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Abstract 

A high transmission rate can be obtained using Multi Input 
Multi Output (MIMO) Orthogonal Frequency Division 
Multiplexing (OFDM) model. The most commonly used 3D-
pilot aided channel estimation (PACE) techniques are Least 
Square (LS) and Least Minimum Mean Square (LMMSE) 
error. Both of the methods suffer from high mean square 
error and computational complexity. The LS is quite simple 
and LMMSE being superior in performance to LS providing 
low Bit Error Rate (BER) at high Signal to Noise ratio 
(SNR). Artificial Intelligence when combined with these two 
methods produces remarkable results by reducing the error 
between transmission and reception of data signal. The 
essence of LS and LMMSE is used priory to estimate the 
channel parameters. The bit error so obtained is compared 
and the least bit error value is fine-tuned using particle swarm 
optimization (PSO) to obtained better channel parameters 
and improved BER. The channel parameter corresponding to 
the low value of bit error rate obtained from LS/LMMSE is 
also used for particle initialization. Thus, the particles 
advance from the obtained channel parameters and are 
processed to find a better solution against the lowest bit error 
value obtained by LS/LMMSE. If the particles fail to do so, 
then the bit error value obtained by LS/LMMSE is finally 
considered. It has emerged from the simulated results that the 
performance of the proposed system is better than the 
LS/LMMSE estimations. The performance of OFDM 
systems using proposed technique can be observed from the 
imitation and relative results. 

1. Introduction 

The current research over some years have been successfully 
implemented communication standards for 3G and 4G 
systems in wireless communications and now research is 
concentrated and extended towards processing 5G systems. 
Such systems had effectively and efficiently used Multi input 
multi output (MIMO) orthogonal frequency division 
multiplexing (OFDM) technology [1].  MIMO–OFDM 
promises higher energy and spectral efficiencies, while 
mitigating inter symbol interference (ISI) [2]. Starting with 
3G, the wireless communications standards have 
incorporated OFDM technology, to reduce the inter symbol 

interference; obtain higher data rates and better system 
spectral efficiency. 
     The heart of any OFDM receiver is the channel estimation 
block. Efficiency of the channel estimation has a direct 
impact on the bit error rate (BER) performance of the OFDM 
system. Frequency domain channel estimation techniques 
employ known symbols called pilots at known positions in 
the OFDM symbol grid. Various arrangements of pilots are 
employed for improving MIMO-OFDM system performance.  
These pilots are arranged in a regular manner as comb type, 
block-type [3] or 2D-grid type [4]. In a comb-type 
arrangement, the pilots are present in few subcarriers of all 
OFDM symbols, while in block-type arrangement, the pilots 
are present in few OFDM symbols on all subcarriers. In 2D-
grid type arrangement, the pilots are present in few 
subcarriers of few OFDM symbols. Thus, the number of 
pilots in 2D-grid type is less than that in Comb type or block-
type arrangements. However, reliability in terms of system 
BER is better for comb-type arrangement in fast fading 
channel environments. At the receiver, the channel is 
estimated using known and the received pilot symbols. 
Frequency domain channel estimation techniques are either 
LS based, MMSE based or maximum likelihood (ML) based 
ones. In this paper, LS and MMSE techniques have been 
primarily considered. OFDM has been adopted by several 
wireless systems and standards such as WLAN 
IEEE802.11a/n,4G LTE, WiMAX IEEE 802.16d/e, Digital 
Audio Broadcasting (DAB), Terrestrial Digital Video 
Broadcasting DVB-T and DVB-T2 [5]. 
 Wireless channels have many difficulties to deal with, 
especially in multipath fading. A satisfactory candidate that 
eliminates a need for the complex equalizers is the 
Orthogonal Frequency Division Multiplexing. OFDM is a 
popular modulation technique for high spectral efficiency, 
robustness against multipath fading, frequency selective 
fading and low computational complexity. Besides of these 
advantages, it also faces two major disadvantages, those are, 
high peak-to-average power ratio (PAPR) and Carrier 
frequency offset CFO and phase noise which cause the 
subcarriers to deviate from the spacing required for 
orthogonality, causing Inter carrier interference (ICI). They 
also cause high BER in the system. On the other hand, 
Multiple-input multiple-output systems are occupied to 
complete one of the following two objectives: separating a 
number of distinct signals properly from noise and fading 
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effects; and combining the signals to attain the desired 
property such as assembling a narrow transmission or 
reception beam. However, MIMO systems have some 
drawbacks too such as, decoding complexity, complex digital 
signal processing algorithms. But the combination of MIMO 
and OFDM has the stringent potential of optimizing these 
problems since MIMO can boost the capacity and the 
diversity [6-8] and OFDM can mitigate the detrimental 
effects due to multipath fading [9]. 
 Literature shows Particle swarm optimization being used 
by researcher in improving various parameters innovatively 
for MIMO-OFDM based systems. Generally, channel 
estimation can be seen as an optimization problem, that is, to 
minimize the Euclidean distance between the estimated and 
the true channel coefficients. The straightforward solution to 
this problem incorporates matrix inversion and leads to the 
well-known least-squares (LS) and/or MMSE estimator 
Heuristic, nature-inspired algorithms, such as particle swarm 
optimization (PSO) [10,11] or genetic algorithms (GA) 
[12,13] are attractive low-complexity solutions to facilitate 
MIMO channel estimation. PSO is a population-based 
heuristic global optimization algorithm, which originated in 
modeling the social behavior of bird flocks and fish schools. 
It has been applied to a variety of technical optimization 
problems, including channel and parameter estimation as well 
as data detection and multiuser detection. Unfortunately, a 
fair evaluation of PSO is rather difficult due to the wide range 
of available modifications and the fact that the algorithm is 
often tuned to optimum performance for a specific 
optimization problem by empirical measures. 
 In [14] PSO was used to reduce number of iteration while 
estimating channel for MMO-OFDM. In the iteration of the 
estimator, the proposed PSO algorithm finds desired MIMO 
weights matrix through the interaction of individuals in a 
population of weights matrices. It was shown that the Bit error 
performance was better than conventional adaptive equalizer. 
In [15], the main idea is to directly minimize the BER by 
employing a particle swarm optimization (PSO) algorithm on 
the estimated BER function in order to adaptively adjust the 
weights of the MBER detectors. Simulation results 
demonstrate that this adaptive minimum-BER detection using 
PSO algorithm (MBER-PSO) can achieve significantly 
superior performance, which is very close to that of the 
optimal maximum-likelihood sequence estimation (MLSE) 
detector. 
     In this paper the system performance in terms of signal to 
noise rate (SNR) of a Multiple-input Multi-output (MIMO) 
2x2 Orthogonal Frequency-Division Multiplexing system 
and the channel is suffering a Rayleigh fading. This channel 
impulse response is estimated by inserting various pilots at 
some pre-determined locations of the OFDM resource block 
by utilizing Least Square (LS) and Least Mean MSE 
algorithms. 3D-Channel estimation can be described by the 
Pilot based Channel Estimation Techniques. In 3D-Pilot 
based estimation, the Channel Impulse Response (CIR) is 
estimated with a help of a known training sequence of bits 
sent in every transmission burst. At the receiver end with the 
assist of these training bits, the receiver is able to generate its 
own response. Channel is estimated based on the training 

sequence which is known to both transmitter and receiver. 
The receiver can utilize the known training bits and the 
corresponding received samples for estimating the Channel 
[16]. The MIMO system considered is as shown in Fig. 1. 
below. 
 
 
 

 
 
 
 
 
 
 

Figure 1:  2x2 MIMO Channel 
 

2. Channel Estimation 

2.1 The LS Estimate 

 

The following equations were used for channel estimation for 
complex pilots and channel coefficients. Equations (1) & (2) 
are final equations for estimating channel coefficients and 
data vectors respectively [17]. 
v1 = X′ ∗ X; 
v2 = inv(v1); 
v3 = Y′ ∗ X; 
 
Hls = v2 ∗ v3;                                                                         (1) 
 
% Estimate data vector for LS 
% X = Y/H 
 
Xrls = (inv(Hls) ∗ Yr′);                                                      (2) 
Where, 
    ‘X’ is transmitted pilot vector 
    ‘Y’ is received pilot vector  
    ‘Hls’ is the channel estimate and 
    ‘Xrls’ is the estimated data vector from estimated  
     channel matrix Hls. 
 
2.2 The LMMSE Estimate  

 

The following equations were used for channel estimation 
using LMMSE for complex pilots and channel coefficients. 
Equations (3) & (4) are final equations for estimating channel 
coefficients and data vectors respectively [18]. 
sigma = 10^(snr/10); 
t1 = (X′ ∗ X)./ (Nr ∗ sigma); 
t2 = eye (Nt)./ (Nr ∗ sigmah); 
t3 = inv (t1 + t2); 
t4 = (X′ ∗ Y)./ (Nr ∗ sigma); 
 
Hlmmse = t3 ∗ 4;                                                                    (3) 
        
% Estimate data vector 
% X =  Y/H 
Xr = (Yr ∗ inv (Hlmmse))

′
;                                                  (4) 

 X1 

X2 

Xr1 

Xr2 

h 
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The range of values of signal to noise ratio are from 0 – 40 
dB at an offset of 5dB. Therefore 9 values are plotted for bit 
error rate v/s signal to noise ratio. The value of sigmah is 
constant and equals to 0.25. 
     Each value of signal to noise ratio is run for 20 iterations 
for both the channel estimate techniques (LS and LMMSE) 
and the minimum value of the bit error rate is considered for 
PSO optimization. The minimum value to be considered for 
PSO optimization is the smaller value of bit error rate taken 
from the LS and the LMMSE estimate.  
The parameters used for 2x2 MIMO are listed in Table 1 
 

Table 1: Parameters for 2x2 MIMO systems 
 

Sr. 

No. 
Parameter Value 

1 Number of Transmit 
Antenna 2 

2 Number of Receive 
Antenna 2 

3 Data 64 (Random & Complex) 
4 Pilots 64 (Random & Complex) 
5 Modulation Scheme 4-ary 
6 Pilot Position 1:2:128 
7 Data Position 2:2:128 
8 Sigmah 0.25 
9 Signal to Noise Ratio 0:5:40 

10 Iteration for SNR value 20 
11 Guard Band  32 

 
The length of the signal transmitted is 64+64+32=160 
complex symbols. The following is the sequence of steps 
carried during transmission. 

1. Generate 3-dimensional random data to allocate 3D 
MIMO-OFDM system for two transmitter –x1and 
x2(integer numbers with scheme) 

2. Modulate the data symbols – xm1 and xm2 
3. Insert 3D-scattered pilots – xp1and xp2 
4. Find Inverse Fast Fourier transform – xifft1 & 

xifft2 
5. Add cyclic prefix – xg1 & xg2 
6. Perform Y=XH using equations (5) & (6), 

 
y1 = xg1.∗ h(1,1) + xg2.∗ h(1,2);                    (5) 
y2 = xg1.∗ h(2,1) + xg2.∗ h(2,2);                    (6) 
 

7. Combine signals for transmission  
       Y =[y1 y2]; 
8. Add Additive White Gaussian Noise 
9. Transmit the signal over the Rayleigh fading 

environment 
 

Following are the steps carried out at the receiver end. 
1. Separate the signals corresponding to transmitters  
2. Remove the guard band 
3. Find Fast Fourier transform 
4. Separate the data and pilots 
5. Perform the LS estimate 
6. Perform the LMMSE estimate 

7. Demodulate the data vectors obtained from the 
estimation techniques 

8. Compare with the transmitted data vectors and find 
bit error rate 

9. Repeat the process for 20 iterations 
10. Get the minimum bit error rate value for each of the 

estimate 
11. The channel coefficients obtained here from 

LMMSE estimate are used for PSO optimization 
12. Compare and store the minimum value of BER 

from both the estimate for PSO optimization 
13. Continue the process of transmission and reception 

for all values of signal to noise ratio [0:5:40] 

3. The PSO Equations and Parameters 

The velocity and position update equations for PSO are listed 
in equation (7) & (8) respectively. 

v[] = w ∗ v[] + c1 ∗ rand() ∗ (pbest[] − present[]) 
              +c2 ∗ rand() ∗ (gbest[] − present[])                    (7) 
 
New_present [] = present [] +  v[]                                      (8)          
where, v[] is the particle velocity. 
             present [] is the current particle (solution).  
             New_present [] is the updated particle (solution). 
             pbest[] and gbest[] are defined as stated before.  
             rand() is a random number between (0, 1).  
             c1, c2 are learning factors.  
             w – Inertia factor 
The PSO optimization for BER takes on the following initial 
parameters. Number of PSO particles taken is equal to the size 
of H estimate of LMMSE = 20. Particles are initialized with 
the channel coefficients (HH) of LMMSE. Initial velocities of 
the particles are considered to be random complex numbers. 
Initial particle best values are again set to channel coefficients 
(HH) values of LMMSE. The Initial global best value is set 
to the best value from channel coefficients estimate of 
LMMSE and LS. The following Fig.2. shows how PSO is 
tuned with the channel parameters of LS and LMMSE for 
finding low bit error rate.  
The following constant parameters are considered 
% Number of iterations for particle update 
iter = 100;   % Maximum numbers of iterations or epoch 
 
% PSO constants 
c1 = 2;   % Constant  
c2 = 2;   % Constant  
 
t = 0: 0.5/iter: 0.9;   % Parameter 
 
% Maximum and minimum values for velocities 
Vmax = 25 ∗ sqrt(2);   % Limit to max velocity 
 
% Maximum and minimum values for particles 
Xmax = 3 ∗ sqrt(2);   % Limit position - max 
Xmin = 0;    % Limit position - min 
 
% Error tolerance 
tol = 0;% Tolerance between actual and target 
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The main loop with LS and LMMSE channel estimation for 
2x2 MIMO-OFDM system is used iterates for 20 iterations 
for every value of SNR from 0:5:40. The minimum value of 
BER from these 20 iterations for LS and LMMSE are stored. 
Both these minimum BER values (each for LS and LMMSE) 
are then compared and the final minimum BER value is 
chosen as a target value for PSO. The channel parameter H 
corresponding to this minimum value obtained above is used 
as the initial Gbest value for the particle swarm. It is proved 
in the literature that LMMSE performs better than LS 
estimation. The channel parameter H of LMMSE obtained for 
20 iterations are considered as initial particle positions for 20 
particles and their initial Pbest values. The PSO iterates for 
100 iterations and evaluate the fitness function (LS/LMMSE 
estimate) and checks whether any particle is able to find a 
better H estimate than a normal LS/LMMSE estimate 
function. This is achieved by comparing the minimum bit 
error rate value to that obtained from the PSO estimate. The 
target value set corresponds to the fittest value as obtained 
from the LS/LMMSE estimate. Here we are interested to find 
Hpso (PSO obtained channel parameter matrix) so that the 
estimated data vector nearly or completely matches to that of 
the transmitted data vector. 

4. The Novel Approach of Estimating Channel 

Parameters with PSO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Flowchart of the novel approach to optimize BER   
                using PSO 

The Fig.2. indicates the process of BER optimization in 2x2 
MIMO-OFDM systems. It shows that the PSO continues to 
find better H parameter than obtained by LS and LMMSE 
which results in improved BER value as compared to 
LS/LMMSE techniques. Since the LMMSE is better than LS, 
the fitness value calculated in PSO using equations as 
discusses in the section of LMMSE estimate. Further all the 
nature inspired algorithm performance depends on their 
parameter selection for their performance, PSO may fail to 
find a better solution in some cases. Therefore, the complete 
system is executed for numbers of run and the best results are 
shown in this paper. The initial particle values and the number 
of iterations for the PSO are crucial parameters for 
convergence at the goal. For reducing complexity, the number 
of iteration is kept to 100. Experimental results showed that 
iterating PSO over 100 iterations do not provide significant 
results. The initial positions of the particles are assumed to be 
the channel parameters obtained from LMMSE estimate 
assuming its performance over LS.  Another choice is to 
select random data for initial positions of the particles. 

The Fig.3 below shows how the fitness value and best BER 
in PSO is estimated using parameters obtained from 
LS/LMMSE techniques for Rayleigh fading channel. The 
loop is iterated for 100 iterations to find minimum BER value 
as compared to the minimum BER value obtained by 
LS/LMMSE technique. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Calculation of PSO fitness value and Error in BER 
 

5. Results and Conclusions 

Results shown in Fig. 4-11 below with respect to signal 
to noise ratio and bit error rate indicates that PSO optimized 
channel coefficients for Rayleigh fading channel have low 
BER values as compared to LS/LMMSE estimated 
coefficients. We have used random pilots and channel 
parameters which are initialized priory. Depending upon the 
channel coefficients and the pilots, the system performance 
varies. The range of values considered for Doppler frequency 
(fd) is [30  500], with ts = 0.07µsec for the Rayleigh fading 
channel. The BER goes on increasing as the Doppler 
frequency is increased from 30 to 500 Hz for 2x2 MIMO-
OFDM systems. The proposed estimation has improved 
performance at all Doppler frequencies. The blue colored line 
in the graph represents the performance of the proposed 
channel estimation technique. At higher Doppler frequencies 

Swarm 
Size=Iterations 

for BER 

Gbest=Hbest 
corresponding 
to minimum 

BER 
(LS/LMMSE) 

Pbest & Initial 
position of 
particles =         
H (LMMSE)  

Velocities of 
particles= 
Random 
complex 
numbers 

Number of 
iterations for 
PSO = 100 

C1 & C2 = 2 

Evaluate 
Fitness Value 

using LMMSE 

Is BER 
(PSO) 

better than 
BER? 

Update Particles (H) 
(LMMSE) 

Iterations 
Completed? 

Return 
Gbest = 
Channel 
estimate 

(H) 

Return Gbest = Hbest 
corresponding to minimum 

BER (LS/LMMSE) as it 
was originally 

No 

Yes 

Yes 

No 

Hpso=INV {(X’*X) * (Y’*X)} 

Xpso={(Yr) * INV (Hpso)}’ 

Xdem= Demodulate (Xpso, Scheme) 

BERpso=Compare (Xdem, Xtransmitted) 

Error=(BERpso – BER(Best of LS/LMMSE) 



121 
 

the performance of LS degrades while LMMSE performs 
better. The LS/LMMSE based PSO performance depends 
upon the channel estimated matrix produced by the LMMSE 
at the end of the 20th iteration since the channel estimated 
matrix is used as the initial position of the PSO particles. The 
performance of the proposed channel estimation techniques 
also depends on the PSO parameters. Results show that the 
range of SNR values over which the proposed system has 
improved BER is not bounded for specific values of SNR. 
The performance of the proposed channel estimation 
technique is distributed over all range of SNR values. An 
advance version of PSO and fine tuning of PSO parameters 
would produce better result than the PSO used in this work. 
Also, the system can be tested over other antenna 
configurations higher than 2x2 systems. 

 
 

 
Figure 4: BER v/s SNR at Doppler frequency – 500 Hz 

 

 

 

Figure 5: BER v/s SNR at Doppler frequency – 400 Hz 

 
Figure 6: BER v/s SNR at Doppler frequency – 300 Hz 

 

 
Figure 7: BER v/s SNR at Doppler frequency – 200 Hz 

 

 
Figure 8: BER v/s SNR at Doppler frequency – 100 Hz 

0 5 10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Signal to Noise (dB)

B
it
 E

rr
o
r 

R
a
te

Performance of LS,LMMSE and LS-LMMSE-PSO

 

 

LS

LMMSE

LS-LMMSE-PSO Estimation

0 5 10 15 20 25 30 35
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Signal to Noise (dB)

B
it
 E

rr
o
r 

R
a
te

Performance of LS,LMMSE and LS-LMMSE-PSO

 

 

LS

LMMSE

LS-LMMSE-PSO Estimation

0 5 10 15 20 25 30 35
10

-4

10
-3

10
-2

10
-1

10
0

Signal to Noise (dB)

B
it
 E

rr
o
r 

R
a
te

Performance of LS,LMMSE and LS-LMMSE-PSO

 

 

LS

LMMSE

LS-LMMSE-PSO Estimation

0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

Signal to Noise (dB)

B
it
 E

rr
o
r 

R
a
te

Performance of LS,LMMSE and LS-LMMSE-PSO

 

 

LS

LMMSE

LS-LMMSE-PSO Estimation

0 5 10 15 20 25
10

-3

10
-2

10
-1

10
0

Signal to Noise (dB)

B
it
 E

rr
o
r 

R
a
te

Performance of LS,LMMSE and LS-LMMSE-PSO

 

 

LS

LMMSE

LS-LMMSE-PSO Estimation



122 
 

 

 
Figure 9: BER v/s SNR at Doppler frequency – 50 Hz 

 

 
Figure 10: BER v/s SNR at Doppler frequency – 40 Hz 

 
 

 
 
Figure 11: BER v/s SNR at Doppler frequency – 30 Hz 
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