-set and size of the dataset only supported the stratification of 

bone state into three perfusion levels, resulting in some ambiguity in diagnostic 

classification. This could be especially important when applying the approach to less 

controlled scenarios, such as infected fractures and repeat debridement, where bone is 

already tampered with. In these cases, patient group specific models will need to be 

defined, or additional sources of information obtained (i.e., fluorophores that target 

infection and/or new bone modeling).  

Third, there is unfortunately no gold standard for determining whether the tissue in 

these patients is actually compromised, since no such clinical technique is available (the 

motivation for this work); ground truth was provided by subjective evaluation of an 

experienced surgeon. Given that this subjective approach is known to be deficient, the 

assessed accuracy is confounded by any human error in region identification (i.e., the 

model could correctly predict the classification while the human ‘ground truth’ could be 

wrong).  

Finally, the features selected for this study emphasized the spatial variations over 

the temporal ones, and a more exhaustive evaluation of temporal dynamics is warranted. 

However, it was beyond the scope of this initial report, and we selected the variation from 
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global peak intensity to 120 seconds post-peak, because this time window is believed to be 

the best representation of the whole fluorescent video.  

Future work will incorporate model-independent parameterization of kinetic 

information using deconvolution and statistical moments, as additional features. 

Furthermore, since data was analyzed off-line in this observational clinical study, we 

focused on development of the analytic pipeline without concern for computational time. 

However, to provide on-line intraoperative predictions, we will port the in-house developed 

code to python and utilize the well-established optimization methods available for image 

processing, feature extraction, PCA and classification to greatly improve computational 

speed. We conservatively estimate a reduction in computational time to under 1 minute, 

which can be tolerated by the constraints of surgical workflow. 

 

6.5. Conclusions 

This chapter demonstrates a model-independent approach to classification of bone 

into normal, suspicious, and compromised states; it is trained on 27 image series acquired 

in nine amputation procedures, and evaluated with cross-validation as well as on imaging 

data acquired from three additional patients. The amputation procedure offers a unique 

opportunity to image baseline and two manipulated conditions in a carefully controlled 

manner in humans, to build a classification machine. This unsupervised approach can 

reduce the artificial error, accelerate the training process, and appeal to larger group of non-

expert users. However, future work will apply this approach to other types of surgical 

procedures with larger patient datasets, will consider additional temporal features such as 

empirical kinetic-related parameters, and improve the classification precision in further 
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investigation of the utility of k-means clustering algorithm as a decision-making tool for 

bone debridement. 

In this chapter, the usage of DCE-FI texture analysis has been evaluated in bone 

injury classification. The spatial and temporal features have demonstrated high accuracy 

and sensitivity in classifying bone ROIs according their perfusion levels. This study 

examined our central hypothesis of this thesis that DCE-FI can provide features highly 

correlated to perfusion in real patient data. Therefore, future work can utilize this property 

of DCE-FI and apply to more complex clinical problems.  
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Chapter 7  

Risk prediction on orthopaedic trauma patients for fracture-associated 

infection using DCE-FI   

This chapter describes the work from “Risk prediction on orthopaedic trauma 

patients for fracture-associated infection using dynamic contrast enhanced-fluorescence 

imaging” by Han X, Bateman LM, Werth PM, Jiang S, Gitajn IL, and Elliott JT, in press 

in Proc. SPIE, Molecular-Guided Surgery: Molecules, Devices, and Applications IX in 

2023. Jonathan T. Elliott supervised the project, provided intellectual inputs and reviewed 

the manuscript. I. Leah Gitajn and Shudong Jiang provided intellectual inputs and reviewed 

the manuscript. Paul M. Werth offered suggestions on statistical analysis and machine 

learning. Logan M. Bateman assisted with data collection. The author of this thesis 

designed the study, analyzed the patient data and images, wrote analytic software, and 

wrote the manuscript. This chapter has meet relevant copyright permission requirements. 

In this chapter, a post-trauma infection risk prediction method has been developed 

and evaluated in orthopaedic trauma patients. Based on a previous fracture-associated 

infection risk score system, we added image-based features and kinetic features using 

dynamic contrast-enhanced fluorescence imaging (DCE-FI). In this way, we can not only 

predict the probability of the presence of infection, but also provide a color-coded 

predictive map that can visualize the boundaries among multiple levels of infection risks.  
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7.1. Introduction 

Surgical site infection (SSI) following fracture and soft tissue repair can have 

devastating consequences, making SSI is one of the most challenging postoperative 

complications in orthopaedic trauma, and represents 15.6% of total postoperative 

complications in the field of orthopaedic surgery [4]. The cause of SSI is multifactorial, 

resulting from residual foreign bodies, injured and inflamed bone/tissue resulting from the 

mechanism of trauma, as well as incomplete primary surgical debridement that did not 

completely remove devitalized tissue. Treatment failure in the context of SSI results in 

increased morbidity, loss of function and even amputation [6]. Thorough debridement is 

considered critical in the management of SSIs, and it is the primary step before the 

definitive fixation for mechanical stability. However, thorough debridement is challenging 

because it is often difficult to determine the location and extent with which tissue should 

be debrided, using current clinical tools [10–13]. 

To guide surgical debridement and reduce the incidence of SSI, a functional 

intraoperative imaging system capable of visualizing the amount and location of infected 

tissue is needed. Dynamic contrast enhanced (DCE) imaging is an intraoperative imaging 

technique that can provide quantitative information [19,21,128], it works by analyzing the 

temporal intensity changes of injected contrast agent, so qualitative information of the 

location as well as quantitative information can be extracted. Compared to other imaging 

modalities, DCE-FI is safer by not using ionizing radiation, and is versatile by updating 

images in real-time [112]. DCE-FI with contrast agent of indocyanine green (ICG) have 

been developed recently by preclinical studies [19,21,97,261–263] to assess bone perfusion 
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while providing guidance for surgical debridement. The application of DCE-FI will 

achieve a more controllable SSI treatment and a better patient outcome. 

The problem of infection prediction is an appropriate application for machine 

learning classification, with many aspects that make it well-suited. Infection predictive 

factors in this study are multidimensional, and include a number of imaging spatial 

features, kinetic features and informatic features. First, with regards to spatial features (also 

called ‘imaging features’ in radiomics), several recent studies on orthopaedic surgery have 

applied texture-based machine learning classification, including for bone age detection 

[240], osteoporosis detection [216], bone disorder classification [215] and fracture risk 

prediction [219]. Second, with respect to kinetic features extracted from tracer kinetic 

theory of fluorophore temporal curves, the predictive values of these features have been 

demonstrated by several pre-clinical studies [14,15,37] Third, informatic features include 

demographics, comorbidities, clinical and laboratory test results, and based on work done 

by the Shock Trauma team, a postoperative infection risk score model [18] showed good 

prediction on infection risks. Current applications using informatic features as predictive 

tools are mainly in periprosthetic joint infection prediction [241]. 

In this study, we developed a multidimensional, multilevel infection prediction 

model for orthopaedic trauma patients. Predictive features include non-parametric 

temporal variables and spatial texture variables extracted from DCE-FI images, and 

patient’s risk of developing infection using the established metric. These features were 

evaluated for their ability to predict the composite outcome score, and have shown good 

predictive ability. This proposed post-traumatic infection predicting model has great 
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potential for clinical translation and will benefit both surgeons and patients by shortening 

surgery time and improving the postoperative outcomes. 

 

7.2. Methods and Materials 

7.2.1. Clinical investigation 

This study (Figure 7.1) is approved by the Institutional Review Board of the 

Dartmouth-Hitchcock Medical Center (DHMC) and listed on ClinicalTrials.gov as 

NCT04403204. In this study, twenty-four participants undergoing open-fracture surgery 

with various levels of extremity trauma are included in this study. Eligible participants are 

selected as 18 years of age or older who present to DHMC and scheduled for an open-

fracture surgery. Iodine allergy and pregnant or breastfeeding woman have been excluded 

from this study. Recruitment, exposure, and data collection periods of participants were 

January 2020 to August 2022, and the participants have one follow-up visit after 12 

months. 25% participants have SSI confirmed by follow-up visits. Informed consent was 

obtained from the participants and/or their legal guardians. All methods were performed in 

accordance with the relevant guidelines and regulations. 0.1 mg/kg intravenous injection 

of ICG was injected intravenously. For 20 seconds before and for 4 minutes after the 

injection, fluorescence images of surgical areas were recorded using SPY Elite imaging 

system (Stryker Corp., Kalamazoo, MI, USA) equipped with 805 ± 10 nm laser diode for 

ICG excitation and NIR charge-coupled device camera with 820 – 900 nm band pass filter. 
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Figure 7.1: Pipeline of the study. 

 

7.2.2. Image processing 

Recorded images were processed using our own in-house developed MATLAB 

(R2022a, MathWorks, MA, USA) program. 400-800 square regions-of-interest (ROIs) of 

side 1 mm, located side-by-side, were selected from time series images of each participant. 

ROIs which are not within the region of bone were deleted, and one ROI was regarded as 

one data point. 

 

7.2.3. Machine learning and statistical analysis 

Predictive features were extracted from each ROI, including tracer kinetic 

parameters which we have previously evaluated in a controlled perturbation study [19] (f1-

f8: Time-to-peak (TTP), Maximum intensity (Imax), Ingress slope (IS), Egress slope (ES), 

Area-under-curve (Iauc), Intensity at global peak (Ip), Intensity at 60 s following global 

peak (I60) and Intensity at 120 s following global peak (I120)), spatial texture parameters 

(f9-f12: Contrast, Entropy, Correlation and Homogeneity) [20], and f13: SSI risk score 
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(SSI) [18]. A composite outcome label (infection potential low/mid/high) was assigned to 

each ROI. The composite outcome label was based on variables of (1) the pixel-level 

surgeon annotation of most- and least-damaged tissue, and (2) infection status after 12-

month post-surgery. The composite outcome score system has combined pixel-level 

identification by the surgeon with patient-level infection outcome, allows for pixel-level 

predictions. Machine learning classification was done by logistic regression classifier 

(sklearn package, Python 3.9, hyperparameters are: solver = ”lbfgs”, c = 1, penalty = 

”l2”). Leave-p-groups-out cross-validation (p = 3. At each round, select 21 patients’ data 

for training and 3 patients’ data for testing) was used for evaluating the accuracy and 

sensitivities.  

Features were evaluated for their ability, either independently or in combination, to 

predict a composite outcome score. Firstly, one-way ANOVA statistical analysis on 

individual features was performed to test the power of extracted features, with significant 

level of 5%. Secondly, Pearson correlation coefficient matrix of each feature pairs was 

computed on the normalized feature values to range 0~1. Thirdly, features were ranked 

according to how many times in total (min = 0, max = 3) they were selected as the top-five 

features, by any of the following three methods: Pearson correlation coefficient to labels, 

chi-square tests, and recursive feature elimination. 

 

7.3. Results 

7.3.1. Features distribute differently among different potentials of infection 

According to feature ranking (Table 7.1), the top five ranked features are f13: SSI, 

f2: Imax, f1: TTP, f5: Iauc, and f11: Correlation (Figure 7.2), which have been selected 
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3/3/2/2/2 times, respectively. All these features distribute differently among different 

infection potentials. In detail, f13: SSI ranges have increased with increasing potentials, 

and have significant differences among low versus mid and high; others ranges have 

decreased with increasing potentials, and have significant differences among low and mid 

versus high. As a result, these extracted features can be used as predictive variables for 

infection potentials. 

Table 7.1: Feature ranking. TRUE means the feature was selected by the method, and FALSE 

means not selected. 

Feature 

Pearson 

Correlation 

Coefficient 

Chi-

square 

Tests 

Recursive 

Feature 

Elimination 

Total 

Times 

Selected 

Ranking 

f13: SSI TRUE TRUE TRUE 3 1 

f2: Imax TRUE TRUE TRUE 3 2 

f1: TTP TRUE TRUE FALSE 2 3 

f5: Iauc FALSE TRUE TRUE 2 4 

f11: 

Correlation 
TRUE TRUE FALSE 2 5 

f3: IS FALSE FALSE TRUE 1 6 

f8: I120 FALSE FALSE TRUE 1 7 

f12: 

Homogeneity 
TRUE FALSE FALSE 1 8 

f6: Ip FALSE FALSE FALSE 0 9 

f7: I60 FALSE FALSE FALSE 0 10 

f10: Entropy FALSE FALSE FALSE 0 11 

f4: ES FALSE FALSE FALSE 0 12 

f9: Contrast FALSE FALSE FALSE 0 13 
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Figure 7.2: Boxplots of top-five ranked features. Box colors represent the infection potentials: 

Green = low potential, Yellow = mid potential, and Red = high potential. * P-values < 0.05. 

 

7.3.2. Features showed spatial clustering in different potentials of infection  

In addition to distribution, features also showed spatial patterns of clustering when 

the feature heatmap was plotted (Figure 7.3). In this heatmap, each row represents a feature 

and rows are sorted in order of increasing rank correlation to the Low/Mid/High label, from 

negative to positive correlation. For example, correlation showed a stronger negative 

correlation with low correlation being associated with the ‘high’ classification label, and 

high correlation being associated with the ‘low’ label. The higher a feature correlated to 

given labels, the clearer the clustering is. For example, f13: SSI at the first row showed a 

clear two-cluster pattern: low versus mid and high; Features in the second to 9th rows 

showed also a two-cluster pattern: mid versus high. Therefore, when combined all the 

features together in prediction, then three-level infection potentials: low versus mid versus 

high can be well-separated.  
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Figure 7.3: Feature z-score heatmap. First row is the f13: SSI risk score, which can be 

calculated prior to surgery from patient specific variables. Subsequent rows are imaging features, 

sorted according to spearman rank coefficient with the final row, the three clusters of given 

labels. Each column represents a single region-of-interest from the 24 patients, and colored 

according to normalized z-score for comparison across features and patients. 

 

7.3.3. Machine learning classification has high performance in predicting infection 

potentials 

By using leave-three-group-out cross-validation, the machine learning classifier 

yielded an average accuracy of 0.86, sensitivity of low potential of 0.98, mid potential of 

0.77, and high potential of 0.51 (Table 7.2). These scores demonstrated the high 

performance this classifier has on classifying infection potentials in three-level (Figure 

7.4). 

Table 7.2: Cross-validation results at each round. Sensitivity of mid and high potentials are 

missing at some rounds, because the testing patients in such rounds contain only low potential 

ROIs. 

#Round 

Training 

patient 

IDs 

Testing 

patient 

IDs 

Accuracy 
Sensitivity 

(low) 

Sensitivity 

(mid) 

Sensitivity 

(high) 

1 4~24 1, 2, 3 0.89 1 0.74 0.42 
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2 1~3, 7~24 4, 5, 6 1 1 / / 

3 
1~6, 

10~24 
7, 8, 9 0.71 1 0.73 0.57 

4 
1~9, 

13~24 

10, 11, 

12 
0.71 0.79 0.79 0.50 

5 
1~12, 

16~24 

13, 14, 

15 
0.83 0.99 0.83 0.49 

6 
1~15, 

19~24 

16, 17, 

18 
1 1 / / 

7 
1~18, 

22~24 

19, 20, 

21 
0.96 0.96 / / 

8 1~21 
22, 23, 

24 
1 1 / / 

 

 

Figure 7.4: Predicted infection potentials by machine learning classification. Row 1: A male 

open-fractured lower extremity patient with confirmed infection; Row 2: A male open-fractured 

lower extremity patient with confirmed no infection; Row 3: A male open-fractured lower 

extremity patient with confirmed infection. Column 1: White light image; Column 2: 

Fluorescence image at peak intensity time; Column 3: Ground truth maps delineated by 

experienced surgeon: the solid black lines delineated the regions of bone, and the solid while lines 

delineated the regions of interest. Infection potentials were color-coded as: green - low infection 

potentials, yellow – mid infection potentials, red – high infection potentials; Column 4: Infection 

potential map predicted by machine learning. Scale bars are 3 cm. 

 

7.4. Discussion 
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Predicting the potential of a given region of tissue to develop subsequent infection 

is an important task for orthopaedic surgeons. They must make a timely assessment of 

bone/soft tissue status and then either remove or spare the tissue during debridement. 

Removing too much tissue lengthens the recovery time; removing too little can lead to 

infection and its dire sequelae. This paper presents several key features, obtained from 

dynamic contrast-enhanced fluorescence images, that can indicate the presence, or future 

likelihood, of infection. These factors include imaging features, kinetic features and 

informatic features. These features reveal important clinical information through different 

mechanisms. Imaging and kinetic features can provide information of bone perfusion, 

which is a key indicator of bone viability [14,33,34,36,37]. Informatic features, as a 

previously established infection risk score model [18] indicated, can reflect the possibility 

of getting infection. In this study, a combination of these three feature categories has two 

main advantages in infection prediction. First, the prediction is in tissue-level. Every single 

tissue in bone, visualized as a few pixels in fluorescent image, can be predicted as 

low/mid/high in this study. Therefore, this study can provide a visual guidance for surgeons 

on the tissues that need their attentions. Second, the prediction is in real time. The imaging 

system in this study is intraoperative, and the prediction results can be calculated in 

minutes. As a result, this study opened up possibilities to efficiently predict bone infection 

intraoperatively. 

One of the most promising ways that fluorescence-guided surgery could improve 

outcomes for patients, is in providing guidance to inexperienced surgeons who serve at 

small local hospitals, or are called upon during disaster or war. In fact, the recent war of 

aggression against Ukraine demonstrates the enormous burden placed on all levels of care 
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when attempting to triage and treat orthopaedic trauma—the most common injury in this 

scenario. Here, surgeons who are not used to treating Gustilo Type III fractures would 

benefit from a system that could be deployed to image, and then leverage the predictive 

models trained a priori. Such a tool has the potential to bring up the performance of the 

‘bottom’—those surgeons who are not experienced or accustomed to treating such 

injuries—thus having the largest marginal impact in terms of patient outcome.  

 

7.5. Conclusions 

In conclusion, a multidimensional predictive model has been developed for post-

trauma patient at risk of fracture associated infection. The model is based on spatial and 

temporal variables from DCE-FI images, and patient demographics. This risk predictive 

model has high accuracy, and it will improve both research and clinical application of 

DCE-FI in bone infection. 

This chapter demonstrates that DCE-FI derived image features and kinetic features 

can enable the prediction the risk of infection. Chapter 5-6 show how the texture features 

and kinetic features of DCE-FI related to bone perfusion levels, and in this chapter, the 

relationships are further expanded into predicting negative outcomes. This is consistent 

with our central hypothesis that DCE-FI measurements are not only reflective of perfusion, 

but also capable of prediction outcomes associated with bone devitalization. 
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Chapter 8 

Conclusions and Future Studies  

This chapter summarizes the thesis on intraoperative quantification of bone 

perfusion in lower extremity injury surgery. As the objectives of this thesis were addressed, 

firstly, we described two preclinical studies for validating bone perfusion quantification 

and infection assessment, respectively. In Chapter 3, a ground truth approach for measuring 

bone perfusion has been developed, by quantifying fluorescent microspheres (FM) in situ. 

This approach can visualize bone perfusion in 3D, and validate the following image-based 

analytical approaches. In Chapter 4, a dynamic contrast-enhanced fluorescence imaging 

(DCE-FI) characterization of bone infection development has been established in a rodent 

low-energy fractured Methicillin-resistant Staphylococcus aureus (MRSA) contaminated 

femur model. This model can validate the infection risk prediction in Chapter 7. Secondly, 

image-based analytical approaches on clinical assessing bone perfusion during orthopaedic 

trauma surgery has been developed in Chapter 5 and Chapter 6. Chapter 5 focuses on 

kinetic analysis on image-based data, and Chapter 6 mainly uses texture analysis on the 

same data. Finally, extended from bone perfusion assessment, clinical bone infection risk 

prediction has been accomplished by a multidimensional fracture-associated infection 

predictive method, as described in Chapter 7.  

This chapter also discusses the future studies related to the thesis work. Future work 

includes improving kinetic analysis on dynamic contrast-enhanced imaging, clinical 

validation of bone infection risk prediction, and MRSA characterization in multi-level 

injured fracture.   
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8.1. Summary of Research Objectives 

8.1.1. Development of ground truth approach for bone perfusion measurement 

Lacking of objective instruments or techniques for bone perfusion measurement 

has been a major barrier in bone imaging study. In Chapter 3, We have proposed a novel 

approach that will provide in situ bone perfusion assessment, by exploring the possibility 

of applying FM technique in fluorescence-guided-orthopaedic-surgery. The approach is a 

modified FM quantification technique using custom-built multi-channel cryomacrotome, 

which we have termed “mQUIC”. This approach will further enhance fluorescence-guided 

surgery (FGS) by validating it with a quantitative perfusion standard. In mQUIC, perfusion 

is computed by identifying the density of deposited microspheres in reconstructed imaging 

volumes, which are proportional to regional blood flow.  

The methodology of this study involves phantom study, rabbit femur study, image 

processing, and volumetric analysis. The multi-channel cryo-imaging has been tested in 

phantom to have linear response to the number of microspheres, and independent of the 

color of microspheres. In the rabbit femur model, cryo-imaging was used to scan the femur 

injected with three colors of microspheres corresponding to three conditions: baseline, 

post-osteotomy and post-periosteal stripping. In near infrared (NIR) monochrome channels, 

image processing, such as top-hat transform and object-based colocalization analysis, was 

used to enable accurate counting of FMs to produce a volumetric map. In visible channel, 

we have successfully segmented bone and its surrounding muscle, and then incorporating 

these volumetric renderings into the visualization. Combined NIR and visible channel 

together, FMs from bone segmentation as well as muscle segmentation has been recovered, 

their number has been counted, and they have been plotted in 3D space with color-coded 
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spatial density. Finally, the volumetric FM density map is converted to bone perfusion units 

(mL/min/100 g) using the reference organ technique, and both endosteal and periosteal 

regions can be visualized separately. Therefore, mQUIC technique will be applied as a gold 

standard for measuring bone perfusion in orthopaedic surgery in planned validation studies.  

 

8.1.2. Dynamic contrast-enhanced fluorescence imaging characterization of bone infection 

development in animal model 

Dynamic contrast-enhanced fluorescence imaging can predict the risk of bone 

infection when combined with basic health information in the clinical study discussed in 

Chapter 7. Besides, when used alone, this imaging system has also demonstrated the 

characterization of bone infection development in rodent model as described in Chapter 4.  

In particular, we established a rodent osteomyelitis study to examine the changes 

in perfusion before and after bone infection by first-pass kinetics of DCE-FI, and evaluated 

the growth of MRSA biofilm by bioluminescent imaging. We found that first-pass kinetic 

parameters—maximum intensity, time-to-peak, and ingress slope—has shown changes 

demonstrating the decrease of perfusion after MRSA contamination. This result shows that 

DCE-FI can quantify infection-induced perfusion changes, and therefore DCE-FI can be 

applied in assessing fracture-associated infection. 

 

8.1.3. Image-based analytical approach on bone perfusion assessment 

Image-based analytical approach of assessing bone perfusion was developed into 

two types, kinetic analysis and texture analysis, which are addressed separately below.  
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Chapter 5 highlighted the first-pass kinetic analysis in amputation patient 

characterization and classification. We conducted this study aiming at differentiating bone 

perfusion levels intra-orthopaedic-operatively. DCE-FI has been investigated clinically in 

eleven adult patients undergoing below knee leg amputation. This is the first clinical study 

of quantitative DCE-FI in orthopaedic surgery, which opens up new possibilities of 

intraoperative bone state assessment. The proposed quantification is based on analyzing 

the first-pass kinetic parameters of fluorescence image series acquired during the 

indocyanine green (ICG) wash-in and wash-out, such as maximum intensity, time-to-peak 

and ingress slope. More importantly, to address the intersubject variations, we corrected 

the above first-pass kinetic parameters by substituting subject specific- arterial input 

function (AIF) with population averaged AIF. AIF associated factors are the main source 

of error in quantitative analysis of DCE-FI. AIF correction can efficiently eliminate the 

population variation caused by AIF-related perturbations and improve the significance of 

the first-pass kinetic analysis. Furthermore, a bone state classification model has also been 

developed, by using machine learning classification with AIF-corrected first-pass kinetic 

parameters. Therefore, bone regions-of-interest (ROIs) can be classified as “major injured” 

and “minor or no injured” with high accuracy and sensitivity. This study evaluated the 

application of DCE-FI in orthopaedic surgery, and further improve the translation of 

quantitative analysis to clinics.    

Chapter 6 described the dynamic contrast-enhanced texture analysis on orthopaedic 

trauma surgery. We conducted texture analysis of DCE-FI in clinical amputation data, and 

explored the capability of DCE-FI to predict bone perfusion in patients undergoing 

amputation surgery. This study created artificial conditions representing fracture and 
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degloving injury by transverse osteotomy and periosteal stripping, and acquired the DCE-

FI images on each condition. The goal is to develop a classification strategy to predict 

whether a particular region is damaged or not. Specifically, we proposed an unsupervised 

machine learning approach to predict the perfusion or viability level of any bone ROI based 

on 21 spatiotemporal features. 2.5 × 106 segmented ROIs at bone region were included to 

train the model; 1 × 106 ROIs were used for testing the model using a cross-validation 

approach; output labels were compared to model predictions and to a benchmark 

fluorescence intensity thresholding-based label. The reported unsupervised classification 

approach, using a combination of extracted spatial features and temporal features from 

DCE-FI fluorescence images, demonstrated the ability to reliably stratify ROIs into three 

perfusion levels: “appearing normal”, “appearing suspicious” (further attention warranted) 

and “appearing compromised” (debridement recommended to completely remove the 

devitalized bone), and produce outlines that are comparable to segmentation boundaries 

performed by an experienced surgeon. The classification is fast (accelerated by including 

principal component analysis for dimension reduction), robust and straight-forward 

(simple to train because k-means clustering classification is used which need fewer data 

and no input labels), and can be applied with commercially available intraoperative 

imaging systems without any additional hardware. This first translational bone perfusion 

classification approach, applied to a highly unique patient dataset, can be readily deployed 

in other centers and has significant clinical potential not only in lower-limb amputation but 

in a wide variety of orthopaedic trauma settings. 

 

8.1.4. From bone viability classification to bone infection risk prediction 
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As discussed above, quantifying bone perfusion is essential for guiding orthopaedic 

surgery. We have described the application of bone perfusion quantification in bone 

viability classification in Chapter 5-6. Here we expand from bone viability classification 

to bone infection risk prediction, in respect to the fact that perfusion plays a determinant 

role in both bone viability and bone infection.  

To understand the relationship between DCE-FI features and the propensity of that 

tissue to develop future infection, square regions-of-interest of side 1 mm from twenty-

four open fracture patients were labeled by a composite outcome (low risk, mid risk and 

high risk). The label was assigned according to a composition of (1) surgeons distinguish 

of regions with (“most damaged”) and without (“least damaged”) obvious signs of 

pathology, and (2) infection status based on follow-up data of 12 months post-surgery. 

Predictive features extracted from each ROI include non-parametric temporal variables, 

parametric temporal variables, spatial texture variables extracted from DCE-FI images, and 

patient’s risk of developing infection using the established metric. These features were 

evaluated for their ability to predict the composite outcome labels, and have shown good 

predictive ability (accuracy = 0.86). This proposed post-traumatic infection predicting 

model has great potential for clinical translation and will benefit both surgeons and patients 

by shortening surgery time and increasing the postoperative outcomes. 

 

8.2. Suggested Future Studies 

8.2.1. Improving kinetic analysis on dynamic contrast-enhanced imaging 

In this thesis, we focused on model-independent kinetic analysis using first-pass 

parameters such as maximum intensity, time-to-peak, ingress slope, and egress slope. 
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Model-independent kinetic analysis benefits from no prior assumptions on physiological 

status, easy implement, and so on. However, there are some limitations along with such 

benefits. One obvious limitation is no direct relation with the physiology of the underlying 

system. Although the model-independent parameters reflect some physiological quantities 

such as fractional blood volume and blood flow [89,189], they cannot provide descriptive 

information about the physiological mechanisms [306]. Therefore, in future studies we are 

going to improve the kinetic analysis by making it more descriptive.  

Compared to model-independent approaches, model-dependent ones are 

physiologically more accurate in describing the system. In model-dependent approaches, 

the system is modeled by mathematical equations that approximating the physiological 

reality [188]. Compartment modeling describe the physiological system into some 

individual compartments that interact with each other by diffusion and exchange. Therefore, 

the dynamic behavior of the system can be described and quantified through physiological 

parameters that explicitly incorporated into the compartment model. In the future, we are 

going to include model-dependent compartment models such as adiabatic approximation 

to the tissue homogeneity (AATH) and Hybrid plug/flow compartment (HyPC) model, as 

introduced in section 2.3. For the study described in Chapter 4, in addition to extract 

maximum intensity, time-to-peak and ingress slope from temporal curves of fluorescent 

intensities, we will further fit the curves by HyPC model, deconvolve to get the impulse 

residue function, and compare with the experimental data. And for the infection prediction 

study highlighted in Chapter 6, we will add parameters from HyPC and AATH model as 

another category of predictive features, and update the infection prediction model.   
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8.2.2. Clinical validation of bone infection risk prediction 

Chapter 7 introduced an infection risk predictive method applying to open-fracture 

surgery patients. However, due to the limited accessible data, the evaluation process of the 

proposed method was by internal cross-validation, which cannot validate the 

generalizability and examine the overfitting problem. Although Chapter 4 developed an 

animal model to validate DCE-FI in characterizing bone infection status, clinical validation 

of the proposed method is necessary for pushing forward this method into further clinical 

trials or commercialization.  

Firstly, we will enroll more open-fracture surgery patients in this study. Currently 

there were only twenty-four useable patient data. The small dataset size has limitations 

such as overfitting and lack of generalizability. Once we have more enrolled patients from 

the same patient cohort, we can validate the proposed infection prediction model by using 

the unseen patients as testing data. In this case, we can further ensure that our proposed 

model can be applied to general scenarios. 

Secondly, we will expand the study in involving multiple institutes. One of the main 

characteristics of the proposed infection prediction model is that it can be incorporated into 

various dynamic contrast-enhanced imaging systems without interfering with the 

hardwires. In particular, the first-pass kinetic parameters are independent of system settings 

such as resolution, field-of-view, and so on, because the analysis has been normalized by 

the baseline intensities before the arrival of dye. In addition, the texture features can be 

adjusted corresponding to the camera settings, by the way of tuning the gray-comatrix 

parameters used for deriving texture features. Therefore, we can safely apply the proposed 
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model with minor adjustments in multiple institutes, and in the case, we can further validate 

the model in a broader application.  

 

8.2.3. DCE-FI characterization of MRSA infection in multi-level injured fracture model 

We have established a DCE-FI characterization approach in low-energy fracture 

MRSA contaminated model in Chapter 4. This model serves as a preliminary study for 

preclinical MRSA characterization by DCE-FI. We propose a complete animal study that 

will fully explore the performance of DCE-FI in characterizing MRSA infection 

development. In this study, we hypotheses that the severer the fracture is injured, the higher 

the degree of MRSA infection will be developed. 

In detail, we will have four experimental groups of rodents with intact, low-energy, 

mid-energy, and high energy fractured femurs, respectively. We will inoculate same 

amount of MRSA, and then follow the same surgery and imaging procedures in Chapter 4. 

According to our hypothesis, we will observe more decreased fluorescence signals from 

post- to pre-infection as the fracture level is higher. Particularly at the same post-infection 

day, as the severities of injury increase, perfusion will more dramatically decrease, and 

DCE-FI first-pass kinetics will change as: maximum intensity be more decreased, time-to-

peak be more increased, and ingress slope be more decreased. In addition, we will also 

observe higher volume of MRSA biofilm as injury levels increase. We will further validate 

the hypothesized fracture severity–infection development degree relationship by multiple 

imaging modalities including bioluminescent imaging and micro-computed tomography. 

 

8.3. Conclusions 
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This thesis systematically presents fluorescence-guided techniques to quantify bone 

perfusion in lower extremity injury surgery, from benchtop to bedside. An animal model 

based on fluorescent microsphere technique was established to provide ground truth 

measurement of bone perfusion. Moreover, an animal fracture-associated infection model 

was developed to link the perfusion quantified by DCE-FI with the bacterial infection 

development. These above two preclinical studies provided a blueprint for the following 

translational studies on DCE-FI guided orthopaedic surgery. Image-based spatiotemporal 

and statistical features extracted from DCE-FI were used for classifying bone perfusion 

states in amputation surgery, which provided a visual guidance of debridement boundaries. 

Furthermore, these perfusion-associated features, when combined with patient 

demographic information, have been validated for their ability to predict risk of fracture-

associated surgical site infections. In summary, fluorescence-guided techniques using 

DCE-FI can intraoperatively assess bone perfusion and predict bone infection. Applying 

fluoresce-guided techniques will potentially shorten operational duration, increase success 

rates, and improve patient outcomes. 
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Chapter 9 

Appendices 

Appendix A  

Surgical Procedure for Microsphere Injection and Imaging Acquisition 

A.1. Surgical preparation and catheterization 

1. Anesthetize with 35 mg/kg ketamine, 5 mg/kg xylazine, or 0.1 mg/kg butorphanol. 

2. Intubation and anesthesia continued with isoflurane, while being mechanically ventilated 

to a normocapnic PaCO2 of ~40 mmHg with a mixture of air and oxygen.  

3. An ear vein catheter will be placed for indocyanine green (ICG) injection.  

4. The right femoral artery and femoral vein will be catheterized for blood collection / 

microsphere collection, and intravenous fluid infusion, respectively.  

5. A femoral vein catheter will be inserted and advanced to the level of the right atrium, 

then advanced through the septum into the left atrium. The line is secured to the skin of the 

thigh to avoid catheter injury or movement.  

6. Placement in the left atrium will be confirmed with fluoroscopy.  

7. The left knee is shaved and scrubbed with chlorhexidine gluconate for non-survival, 

non-sterile surgery. 

 

A.2. Surgery 

1. We will perform the thoracotomy, and then insert a catheter into the left atrial appendage 

for the injection of fluorescent microspheres. 

2. An incision is made on the dorsomedial surface of the leg superficial to the femur. 
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3. The soft tissue surrounding the femur is blunt dissected away, leaving the femur and in-

tact periosteum exposed. Retractors are used to maintain view of the entire shaft of the 

femur when imaging. 

 

A.3. ICG imaging and fluorescent microsphere injection 

1. Prepare microsphere by vortexing thoroughly 5-15 seconds, placing in ultrasonic water 

bath for 4 minutes, and vortexing again for 5-15 seconds.  

2. A fluorescence camera is placed directly in front of the surgical site for simultaneous 

imaging.  

3. A dye densitometer (DDM) probe is placed on the hind paw of the non-affected leg.  

4. Confirm the correct cuffs are inflated/deflated. 

5. Microspheres of a unique color (2 ml/kg) are injected directly into the atrial line: Once 

the microspheres have been drawn into the injection syringe, start the withdrawal pump 

and make sure blood is flowing freely into the extension tubing. Slow and steady injection 

over 5-15 seconds, and then flush the dead space of the catheter with warmed saline of 

three times the volume of catheter.  

6. During the injection and washout, blood is withdrawn from the femoral artery at an 

approximate rate of 0.333 ml/min, starting 1 minute before injection and continuing for 2 

minutes after injection. (This blood draw represents the ‘reference organ’ which allows the 

fluorescence signal to be converted to units of flow (ml/min/g)) After the end of the 

withdrawal, the pump is turned off, the stopcocks are opened and the blood remaining in 

the extension tubing is drawn into the syringe. 
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7. ICG (0.1 mg/kg/injections, 0.8 ml stock ICG solution with 6 ml saline) is injected into 

the ear vein, while the fluorescent cameras are acquiring a time series of images. Imagine 

duration is approximately 5 minutes. 

8. 30-minute stabilization period to allow ICG and microspheres to clear plasma. Transfer 

blood into labeled vials for ref blood sampling. Rinse syringes and extension lines with 2% 

Tween-80 using twice the volume of the blood and add this rinse to the blood samples. 

9. Using a bone saw, two transverse cuts are made midway on the shaft of the femur, so 

that an approximately 1 cm section of bone is completely detached. 

10. Repeat A.3.4 – A.3.8 for ICG imaging and microsphere injection 

11. The periosteum proximal to the transverse osteotomy is removed completely from the 

bone, and hemostasis is achieved using cautery. 

12. Repeat A.3.4 – A.3.8 for ICG imaging and microsphere injection 

13. A medial parapatellar incision is made and the patella is dislocated laterally 

14. A hole of 4.5 mm diameter is drilled with a titanium-coated drill bit from the 

intercondylar space to the medullary canal. 

15. A metallic rod is tapped into the medullary cavity to fix the distal, proximal and 1 cm 

fragment of the femur. 

16. Repeat A.3.4 – A.3.8 for ICG imaging and microsphere injection 

 

A.4. Euthanasia and ex vivo processing 

1. Animal is euthanized with euthasol 

2. Femur bones or other reference organ are entirely removed, and put into separate 

containers made by fossil wrap (with least possible height). Fill the containers with optimal 
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cutting temperature (OCT) compound, and store at -20 °C overnight until cryomacrotome 

imaging. 

3. Reference blood sampling is processed the same way as in the whole blood study. 
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Appendix B  

Texture Analysis of Dynamic Contrast-Enhanced Fluorescence Imaging 

B.1. Image texture features  

Twenty-one first and second order spatiotemporal features (f1~f21) summarized in 

Table B1 were included in this thesis. They included six intensity-based features, thirteen 

gray-level co-occurrence matrix (GLCM)-based features and two Gamma distribution 

parameters.  

While intensity-based features were straightforward to calculate, GLCM features 

[211] depended heavily on the pre-set distance between paired neighbors, image rotation 

angle, aggregating method, the number of gray levels and the range of image intensities 

[299]. Offset between paired neighbors was set to 2 in order to approximate the ratio of 

camera resolution and pixel size. Image directions for GLCM calculation included 0-, 45-, 

90-, and 135-degree angles. GLCM features were computed for each directional matrix and 

then averaged. As original fluorescence intensity images were saved in 8-bit format (256 

intensity levels), GLCM gray level number was set to 256 to accurately capture information 

from all image intensities. To avoid overestimation in low vs high image intensity areas, 

matrices were created symmetrically, with truncated rows and columns containing all zeros, 

and normalized to the range of [0,1]. Gamma distribution-based features known to be 

related to tissue effective scatterer number density and size (shape parameter k and scale 

parameter θ, respectively) were derived by fitting each region-of-interest’s histogram of 

pixel intensities by gamma-function [297].  

Table B1. Fluorescence image texture features used for analysis.  

# Order 
Texture 

feature 
Physical Meaning Expressions 
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f1 

1st 

order 

Contrast 

Intensity difference between 

regions of bone and 

background tissue 

(
1

𝑁
∑ 𝑋𝑖𝑁

𝑖=1 −
1

𝑀
∑ 𝑋𝑗) ÷𝑀

𝑗=1

√
∑(𝑋𝑗−�̅�𝑗)2

𝑀
 a, b 

f2 Mean 
Average fluorescence 

intensity of bone regions 

1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1

 

f3 
Standard 

deviation 

Square root of intensity 

variance within the region of 

interest 
√

1

𝑁 − 1
∑ |𝑋𝑖 − �̅�|2

𝑁

𝑖=1

 

f4 Skewness 
Asymmetry of the intensity 

distribution 

1
𝑁

∑ (𝑋𝑖 − �̅�)3𝑁
𝑖=1

(√1
𝑁

∑ (𝑋𝑖 − �̅�)2𝑁
𝑖=1 ) 3

 

f5 Kurtosis 

Bulging rate of intensity 

distribution within the region 

of interest 

1
𝑁

∑ (𝑋𝑖 − �̅�)4𝑁
𝑖=1

(
1
𝑁

∑ (𝑋𝑖 − �̅�)2𝑁
𝑖=1 ) 2

 

f6 Variance 
Temporal changes in 

fluorescence intensity 

1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1 −
1

𝑁
∑ 𝑋𝑖(𝑡0)𝑁

𝑖=1  c 

f7 

 

 

 

2nd 

order 

 

 

 

 

 

 

 

 

 

 

2nd 

order 

Contrast 
Local intensity variation 

within the region of interest 
∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)𝑖,𝑗  d 

f8 Energy 
Textural uniformity, local 

homogeneity 
∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 

f9 Gamma-k 
Effective optical scatterer 

number density 
PDF: 𝑓(𝑥) =

1

Ƭ(𝑘)Ɵ𝑘 𝑥𝑘 1𝑒−
𝑥

Ɵ e 

f10 Gamma-θ Effective optical scatterer size PDF: 𝑓(𝑥) =
1

Ƭ(𝑘)Ɵ𝑘 𝑥𝑘 1𝑒−
𝑥

Ɵ e 

f11 

Sum of 

squares: 

variance 

Distribution of neighboring 

intensity level pairs 
∑ (𝑖 − 𝜇)2𝑝(𝑖, 𝑗)𝑖,𝑗  f 

f12 Entropy 
Randomness of local intensity 

distribution 
− ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑖,𝑗

 

f13 Homogeneity 
Uniformity of local intensity 

distribution 
∑

𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2
𝑖,𝑗

 

f14 Sum average 

Relationship between 

occurrences of pairs with 

lower intensity values and 

higher intensity values 

∑ 𝑖𝑝𝑥+𝑦(𝑖)
2𝑁𝑔
𝑖=2  g, h 

f15 Sum entropy 
Sum of neighborhood 

intensity value differences 
− ∑ 𝑝𝑥+𝑦(𝑖)log {𝑝𝑥+𝑦(𝑖)}

2𝑁𝑔

𝑖=2
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f16 
Sum 

variance 
Relative smoothness 

∑ 𝑖2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

− 

∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

2

 

f17 
Difference 

entropy 

Randomness/variability in 

neighborhood intensity value 

differences 
− ∑ 𝑝𝑥−𝑦(𝑖) log{𝑝𝑥−𝑦(𝑖)}

𝑁𝑔−1
𝑖=0  i 

f18 
Difference 

variance 

Heterogeneity of local 

intensity values 

∑ 𝑖2𝑝𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

− ∑ 𝑖𝑝𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

2

 

f19 

Information 

measure of 

correlation 1 

Correlation between the 

probability distributions, 

independency 

𝐻𝑋𝑌−𝐻𝑋𝑌1

max {𝐻𝑋,𝐻𝑌}
 j-m 

f20 

Information 

measure of 

correlation 2 

Correlation between the 

probability distributions, 

uniformity 
√1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) n 

f21 Correlation 
Correlation of local intensity 

values 
∑

(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗𝑖,𝑗   o, p 

  

a Xi be the gray level intensity of the ith pixel. 

b N be the number of pixels within the region of interest, M be the number of pixels 

within the region of background. 

c p(i,j) be the normalized co-occurence matrix and equal to 
𝑃(𝑖,𝑗)

∑ 𝑃(𝑖,𝑗)
 , P(i,j) be the co-

occurence matrix for an arbitrary δ and θ. 

d t be the time of interest, and t0 be the time at global maximum intensity. 

e Ƭ(k) be the gamma function evaluated at k. 

f μ be the grey level weighted sum of joint probabilities and defined as 

∑ 𝑖𝑝(𝑖, 𝑗)
𝑁𝑔
𝑖=1,𝑗=1 . 

g Ng be the number of discrete intensity levels in the image. 

h px+y(k) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1  , where i + j = k, and k = 2, 3, …, 2Ng, be the cross-

diagonal probabilities. 

i px−y(k) = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1 , where |i − j| = k, and k = 0, 1, …, Ng−1 , be the diagonal 

probabilities. 



169 
 

j HX = −∑ 𝑝𝑥(𝑖)𝑙𝑜𝑔2(𝑝𝑥(𝑖) + 𝜖)
𝑁𝑔
𝑖=1  be the entropy of px, px(i) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔
𝑗=1  be the 

marginal row probabilities, ϵ be an arbitrarily small positive number ( ≈ 2.2×10-16). 

k HY = −∑ 𝑝𝑦(𝑗)𝑙𝑜𝑔2(𝑝𝑦(𝑗) + 𝜖)
𝑁𝑔
𝑗=1 be the entropy of py, py(j) = ∑ 𝑃(𝑖, 𝑗)

𝑁𝑔
𝑖=1 be the 

marginal column probabilities. 

l HXY = −∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑔
𝑗=1 𝑙𝑜𝑔2(𝑝(𝑖, 𝑗) + 𝜖)

𝑁𝑔
𝑖=1  be the entropy of p(i,j). 

m HXY1 = −∑ ∑ 𝑝(𝑖, 𝑗)𝑁𝑔
𝑗=1 𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)

𝑁𝑔
𝑖=1 . 

n HXY2 = −∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗)
𝑁𝑔
𝑗=1 𝑙𝑜𝑔2(𝑝𝑥(𝑖)𝑝𝑦(𝑗) + 𝜖)

𝑁𝑔
𝑖=1 .  

o μx be the mean gray level intensity of px and defined as μx = ∑ 𝑝𝑥(𝑖)𝑖
𝑁𝑔
𝑖=1 , μy be the 

mean gray level intensity of py and defined as μy = ∑ 𝑝𝑦(𝑗)𝑗
𝑁𝑔
𝑗=1 . 

p σx be the standard deviation of px, σy be the standard deviation of py. 
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