8,539 research outputs found

    NETTAB 2012 on “Integrated Bio-Search”

    Get PDF
    The NETTAB 2012 workshop, held in Como on November 14-16, 2012, was devoted to "Integrated Bio-Search", that is to technologies, methods, architectures, systems and applications for searching, retrieving, integrating and analyzing data, information, and knowledge with the aim of answering complex bio-medical-molecular questions, i.e. some of the most challenging issues in bioinformatics today. It brought together about 80 researchers working in the field of Bioinformatics, Computational Biology, Biology, Computer Science and Engineering. More than 50 scientific contributions, including keynote and tutorial talks, oral communications, posters and software demonstrations, were presented at the workshop. This preface provides a brief overview of the workshop and shortly introduces the peer-reviewed manuscripts that were accepted for publication in this Supplement

    Preface : in silico pipeline for accurate cell-free fetal DNA fraction prediction

    Get PDF
    Objective During routine noninvasive prenatal testing (NIPT), cell-free fetal DNA fraction is ideally derived from shallow-depth whole-genome sequencing data, preventing the need for additional experimental assays. The fraction of aligned reads to chromosome Y enables proper quantification for male fetuses, unlike for females, where advanced predictive procedures are required. This study introduces PREdict FetAl ComponEnt (PREFACE), a novel bioinformatics pipeline to establish fetal fraction in a gender-independent manner. Methods PREFACE combines the strengths of principal component analysis and neural networks to model copy number profiles. Results For sets of roughly 1100 male NIPT samples, a cross-validated Pearson correlation of 0.9 between predictions and fetal fractions according to Y chromosomal read counts was noted. PREFACE enables training with both male and unlabeled female fetuses. Using our complete cohort (n(female) = 2468, n(male) = 2723), the correlation metric reached 0.94. Conclusions Allowing individual institutions to generate optimized models sidelines between-laboratory bias, as PREFACE enables user-friendly training with a limited amount of retrospective data. In addition, our software provides the fetal fraction based on the copy number state of chromosome X. We show that these measures can predict mixed multiple pregnancies, sex chromosomal aneuploidies, and the source of observed aberrations

    Data Resources for Structural Bioinformatics

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Structural bioinformatics involves a variety of computational methods, all of which require input data. Typical inputs include protein structures and sequences, which are usually retrieved from a public or private database. This chapter introduces several key resources that make such data available, as well as a handful of tools that derive additional information from experimentally determined or computationally predicted protein structures and sequences.Comment: editorial responsability: Sanne Abeln, K. Anton Feenstra, Halima Mouhib. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Structure Alignment

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. The Protein DataBank (PDB) contains a wealth of structural information. In order to investigate the similarity between different proteins in this database, one can compare the primary sequence through pairwise alignment and calculate the sequence identity (or similarity) over the two sequences. This strategy will work particularly well if the proteins you want to compare are close homologs. However, in this chapter we will explain that a structural comparison through structural alignment will give you much more valuable information, that allows you to investigate similarities between proteins that cannot be discovered by comparing the sequences alone.Comment: editorial responsability: K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Molecular Dynamics

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. We know that many proteins have functional motions, and in Chapter "Structure Determination" we already introduced the famous example of the allosteric cooperative binding of oxygen to the haem group in hemoglobin. However, experimentally, such motions are hard to observe. Here, we will introduce MD simulations to investigate the dynamic behaviour of proteins. In a simulation the forces and interactions between particles are used to numerically derive the resulting three-dimensional movement of these particles over a certain time-scale. We will also highlight some applications, and will see how simulation results may be interpreted.Comment: editorial responsability: Halima Mouhib, Sanne Abeln, K. Anton Feenstra. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Thermodynamics of Protein Folding

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter, "Introduction to Protein Folding", we introduced the concept of free energy and the protein folding landscape. Here, we provide a deeper, more formal underpinning of free energy in terms of the entropy and enthalpy; to this end, we will first need to better define the meaning of equilibrium, entropy and enthalpy. When we understand these concepts, we will come back for a more quantitative explanation of protein folding and dynamics. We will discuss the influence of temperature on the free energy landscape, and the difference between microstates and macrostates.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Introduction to Protein Structure

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Within the living cell, protein molecules perform specific functions, typically by interacting with other proteins, DNA, RNA or small molecules. They take on a specific three dimensional structure, encoded by its amino acid sequence, which allows them to function within the cell. Hence, the understanding of a protein's function is tightly coupled to its sequence and its three dimensional structure. Before going into protein structure analysis and prediction, and protein folding and dynamics, here, we give a short and concise introduction into the basics of protein structures.Comment: editorial responsability: Laura Hoekstra, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter

    Monte Carlo for Protein Structures

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. In the previous chapter "Molecular Dynamics" we have considered protein simulations from a dynamical point of view, using Newton's laws. In the current Chapter, we first take a step back and return to the bare minimum needed to simulate proteins, and show that proteins may be simulated in a more simple fashion, using the partition function directly. This means we do not have to calculate explicit forces, velocities, moments and do not even consider time explicitly. Instead, we will rely on the fact that for most systems we will want to simulate, the system is in a dynamic equilibrium; and that we want to find the most stable states in such systems by determining the relative stabilities between those states.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapter
    corecore