4,219 research outputs found

    A Paradigm for color gamut mapping of pictorial images

    Get PDF
    In this thesis, a paradigm was generated for color gamut mapping of pictorial images. This involved the development and testing of: 1.) a hue-corrected version of the CIELAB color space, 2.) an image-dependent sigmoidal-lightness-rescaling process, 3.) an image-gamut- based chromatic-compression process, and 4.) a gamut-expansion process. This gamut-mapping paradigm was tested against some gamut-mapping strategies published in the literature. Reproductions generated by gamut mapping in a hue-corrected CIELAB color space more accurately preserved the perceived hue of the original scenes compared to reproductions generated using the CIELAB color space. The results of three gamut-mapping experiments showed that the contrast-preserving nature of the sigmoidal-lightness-remapping strategy generated gamut-mapped reproductions that were better matches to the originals than reproductions generated using linear-lightness-compression functions. In addition, chromatic-scaling functions that compressed colors at a higher rate near the gamut surface and less near the achromatic axis produced better matches to the originals than algorithms that performed linear chroma compression throughout color space. A constrained gamut-expansion process, similar to the inverse of the best gamut-compression process found in this experiment, produced reproductions preferred over an expansion process utilizing unconstrained linear expansion

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Gamut extension algorithm development and evaluation for the mapping of standard image content to wide-gamut displays

    Get PDF
    Wide-gamut display technology has provided an excellent opportunity to produce visually pleasing images, more so than in the past. However, through several studies, including Laird and Heynderick, 2008, it was shown that linearly mapping the standard sRGB content to the gamut boundary of a given wide-gamut display may not result in optimal results. Therefore, several algorithms were developed and evaluated for observer preference, including both linear and sigmoidal expansion algorithms, in an effort to define a single, versatile gamut expansion algorithm (GEA) that can be applied to current display technology and produce the most preferable images for observers. The outcome provided preference results from two displays, both of which resulted in large scene dependencies. However, the sigmoidal GEAs (SGEA) were competitive with the linear GEAs (LGEA), and in many cases, resulted in more pleasing reproductions. The SGEAs provide an excellent baseline, in which, with minor improvements, could be key to producing more impressive images on a wide-gamut display

    Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    Full text link
    The quality of modern astronomical data, the power of modern computers and the agility of current image-processing software enable the creation of high-quality images in a purely digital form. The combination of these technological advancements has created a new ability to make color astronomical images. And in many ways it has led to a new philosophy towards how to create them. A practical guide is presented on how to generate astronomical images from research data with powerful image-processing programs. These programs use a layering metaphor that allows for an unlimited number of astronomical datasets to be combined in any desired color scheme, creating an immense parameter space to be explored using an iterative approach. Several examples of image creation are presented. A philosophy is also presented on how to use color and composition to create images that simultaneously highlight scientific detail and are aesthetically appealing. This philosophy is necessary because most datasets do not correspond to the wavelength range of sensitivity of the human eye. The use of visual grammar, defined as the elements which affect the interpretation of an image, can maximize the richness and detail in an image while maintaining scientific accuracy. By properly using visual grammar, one can imply qualities that a two-dimensional image intrinsically cannot show, such as depth, motion and energy. In addition, composition can be used to engage viewers and keep them interested for a longer period of time. The use of these techniques can result in a striking image that will effectively convey the science within the image, to scientists and to the public.Comment: 104 pages, 38 figures, submitted to A

    On Multifractal Structure in Non-Representational Art

    Get PDF
    Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, paintined by various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by a specific color (``blobs''), as well as patterns formed by the luminance gradient between adjacent colors (``edges''). It is found that the analysis method applied to ``blobs'' cannot distinguish between artists of the same movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8. The method can distinguish between different types of images, however, as demonstrated by studying a radically different type of art. The data suggests that the ``edge'' method can distinguish between artists in the same movement, and is proposed to represent a toy model of visual discrimination. A ``fractal reconstruction'' analysis technique is also applied to the images, in order to determine whether or not a specific signature can be extracted which might serve as a type of fingerprint for the movement. However, these results are vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video

    Derivation and modelling hue uniformity and development of the IPT color space

    Get PDF
    Metric color spaces have been determined to be significantly non-uniform in the hue attribute of color appearance. Several independent sources have confirmed the non-uniformity. A data set was obtained during the course of this thesis work that contains the largest sampling of color space to date which can be used to compare models of color appearance. The data set obtained was compared to existing data sets and found to correspond closely. Lookup table methods were employed to test significant differences between data sets. A simple modeling approach was taken based on commonly understood color space models and knowledge of the visual system. Several color spaces can be derived using the simple model, and one was chosen that models hue uniformity very well and has other desirable attributes. This new color space is named IPT. Many visual data sets were plotted in the IPT color space and all show improved performance over industry standard color spaces. The IPT color space has applications in color data representation, gamut mapping, and color appearance modeling

    Imagesetter output resolution in newspaper color image reproduction

    Get PDF
    The use of color in newspaper printing has significantly increased over the last few years. To compete with other news media, advertising as well as editorial design had to become more visually attractive, using more color graphics and images. The concurrent development of integrated desktop pre-press systems facilitated the integration of color, having less cost associated with new technology purchases than the traditional high end systems. The purpose of the thesis is to compare different output resolutions of an imagesetter and to find the minimal output resolution necessary for acceptable quality in newspaper color image reproduction. The speed of an imagesetter, which is dependant on the chosen output resolution, is an important factor in newspaper turn-around time. In this study, a matrix was designed containing various test targets and four different images with different image characteristics at four different output resolutions. Most imagesetters on the market today support output resolutions that approximate the four selected for the study (846, 1016, 1270, and 1693 spots per inch). The screen frequency of the images was 85 lines per inch, a common screen ruling in newspaper reproduction. The separations were output on a Linotronic 530 imagesetter. The output time varied from 18 minutes at the lowest resolution of 846 SPI to about half an hour at the highest resolution of 1693 spi. The test matrix was printed on Consolidated Newsprint on an offset newspaper Goss Community press. The print application\u27s spatial resolving power was evaluated by exarnining Fresnel zone plate resolution targets under magnification. Due to ink spreading, no visible difference could be detected on the printed test matrix between the different output resolutions. The test matrix was also submitted to an audience for visual evaluation. The psychometric method applied was the paired comparison method, which is based on the principle that the percentage of observers preferring a stimulus over the other gives a direct indication of how the two stimuli differ. In this study, the stimuli were the images with different output resolutions. Each reproduction was paired with another image from the same type, but with another output resolution. The observers had to indicate if they preferred the left or right image of a pair. The criterion for evaluation was better. The statistical analysis of the paired comparison method indicates that for all four images combined, there is a 95 percent confidence level that no visual difference in quality between the four resolutions could be detected by the observers. Experimental noise, specifically registration, skewed some of the individual image results. As a result, the first hypothesis-the visual quality of images reproduced in newspapers is not dependent on the imagesetter output resolution above a certain limit for a given set of print parameters-was proven to be correct. However, the second hypothesis-for offset newspaper printing on consolidated newsprint at a screen frequency of 85 lpi, the resolution limit lies between 1,000 and 1,200 SPi-has to be rejected. This study concludes that for the given print parameters, the resolution limit is 846 spi. Further studies might even indicate a lower limit. To summarize, one of the major disadvantages of electronic halftone reproductions today, namely output speed, can be optimized independently from technical considerations such as hardware and software systems. A ininimal output resolution can be found for a given print application by exarnining its characteristics, such as resolving power and print contrast. Any image output at a resolution higher than the mirtirnum does not improve the quality of the reproduction, and only slows down the production turn-around time
    • …
    corecore