76 research outputs found

    Personal area technologies for internetworked services

    Get PDF

    Iterative interference cancellation and channel estimation for mobile OFDM

    Full text link

    Physical Layer Parameter and Algorithm Study in a Downlink OFDM-LTE Context

    Get PDF

    A Novel LS/LMMSE Based PSO Approach for 3D-Channel Estimation in Rayleigh Fading

    Get PDF
    A high transmission rate can be obtained using Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) model. The most commonly used 3D-pilot aided channel estimation (PACE) techniques are Least Square (LS) and Least Minimum Mean Square (LMMSE) error. Both of the methods suffer from high mean square error and computational complexity. The LS is quite simple and LMMSE being superior in performance to LS providing low Bit Error Rate (BER) at high Signal to Noise ratio (SNR). Artificial Intelligence when combined with these two methods produces remarkable results by reducing the error between transmission and reception of data signal. The essence of LS and LMMSE is used priory to estimate the channel parameters. The bit error so obtained is compared and the least bit error value is fine-tuned using particle swarm optimization (PSO) to obtained better channel parameters and improved BER. The channel parameter corresponding to the low value of bit error rate obtained from LS/LMMSE is also used for particle initialization. Thus, the particles advance from the obtained channel parameters and are processed to find a better solution against the lowest bit error value obtained by LS/LMMSE. If the particles fail to do so, then the bit error value obtained by LS/LMMSE is finally considered. It has emerged from the simulated results that the performance of the proposed system is better than the LS/LMMSE estimations. The performance of OFDM systems using proposed technique can be observed from the imitation and relative results

    Multitrack Detection for Magnetic Recording

    Get PDF
    The thesis develops advanced signal processing algorithms for magnetic recording to increase areal density. The exploding demand for cloud storage is motivating a push for higher areal densities, with narrower track pitches and shorter bit lengths. The resulting increase in interference and media noise requires improvements in read channel signal processing to keep pace. This thesis proposes the multitrack pattern-dependent noise-prediction algorithm as a solution to the joint maximum-likelihood multitrack detection problem in the face of pattern-dependent autoregressive Gaussian noise. The magnetic recording read channel has numerous parameters that must be carefully tuned for best performance; these include not only the equalizer coefficients but also any parameters inside the detector. This thesis proposes two new tuning strategies: one is to minimize the bit-error rate after detection, and the other is to minimize the frame-error rate after error-control decoding. Furthermore, this thesis designs a neural network read channel architecture and compares the performance and complexity with these traditional signal processing techniques.Ph.D

    Novel Estimation and Detection Techniques for 5G Networks

    Get PDF
    The thesis presents several detection and estimation techniques that can be incorporated into the fifth-generation (5G) networks. First, the thesis presents a novel system for orthogonal frequency division multiplexing (OFDM) to estimate the channel blindly. The system is based on modulating particular pairs of subcarriers using amplitude shift keying (ASK) and phase-shift keying (PSK) adjacent in the frequency domain, which enables the realization of a decision-directed (DD) one-shot blind channel estimator (OSBCE). The performance of the proposed estimator is evaluated in terms of the mean squared error (MSE), where an accurate analytical expression is derived and verified using Monte Carlo simulation under various channel conditions. The system has also extended to exploits the channel correlation over consecutive OFDM symbols to estimate the channel parameters blindly. Furthermore, a reliable and accurate approach has been introduced to evaluate the spectral efficiency of various communications systems. The metric takes into consideration the system dynamics, QoS requirements, and design constraints. Next, a novel efficient receiver design for wireless communication systems that incorporate OFDM transmission has been proposed. The proposed receiver does not require channel estimation or equalization to perform coherent data detection. Instead, channel estimation, equalization, and data detection are combined into a single operation, and hence, the detector performs a direct data detector (D3). The performance of the proposed D3 is thoroughly analyzed theoretically in terms of bit error rate (BER), where closed-form accurate approximations are derived for several cases of interest, and validated by Monte Carlo simulations. The computational complexity of D3 depends on the length of the sequence to be detected. Nevertheless, a significant complexity reduction can be achieved using the Viterbi algorithm (VA). Finally, the thesis proposes a low-complexity algorithm for detecting anomalies in industrial steelmaking furnaces operation. The algorithm utilizes the vibration measurements collected from several built-in sensors to compute the temporal correlation using the autocorrelation function (ACF). Furthermore, the proposed model parameters are tuned by solving multi-objective optimization using a genetic algorithm (GA). The proposed algorithm is tested using a practical dataset provided by an industrial steelmaking plant

    Signal processing for improved MPEG-based communication systems

    Get PDF

    The Economic and Philosophic Manuscripts of Data

    Get PDF
    Society is filled with words and images that elucidate the positive force radiating from technology entities. I push back against this imprecise and inaccurate narrative by breaking down the illusions created by surveillance capitalism. I argue that there exists a unique relationship between an individual and their environment in creating value, especially in the form of data. This relationship tears down the smokescreens prompted up by the surveillance state because it demonstrates the costs of technology and surveillance capitalism. I found that how data is created and made monetarily valuable has significant, adverse repercussions on the capability to flourish as a human being. The world is increasingly shaped by the digital economy incentivizing the collection of data, and consequently, beliefs about people as no different than commodities proliferate, damage on people’s epistemic capacities continue, and deeply intimate costs are incurred in a person’s personal life. I conclude by imagining a relevant alternative scenario to a surveillance state: blockchain technology. While the surveillance state is a totalizing and powerful system that operates discreetly, blockchain has the potential to be a solution to the extant problems of the surveillance state because blockchain technology can establish and facilitate trust in the digital in a way that is decentralized. As a result, people can fundamentally trust each other in a manner that is not dependent on the centralized data storages. In this thesis, I not only evaluate the history of the surveillance state, but I also look to the future by imagining how a different system of valuation has the potential to respect the digital identity of a person through a combined economic and philosophic lens

    Performance analysis of energy detection algorithm in cognitive radio

    Get PDF
    Rapid growth of wireless applications and services has made it essential to address spectrum scarcity problem. if we were scan a portion of radio spectrum including revenue-rich urban areas, we find that some frequency bands in the spectrum are largely unoccupied most of the time, some other frequency bands are partially occupied and the remaining frequency bands are heavily used. This leads to a underutilization of radio spectrum, Cognitive radio (CR) technology attempts alleviate this problem through improved utilization of radio spectrum. Cognitive radio is a form of wireless communication in which a transceiver can intelligently detect which RF communication channels are in use and which are not, and instantly move into vacant channels while avoiding occupied ones. This optimizes the use of available radio-frequency (RF) spectrum while minimizing interference to other users. There two types of cognitive radio, full cognitive radio and spectrum-sensing cognitive radio. Full cognitive radio takes into account all parameters that a wireless node or network can be aware of. Spectrum-sensing cognitive radio is used to detect channels in the radio frequency spectrum. Spectrum sensing is a fundamental requirement in cognitive radio network. Many signal detection techniques can be used in spectrum sensing so as to enhance the detection probability. In this thesis we analyze the performance of energy detector spectrum sensing algorithm in cognitive radio. By increasing the some parameters, the performance of algorithm can be improved as shown in the simulation results. In cognitive radio systems, secondary users should determine correctly whether the primary user is absent or not in a certain spectrum within a short detection period. Spectrum detection schemes based on fixed threshold are sensitive to noise uncertainty, the energy detection based on dynamic threshold can improve the antagonism of noise uncertainty; get a good performance of detection while without increasing the computer complexity uncertainty and improves detection performance for schemes are sensitive to noise uncertainty in lower signal-to-noise and large noise uncertainty environments
    corecore