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Abstract

Objective: During routine noninvasive prenatal testing (NIPT), cell‐free fetal DNA

fraction is ideally derived from shallow‐depth whole‐genome sequencing data,

preventing the need for additional experimental assays. The fraction of aligned reads

to chromosome Y enables proper quantification for male fetuses, unlike for females,

where advanced predictive procedures are required. This study introduces PREdict

FetAl ComponEnt (PREFACE), a novel bioinformatics pipeline to establish fetal

fraction in a gender‐independent manner.

Methods: PREFACE combines the strengths of principal component analysis and

neural networks to model copy number profiles.

Results: For sets of roughly 1100 male NIPT samples, a cross‐validated Pearson

correlation of 0.9 between predictions and fetal fractions according to Y chromo-

somal read counts was noted. PREFACE enables training with both male and unla-

beled female fetuses. Using our complete cohort (nfemale = 2468, nmale = 2723), the

correlation metric reached 0.94.

Conclusions: Allowing individual institutions to generate optimized models side-

lines between‐laboratory bias, as PREFACE enables user‐friendly training with a

limited amount of retrospective data. In addition, our software provides the fetal

fraction based on the copy number state of chromosome X. We show that these

measures can predict mixed multiple pregnancies, sex chromosomal aneuploidies,

and the source of observed aberrations.
1 | INTRODUCTION

Noninvasive prenatal testing (NIPT) has evolved into an important

routine clinical practice. Numerous variations on experimental and in

silico procedures have been shown to reliably detect fetal chromo-

somal aneuploidies, mostly concerning trisomies 13, 18, and 21.1-5
- - - - - - - - - - - - - - - - - - - - - - - - - -
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The accuracy of NIPT seems high; however, as fetal fragments are

scattered throughout a more abundant maternal background in blood

plasma, individual performance highly depends on the fraction of fetal‐

derived cell‐free DNA (FF). Indeed, the minimal FF for reporting

unilateral conclusions has often been debated to be 4%, though lower

limits are alleged.6-8
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What's already known about this topic?

• Cell‐free fetal DNA fraction is an important estimate

during noninvasive prenatal testing (NIPT).

• Most techniques to establish fetal fraction require

experimental procedures, which impede routine

execution.

What does this study add?

• PREFACE is a novel software to accurately predict fetal

fraction based on solely shallow‐depth whole‐genome

sequencing data, the fundamental base of a default

NIPT assay.

• In contrast to previous efforts, PREFACE enables user‐

friendly model training with a limited amount of

retrospective data.
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Several fetal gender‐independent methodologies have been

described to assess FF. Prior parental genomic information often

facilitates some of these procedures, as, eg, paternal or maternal

homozygous loci that are determined to be partly heterozygous in

maternal blood during pregnancy form a precise platform to quantify

FF.9-11 Nonetheless, parental priors are not always obliged: using

binomial mixture modeling, fetal and maternal clusters of single

nucleotide polymorphisms also reflect FF, yet a higher sequencing

depth is required.12 Likewise, different inputs, such as molecule size

(cell‐free fetal DNA fragments are often shorter) and methylation

patterns (some fetal sites are hypermethylated), enable FF

prediction.13-16

Routine NIPT is converging towards a cost‐effective recipe, with

back‐hand automated computational pipelines expecting mostly

single‐end shallow‐depth whole‐genome sequencing data (sWGS;

0.1‐1x coverage) to determine copy number alterations.17 Previously

discussed FF determining techniques imply the need for additional

laboratory steps and/or (currently) nonfeasible deep sequencing.

Therefore, a handful tools have been developed to predict FF

based on exclusively sWGS data. The copy number state of the X

chromosome, and especially the number of observed Y chromosomal

reads, form popular foundations to calculate FF—here, these are

referred to as fetal fraction based on chromosome X (FFX) and

fetal fraction based on chromosome Y (FFY), respectively.18,19 Unfor-

tunately, they are only informative for male fetuses. Accordingly,

two other approaches have been described to predict FF, without

relying on the gonosomes. One of these exploits nucleosome

positions, hypothesizing that shorter fetal fragments are caused by

differential nucleosome packaging.20 The spatial distribution of

mapped reads should represent FF; however, the reported

performance of the predictive model seems rather unsatisfactory.19

Finally, SeqFF, which uses a model designed directly on bin‐wise

copy number features of more than 25 000 pregnant women,

reports accurate FF determination, with a Pearson correlation

between predictions and FFY of 0.932.21 The inventors state that

cell‐free fetal and maternal fragments are not uniformly

distributed across the human reference genome: small differences

in local read counts are predictive for FF. Aside from the seemingly

excessive number of required male training samples, the software

does not provide a training option. Therefore, users are restricted

to a pretrained alternative. Because of inevitable differences in

laboratory and computational procedures between training and

test cases, the correlation is expected to be lower than what is

claimed.

Applying similar biological principles as used by SeqFF, we

set out to develop PREdict FetAl ComponEnt (PREFACE), a

software that enables model training, utilizing a limited amount of

data, which includes unlabeled female samples to maximize the

input. The semisupervised pipeline operates an initial unsupervised

phase, in the form of a principle component analysis (PCA), and a

subsequent supervised step, where a neural network (NN) weighs

the computed principle components (PCs) to model fetal‐induced

variance.
2 | MATERIALS AND METHODS

2.1 | Library preparation and sequencing

Blood samples were collected in 10‐mL cell‐free DNA BCT tubes

(Streck) or PAXgene Blood DNA Tubes (Qiagen). Within 24 hours after

collection, plasma isolation was executed by centrifugation (4°C; 10

minutes at 1600 g; 10 minutes at 16 000 g, or 15 minutes at 1900

g, respectively). The supernatant was transferred to a new tube and

cfDNA was extracted from 3.5‐mL plasma using the Maxwell RSC

ccfDNA Plasma Kit (Promega), following the manufacturer's

instructions.

Using 25 μL of cfDNA, library preparation was executed on a

Hamilton Star liquid handler using the NEXTflex Cell Free DNA‐Seq

Library Prep Kit (Bioo Scientific) and NEXTflex DNA Barcodes (Bioo

Scientific). After pooling, cluster generation and sequencing were

completed by respectively a cBot 2 and HiSeq 3000 system (Illumina).

The minimal number of reads (single‐read; 50‐cycle mode) per sample

was set to 15 million.
2.2 | Copy number profiling

Raw reads were mapped by Bowtie 2 onto human reference genome

GRCh38 (and GRCh37, for SeqFF compliance), using the fast‐local

flag.22 Biobambam's bamsormadup was used to mark duplicate

reads and to sort resulting bam files.23 Indexing was executed by

SAMtools.24 To reliably deduce normalized bin‐wise log2 ratios from

sWGS data, we preferred WisecondorX, considering it yields superior

copy number profiles, as shown by our group in earlier work.25 These

ratios represent the relation between the observed (numerator) and

expected (denominator) number of reads, the latter matching the dip-

loid state. Since these values are subject to Gaussian noise, a resolu-

tion of 100 kb was selected to yield reasonable noise levels in
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function of the obtained number of reads (20 534 289 ± 5 662 927).

Regions without resulting information were interpreted as loci of

undeterminable copy number, as defined by WisecondorX.

2.3 | NIPT cohort

From December 2017 until September 2018, 5629 NIPT experiments

were routinely executed at the Center for Medical Genetics Ghent, of

which 5572 passed quality filtering, including 177 echographically

confirmed twins, one triplet, and 14 fetuses with confirmed trisomies

for chromosome 13, 18, or 21 by chorionic villus sampling or amnio-

centesis. All analyses were applied to this set, with the exception of

the actual model training and subsequent cross‐validation. For these

parts, we defined a second set (nfemale = 2468, nmale = 2723) after

applying an additional filter: exclusively gender‐annotated single and

same‐gender multiple pregnancies were allowed, where five more

male samples, suspected of having sex aberrations according to differ-

ences in FFY and SeqFF computations, were excluded.

2.4 | Response variable FFY

For male fetuses, the FF is linearly proportional to the read depth‐

corrected mean number of observed Y reads (YNIPT,male). In the formula

below, the prior or naive FFY is interpreted as a YNIPT,male observation

between the median of a set of male liquid biopsies (LBs) gYLB;male (FFY

= 100%) and female background noise gYNIPT;female (FFY = 0%). For

female fetuses, the prior FFY is set to 0.

FFYprior;male ¼ YNIPT;male − gYNIPT;femalegYLB;male − gYNIPT;female

(1)

FFYprior;female ¼ 0 (2)

As previously reported, masking the Y chromosome prior to calcu-

lating FFY increases the precision.18,19 We took this concept one step

further by creating a model that provides a weighted selection of the

most appropriate set of Y windows. This way, a large increase in

power to separate males from females was noted. We believe hyper-

variable FF‐unrelated bins are down‐weighted, forming a supposed

overall more accurate FFY. A general linear model with lasso regulari-

zation (λ = 1e−4) was selected, using the read depth‐normalized num-

ber of reads at 5 kb Y bins as explanatory parameters, and the prior

FFY as a response variable (Figure S1). The fitted model parameters

were retrieved to infer a final FFY, as shown below.

FFYfinal ¼ β0 þ β1y1 þ…þ βnyn (3)

Above, β0 is the intercept, βk indicates the beta estimate for bin k,

whereas yk represents the observed normalized number of reads at

the same locus. Chromosome Y has n bins (n = 11 447). Note that

FFYfinal was calculated using a cross‐validation strategy: different

models were trained to circumvent overlap between train and test

cases. An overall model determined that 10.76% of chromosome Y
remained available for FFY determination (βk ≠ 0). The Pearson corre-

lation between the prior and final FFY was 0.985 for male fetuses.
2.5 | PREFACE method

To maximize training input, PREFACE uses a combination of unsuper-

vised (applicable to all NIPT samples) and supervised learning (applica-

ble to samples with known FF, being all male fetuses in our case). The

explanatory variables comprise all autosomal bins for which a log2

ratio could be derived. Note that an exception holds: loci at

chromosomes 13, 18, and 21 are excluded—this is because these

chromosomes might be wrongly estimated as highly related to FF

due to the presence of fetal aneuploidies in the training set.
2.5.1 | Unsupervised learning

Between observations (samples), some explanatory variables (bins) are

expected to be codependent as a result of inter alia differing FFs. In

other words, nonrandom variance, linked to FF, is thought to be pres-

ent. PCA is a technique to model the observed variance by orthogonal

transformation: the original explanatory variables are converted to

new linearly uncorrelated parameters, named PCs.26 PCs are ranked

in order of importance, meaning each PC explains less variance than

its predecessor. The first set of PCs (ndefault = 50) models a large por-

tion of the nonrandom variance, thus including FF‐induced variance,

whereas the remaining PCs mostly map naturally occurring Gaussian

noise, as a result of the original binomial read count distribution.27

The computed PCA rotations, based on all NIPT samples, enable us

to calculate the most important PCs for exclusively cases with known

FF. This latter set is further processed in the supervised phase.
2.5.2 | Supervised learning

As stated, PCA presumably separates Gaussian noise from other

sources of variance. Consequently, a supervised classifier is required

to model exclusively FF‐induced variance. We preferred an artificial

NN with two hidden layers, using resilient backpropagation with

weight backtracking, and the sum of squared errors as a loss function.

This black box method weighs parameters (PCs) in function of the

response variable (FFY). As machine learning often tends to find the

best solution for most cases, rather than for all, predictions and FFY

values are slightly “slanted” relative to each other. A default slope

and intercept extracted from a linear model corrects for this tendency.
2.6 | PREFACE software

The PREFACE software, written in R, is divided in two large compo-

nents: one for training and one for predicting (Figure 1). It is available

at https://github.com/CenterForMedicalGeneticsGhent/PREFACE.

https://github.com/CenterForMedicalGeneticsGhent/PREFACE


FIGURE 1 Schematic representation of the
PREFACE software. The “train” component
(dark grey) accepts NIPT copy number profiles
from both male and female fetuses. A
predictive model is generated using all
provided samples. To gain insight in the
performance of this model, 10‐fold cross‐
validation is executed in addition. The
“predict” component (light grey) makes
predictions by applying the trained model to a
supplied copy number profile.
Abbreviations: CNP, copy number profile;
FFX, fetal fraction based on chromosome X;
FFY, fetal fraction based on chromosome Y;
MAE, mean absolute error; NIPT, noninvasive
prenatal testing; NN, neural network; OLM,
ordinary linear model; PCA, principal
component analysis; PREFACE, PREdict FetAl
ComponEnt; RLM, robust linear model; S, set
[Colour figure can be viewed at
wileyonlinelibrary.com]
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2.6.1 | Training

When feeding the train module copy number profiles in combination

with FFY measurements from male fetuses, a model is created as

described above. Since NNs can experience convergence problems,

and as they were noted to be less performant on small training sets,

an ordinary linear model (OLM) can alternatively be selected as a

classifier. Performance statistics are derived from a 10‐fold cross‐

validation technique: 10% of male samples are iteratively ignored dur-

ing training, followed by evaluating the correlation and mean absolute

error between FFY and predictions in the left‐out test set. In addition,

PREFACE fits a robust linear model (RLM) between the overall ratio

(observed/expected number of reads) of chromosome X and FFY,

enabling FFX calculations. A robust technique was favored to sideline

(mosaic) (sub)chromosomal maternal deviations during training.
2.6.2 | Predicting

The predict component accepts a trained model and a NIPT copy num-

ber profile. Bins without information are replaced by interpolated

mean training values. PREFACE transforms bin‐wise values to PCs

using the PCA rotations and subsequently outputs the FF according

to the NN. The robust least squares fit is applied to chromosome X's

ratio to retrieve FFX.
3 | RESULTS

3.1 | The PREFACE modeling strategy proves to be
powerful

Two important aspects should be evaluated to assess the competence

of our approach: the tightness of a relation is given by the Pearson

correlation (r), whereas the agreement between two methods can be
explored by both visual interpretation—by use of a least squares fit

and an identity line—and the mean absolute error (MAE).28

The PREFACE software was executed four times across pairwise

combinations between two data sets (male‐only NIPT samples; all

NIPT samples) and two classifiers (OLM; NN). In comparison, a state‐

of‐the‐art supervised elastic net was optimized in accordance to

Friedman et al, therefore exclusively trained with male fetuses.29

3.1.1 | Males

Cross‐validation indicates that PREFACE is superior to a traditional

elastic net (Table 1). The NN, default in PREFACE, performs generally

better than the optional OLM. Although the classifiers are trained with

male fetuses only, the inclusion of females during the unsupervised

phase significantly improves performance: the correlation between

predictions and FFY rises from 0.926 to 0.94, while the MAE drops

0.18 units—statistics emerging from the NN (Figure 2A,B). Indeed,

adding female samples (or in general, adding more samples) enables

the PCA algorithm to explain a larger proportion of (nonrandom) vari-

ance in its most important PCs (Figure S2). Although NNs perform

generally better, users can opt for an OLM instead, as these tend to

be more reliable on smaller data sets (Figure S3). For sets of roughly

1100 male samples, a correlation of 0.9 is reached.

3.1.2 | Females

Since NIPT samples from female fetuses lack independent FF mea-

surements, PREFACE values were compared with SeqFF predictions,

an approach proven to be applicable to female cases. Two major con-

clusions could be drawn. First, for males, the correlation between FFY

and SeqFF predictions is “only” 0.887, lower than the reported 0.932,

thus presumably caused by experimental differences between the

pretrained SeqFF model and FFY (Figure S4a).21 Moreover, the least

squares fit is considerably less steep than the identity line, showing

that SeqFF claims mostly higher FFs. Second, applying the female

http://wileyonlinelibrary.com


FIGURE 2 Performance evaluation of the PREFACE method. A, A scatter plot reveals highly correlated (r) FFY and PREFACE predictions.
Moreover, the OLS fit largely covers the identity line. B, A histogram visualizes normally distributed errors centered around 0 and a low MAE
between predictions and FFY. C, Scattered symbols indicate reported NIPT samples with aneuploidies. The dotted line represents an OLS fit
between the PREFACE values and the mean log2 ratio of the corresponding structural validated events. Where confirmed aberrations are highly
concordant to FF predictions, nonconfirmed aneuploidies are randomly scattered. Abbreviations: OLS, ordinary least squares; MAE, mean absolute
error; FF, fetal fraction; FFY, fetal fraction based on chromosome Y; NIPT, noninvasive prenatal testing; PREFACE, PREdict FetAl ComponEnt
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Cross‐validation to compare combinations of classifiers and training sets

Note. Next to four setups applicable to the PREFACE software, a traditional elastic net was optimized to support comparison. A model initialized with

default arguments, trained using NIPT samples from both male and female fetuses, enables the most accurate predictions, measured by Pearson correlation

and MAE. The MAE for the lowest FFs (<10%) is shown separately. Although multicore processing is optional, timing was performed on a system equipped

with a 2.3 GHz Intel Core i5 processor using only a single thread. Abbreviations: MAE, mean absolute error; FF, fetal fraction; NIPT, noninvasive prenatal

testing; PCA, principal component analysis; PREFACE, PREdict FetAl ComponEnt.
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samples to a male‐only PREFACE model yields a correlation with

SeqFF of 0.895 (Figure S4b). As expected, a similar yet inverse incon-

sistency with the identity relation is retrieved, validating PREFACE's

applicability to female fetuses.
3.1.3 | Fetal fraction based on chromosome X

The relation between FFX and FFY seems trivial. Therefore, the PREF-

ACE software solely fits an RLM to the provided male fetuses without

executing cross‐validation. A weighted correlation as high as 0.971

supports this approach (Figure S5).30 Extreme outliers are caused by

(mosaic) (sub)chromosomal maternal rearrangements, illustrating the

need for a robust model.
3.2 | There is a strong correlation between FF
predictions and confirmed aneuploidies

Throughout the NIPT cohort, 14 fetuses were reported with con-

firmed aneuploidies. These involve two cases with Patau syndrome

(trisomy 13), one with Edward syndrome (trisomy 18), and 11 with

Down syndrome (trisomy 21). Unconfirmed aneuploidies (after amnio-

centesis) include, eg, nonviable trisomies 7, 14, and 20, representing

aberrations that are likely mosaicisms confined to the placenta.

Another reported abnormality, concerning trisomy 21, was shown to

be unrelated to the fetus by amniocentesis.

Fetal‐derived nonmosaic aberrations are expected to have an

amplitude proportional to the FF (1,6,7). Hence, prior to the execution

of an invasive assay, predictions on FF suggest the source of a

http://wileyonlinelibrary.com
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potential aneuploidy. This is shown by a compelling concordance

between the mean log2 ratio of confirmed whole‐chromosome dupli-

cations and predictions of r = 0.959, additionally indicating PREFACE's

accuracy (Figure 2C). Where the amplitudes of fetal abnormalities are

positioned to expectation, defined as in Adalsteinsson et al, nonfetal

observations are randomly scattered (Figures S6 and S7).31 Here, the

difference between the expected FF (based on confirmed aberrations)

and predicted FF (according to PREFACE) is characterized by a

standard deviation of 1.92%.

3.3 | PREFACE empowers gender prediction in
multiple pregnancies

Besides single pregnancies, the NIPT cohort includes 177 twins,

established through ultrasonography. The ratio between FFY and true

FF naturally provides information about the gender of each fetus: two

males are theoretically characterized by a ratio of 1; while with female

twins, this measure amounts to 0, whereas for mixed pregnancies, a

close‐to 0.5 ratio is expected.

Our cohort contains both confirmed (by birth) and unconfirmed

twin genders. The density distribution of the ratio between FFY and

FF intrinsically represents the ability to distinguish different combina-

tions of genders. Using Gaussian mixture modeling, three distinct

peaks are retrieved across twins lacking gender confirmation

(Figure 3A). This suggests that female twins can be categorized with

high accuracy, yet, discriminating male‐male from male‐female twins

remains difficult for pregnancies with low FF (Figure 3B). Finally, a

similar visualization, holding validated genders, does confirm the

reliability of this technique (Figure 3C).
3.4 | PREFACE indirectly hints towards potential sex
aneuploidies

With PREFACE, FFY, and FFX, three methods have been presented to

establish FF. A consequence of adopting these estimates—next to
FIGURE 3 Gender prediction in twins. A, Including twins without confirm
fits the FFY/PREFACE density distribution well. The expected local minim
gender. B, A scatter visualization plots the PREFACE predictions in functio
represent the theoretical expectation. Pearson correlations (r) are given. C
Thick dotted lines represent the cutoffs from (A). Colors are defined by act
PREFACE, PREdict FetAl ComponEnt [Colour figure can be viewed at wile
what has already been discussed—is the inherent information on sex

aneuploidies they potentially reveal. Sex aneuploidies were until now

not reported by our institution; therefore, none are confirmed,

meaning this final section is purely indicative and further experimental

validation is warranted.

A dual modeling strategy was developed. First, by simultaneously

comparing both FFX and FFY to PREFACE predictions, the power to

distinguish genders increases.

Density 1i ¼ ∑i
j¼0

FFYj þ FFXj

PREFACEj*2

� �
(4)

Second, most frequent sex aneuploidies, including Turner (X),

triple‐X (XXX), Klinefelter (XXY), and XYY syndrome, are theoretically

captured by directly subtracting FFY with FFX, independent from

gender.

Density 2i ¼ ∑i
j¼0 FFYj − FFXj

� �
(5)

Eight FFX outliers (less than −40%; greater than 40%), caused by

maternal aberrations, were removed prior to fitting Gaussian (mixture)

models to analytically describe the density distributions, expecting

three (males, females, and mixed twins) and one component(s),

respectively (Figure 4A,B). Optimally, the results are presented in a

three‐dimensional all‐inclusive figure, plotting FFY, FFX, and PREF-

ACE values along its axes (File S1). Here, we opted to visualize the

results in accordance to two preferred viewpoints (Figure 4C,D). It is

notable that confirmed twins are highly enriched in the middle

Gaussian component of Density 1: these are mixed twin pregnancies.

In total, 39 (0.71%) cases significantly deviate from the healthy FFY‐

FFX trend. The majority of these likely concern (mosaic) maternal

events and a few suspected subchromosomal aberrations. However,

four XXY, two XYY, one XXX, and none X fetuses seem to be present

when evaluating the FFX‐FFY outliers in function of the PREFACE

predictions (Figure S8). Worth saying, these numbers largely corre-

spond to reported incidence.32-35
ed genders, a Gaussian mixture model, expecting three components,
a (at one‐fourth and three‐fourth) represent cutoffs to predict fetal
n of FFY. Colors are defined by previous cutoffs. Thick dotted lines
, Evaluation of this method using confirmed (by birth) twin genders.
ual gender. Abbreviations: FFY, fetal fraction based on chromosomeY;
yonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 4 Modeling of FFY, FFX, and PREFACE measures to predict mixed twins and sex aneuploidies. A, Density Gaussian mixture modeling to
map fetal gender. The color gradient is linearly assigned in accordance to the component's means. Outliers are shown in grey. B, A Gaussian
distribution is fitted to appoint outliers, where the latter is defined as such once it deviates with more than 3 standard deviation units from the
mean. C, FFY‐FFX‐PREFACE viewpoint 1. Colors are defined by (A); dots and squares represent confirmed single and twin pregnancies, respectively;
plusses overrule previous symbols, as determined by (B). As expected, it is notable that red symbols are highly enriched with twins, especially for
higher FFs. D, FFY‐FFX‐PREFACE viewpoint 2. Colors and symbols are defined in analogy to (C). Outliers likely correspond to maternal events or
fetal sex aneuploidies. Abbreviations: FF, fetal fraction; FFX, fetal fraction based on chromosome X; FFY, fetal fraction based on chromosome Y;
PREFACE, PREdict FetAl ComponEnt [Colour figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Recent technological advancements improved genetic testing

dramatically. While the economic feasibility of whole‐genome

sequencing keeps progressing, the accuracy of fetal aneuploidy detec-

tion is at an ever‐high: sWGS studies commonly report near 0.99

sensitivity/specificity for Patau, Edward, and Down syndrome detec-

tion.8,36 As a consequence, noninvasive screening is no longer con-

fined to high‐risk groups but is gradually more generally executed.

Large NIPT turnovers produce an abundance of retrospective use-

ful data. One interesting application enabled by these quantities is

machine learning, as, eg, FF, a particularly important figure during

testing, can be estimated based on copy number data. Predictive

models are ideally trained with in‐house profiles to suppress

between‐laboratory procedural bias. Notwithstanding, sufficient data

are frequently present at these institutions; to date, an accurate auto-

mated learning software does not exist. Therefore, we developed

PREFACE, a user‐friendly tool to model and predict FF without the
necessity of prior mathematical know‐how on predictive modeling.

The inclusion of unlabeled samples for training, which significantly

contributes to an increased overall performance, introduces another

novelty to this field.

Using less than 5000 training samples, predictions made by PREF-

ACE were highly concordant to FFY, indicated by a Pearson correla-

tion of 0.94. To our knowledge, starting from sWGS data only, no

software has been reported to perform better. Next to traditional

cross‐validation, PREFACE was evaluated by SeqFF comparison (for

female fetuses); by density Gaussian mixture modeling across twins;

and by aneuploid fetuses, where the log2 ratio of confirmed events

was found to be highly concordant with FF (r = 0.959).

Since the SeqFF trend was not in satisfying agreement with FFY

(SeqFF claims mostly higher FFs), one could wonder which of both

variables is truly biased. Accordingly, not presented in the results, we

computed FFY and FFX for six liquid biopsies and six lymphocyte‐

extracted genomic DNA samples, obtaining percentage estimations

ranging within {98, 103} and {−1, 1} for males and females,

http://wileyonlinelibrary.com
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respectively. Moreover, PREFACE's model, trained on FFY, yields pre-

dictions that are conform with confirmed trisomies (Figures S6 and

S7). The pretrained SeqFF model is therefore more likely to be biased

rather than FFY.

The success of the modeling approach is thought to involve three

main pillars. First, we believe that the FFY measure, although hard to

prove, is accurate. Masking parts of chromosome Y prior to predicting

FF has been cited to increase correctness.18,19 Due to sequence simi-

larities with other chromosomes (eg, the pseudoautosomal region) and

technological limitations of short‐read mapping (repeats, variable

regions of mappability, GC content, etc), numerous Y loci are indeed

ambiguous.37,38 Instead of solely categorizing bins as informative and

noninformative, we reasoned that the informative bins also differ in

their “level of male specificity,” thereby encouraging the idea of a

bin‐wise weighted contribution to FFY. Second, read count normaliza-

tion was executed by WisecondorX, a sophisticated within‐sample

normalization procedure, which supposedly delivers superior pro-

files.25 And last but not least, the nature of the modeling strategy

maximizes training input by allowing unlabeled samples.

Gonosomal aberrations are theoretically exposed during NIPT in a

similar way as any other aneuploidy. Nevertheless, the specificity is

reported to be much lower in comparison with traditional screening

of chromosomes 13, 18, and 21, especially for monosomy X.39-41

Ethical issues on reporting these sometimes nonsevere abnormalities

aside, the incorporation of FF in statistical outcome—which is gener-

ally not done with, eg, the popular z‐score approach—does improve

performance.42,43 Indeed, our study was concluded by revealing that

0.71% of all NIPT samples significantly differed from the healthy

gonosomal trend; however, when evaluating these outliers in relation

to predicted FF, only a few truly met the requirements to suffice as

being potentially sex aneuploid.

The convenience by which PREFACE could be implemented in

existing NIPT pipelines seems undeniable: a copy number profile, the

fundamental base of an assay, is singly requisite as input. This paper

extensively demonstrates the practical value of accurate FF estima-

tions on real data collected over the course of nine months. We

believe PREFACE and the elaborated FF methodologies could be

useful to many NIPT laboratories, evidentially motivating this work.
CONFLICT OF INTEREST

None declared.
FUNDING SOURCES

This work was supported by Bijzonder Onderzoeksfonds (BOF), Ghent

University, in the form of a doctoral research grant (ID BOF.

STA.2017.0002.01 to L.R.).
ETHICS STATEMENT

This study was conducted according to the guidelines of the Ethics

Committee at Ghent University Hospital (ID 2004/094).
DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on

request from the corresponding author. These are not publicly avail-

able due to privacy and ethical restrictions.

ORCID

Lennart Raman https://orcid.org/0000-0002-3840-5930

REFERENCES

1. Dheedene A, Sante T, De Smet M, et al. Implementation of non‐
invasive prenatal testing by semiconductor sequencing in a genetic

laboratory. Prenat Diagn. 2016;36(8):699‐707.

2. Lo YMD, Lun FMF, Chan KCA, et al. Digital PCR for the molecular

detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci U S A.

2007;104(32):13116‐13121.

3. Palomaki GE, Kloza EM, Lambert‐Messerlian GM, et al. DNA sequenc-

ing of maternal plasma to detect Down syndrome: an international

clinical validation study. Genet Med Off J Am Coll Med Genet.

2011;13(11):913‐920.

4. Straver R, Sistermans EA, Holstege H, Visser A, Oudejans CBM,

Reinders MJT. WISECONDOR: detection of fetal aberrations from

shallow sequencing maternal plasma based on a within‐sample com-

parison scheme. Nucleic Acids Res. 2014;42(5):e31.

5. Liu H, Gao Y, Hu Z, et al. Performance evaluation of NIPT in detection

of chromosomal copy number variants using low‐coverage whole‐
genome sequencing of plasma DNA. PloS One. 2016;11(7):e0159233.

6. Fiorentino F, Bono S, Pizzuti F, et al. The importance of determining

the limit of detection of non‐invasive prenatal testing methods. Prenat

Diagn. 2016;36(4):304‐311.

7. Palomaki GE, Deciu C, Kloza EM, et al. DNA sequencing of maternal

plasma reliably identifies trisomy 18 and trisomy 13 as well as Down

syndrome: an international collaborative study. Genet Med.

2012;14(3):296‐305.

8. Hartwig TS, Ambye L, Werge L, et al. Non‐invasive prenatal testing

(NIPT) in pregnancies with trisomy 21, 18 and 13 performed in a public

setting—factors of importance for correct interpretation of results. Eur

J Obstet Gynecol Reprod Biol. 2018;226:35‐39.

9. Liao GJW, Lun FMF, Zheng YWL, et al. Targeted massively parallel

sequencing of maternal plasma DNA permits efficient and unbiased

detection of fetal alleles. Clin Chem. 2011;57(1):92‐101.

10. Chu T, Bunce K, Hogge WA, Peters DG. A novel approach toward the

challenge of accurately quantifying fetal DNA in maternal plasma.

Prenat Diagn. 2010;30(12–13):1226‐1229.

11. Jiang P, Peng X, Su X, et al. FetalQuantSD: accurate quantification of

fetal DNA fraction by shallow‐depth sequencing of maternal plasma

DNA. NPJ Genom Med. 2016;1(1):16013.

12. Jiang P, Chan KCA, Liao GJW, et al. FetalQuant: deducing fractional

fetal DNA concentration from massively parallel sequencing of DNA

in maternal plasma. Bioinforma Oxf Engl. 2012;28(22):2883‐2890.

13. Nygren AOH, Dean J, Jensen TJ, et al. Quantification of fetal DNA by

use of methylation‐based DNA discrimination. Clin Chem.

2010;56(10):1627‐1635.

14. Chan KCA, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in

maternal plasma: a universal fetal DNA marker that improves the

reliability of noninvasive prenatal diagnosis. Clin Chem.

2006;52(12):2211‐2218.

https://orcid.org/0000-0002-3840-5930


RAMAN ET AL. 933
15. Yu SCY, Chan KCA, Zheng YWL, et al. Size‐based molecular diagnos-

tics using plasma DNA for noninvasive prenatal testing. Proc Natl

Acad Sci U S A. 2014;111(23):8583‐8588.

16. Lo YMD, Chan KCA, Sun H, et al. Maternal plasma DNA sequencing

reveals the genome‐wide genetic and mutational profile of the fetus.

Sci Transl Med. 2010;2(61):61ra91.

17. Sante T, Vergult S, Volders P‐J, et al. ViVar: a comprehensive platform

for the analysis and visualization of structural genomic variation. PloS

One. 2014;9(12):e113800.

18. Bayindir B, Dehaspe L, Brison N, et al. Noninvasive prenatal testing

using a novel analysis pipeline to screen for all autosomal fetal aneu-

ploidies improves pregnancy management. Eur J Hum Genet.

2015;23(10):1286‐1293.

19. van Beek DM, Straver R, Weiss MM, et al. Comparing methods for

fetal fraction determination and quality control of NIPT samples.

Prenat Diagn. 2017;37(8):769‐773.

20. Straver R, Oudejans CBM, Sistermans EA, Reinders MJT. Calculating

the fetal fraction for noninvasive prenatal testing based on genome‐
wide nucleosome profiles. Prenat Diagn. 2016;36(7):614‐621.

21. Kim SK, Hannum G, Geis J, et al. Determination of fetal DNA fraction

from the plasma of pregnant women using sequence read counts.

Prenat Diagn. 2015;35(8):810‐815.

22. Langmead B, Salzberg SL. Fast gapped‐read alignment with Bowtie 2.

Nat Methods. 2012;9(4):357‐359.

23. Tischler G, Leonard S. biobambam: tools for read pair collation based

algorithms on BAM files. Source Code Biol Med. 2014 Jun 20;9(1):13.

24. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map

format and SAMtools. Bioinforma Oxf Engl. 2009;25(16):2078‐2079.

25. Raman L, Dheedene A, De Smet M, Van Dorpe J, Menten B.

WisecondorX: improved copy number detection for routine shallow

whole‐genome sequencing. Nucleic Acids Res. 2019;47(4):1605‐1614.

26. Pearson K. LIII. On lines and planes of closest fit to systems of points

in space. Lond Edinb Dublin Philos Mag J Sci. 1901 Nov

1;2(11):559‐572.

27. Vardhanabhuti S, Jeng XJ, Wu Y, Li H. Parametric modeling of whole‐
genome sequencing data for CNV identification. Biostat Oxf Engl.

2014;15(3):427‐441.

28. Grendár M, Loderer D, Lasabová Z, Danko J. A comment on Comparing

methods for fetal fraction determination and quality control of NIPT

samples”. Prenat Diagn. 2017;37(12):1265.

29. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized

linear models via coordinate descent. J Stat Softw. 2010;33(1):1‐22.

30. Willett JB, Singer JD. Another cautionary note about R2: its use in

weighted least‐squares regression analysis. Am Stat.

1988;42(3):236‐238.

31. Adalsteinsson VA, Ha G, Freeman SS, et al. Scalable whole‐exome

sequencing of cell‐free DNA reveals high concordance with metastatic

tumors. Nat Commun. 2017;8(1):1324.
32. Visootsak J, Graham JM. Klinefelter syndrome and other sex chromo-

somal aneuploidies. Orphanet J Rare Dis. 2006;1(1):42.

33. Stochholm K, Juul S, Gravholt CH. Diagnosis and mortality in 47,XYY

persons: a registry study. Orphanet J Rare Dis. 2010;5(1):15.

34. Otter M, Schrander‐Stumpel CT, Curfs LM. Triple X syndrome: a

review of the literature. Eur J Hum Genet. 2010;18(3):265‐271.

35. Gravholt CH, Stochholm K. The epidemiology of Turner syndrome. Int

Congr Ser. 2006;1298:139‐145.

36. Zhang H, Gao Y, Jiang F, et al. Non‐invasive prenatal testing for triso-

mies 21, 18 and 13: clinical experience from 146,958 pregnancies.

Ultrasound Obstet Gynecol Off J Int Soc Ultrasound Obstet Gynecol.

2015;45(5):530‐538.

37. Helena Mangs A, Morris BJ. The human pseudoautosomal region

(PAR): origin, function and future. Curr Genomics. 2007

Apr;8(2):129‐136.

38. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias

in high‐throughput sequencing. Nucleic Acids Res. 2012;40(10):e72.

39. Kornman L, Palma‐Dias R, Nisbet D, et al. Non‐invasive prenatal test-

ing for sex chromosome aneuploidy in routine clinical practice. Fetal

Diagn Ther. 2018;44(2):85‐90.

40. Zhang B, Lu B‐Y, Yu B, et al. Noninvasive prenatal screening for fetal

common sex chromosome aneuploidies from maternal blood. J Int

Med Res. 2017;45(2):621‐630.

41. Ramdaney A, Hoskovec J, Harkenrider J, Soto E, Murphy L. Clinical

experience with sex chromosome aneuploidies detected by noninva-

sive prenatal testing (NIPT): accuracy and patient decision‐making.

Prenat Diagn. 2018;38(11):841‐848.

42. Sikkema‐Raddatz B, Johansson LF, de Boer EN, et al. NIPTRIC: an

online tool for clinical interpretation of non‐invasive prenatal testing

(NIPT) results. Sci Rep. 2016;6(1):38359.

43. Brison N, Neofytou M, Dehaspe L, et al. Predicting fetoplacental chro-

mosomal mosaicism during non‐invasive prenatal testing. Prenat Diagn.

2018;38(4):258‐266.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Raman L, Baetens M, De Smet M,

Dheedene A, Van Dorpe J, Menten B. PREFACE: In silico pipe-

line for accurate cell‐free fetal DNA fraction prediction. Prenatal

Diagnosis. 2019;39:925–933. https://doi.org/10.1002/pd.5508

https://doi.org/10.1002/pd.5508

