178 research outputs found

    Model-Based Threat Assessment in Semi-Autonomous Vehicles with Model Parameter Uncertainties

    Get PDF
    In this paper, we consider model-based threat assessment methods which rely on vehicle and driver mathematical models and are based on reachability analysis tools and set invariance theory. We focus on the parametric uncertainties of the driver mathematical model and show how these can be accounted for in the threat assessment. The novelty of the proposed methods lies in the inclusion of the driver model uncertainties in the threat assessment problem formulation and in their validation through experimental data. We show how different ways of accounting for the model uncertainties impact the capabilities and the effectiveness of the proposed algorithms in detecting hazardous driving situations

    Automotive Threat Assessment Design for Combined Braking and Steering Maneuvers

    Get PDF
    The active safety systems available on the passenger cars market today, automatically deploy automated safety interventions in situations where the driver is in need of assistance. In this paper, we consider the process of determining whether such interventions are needed. In particular, we design a threat assessment method which evaluates the risk that the vehicle will either leave the road or its maneuverability will be significantly reduced within a finite time horizon. The proposed threat assessment method accounts for combined braking and steering maneuvers, which results in a nonlinear dynamical vehicle behavior. We formulate the threat assessment problem as a nonconvex constraint satisfaction problem and implement an algorithm that solves it through interval-based consistency techniques. Experimental validation of the proposed approach indicates that constraint violation can be predicted, while avoiding the detection of false threats

    Real-time Implementation of a Novel Safety Function for Prevention of Loss of Vehicle Control

    Get PDF
    We present a novel safety function for prevention of vehicle control loss. The safety function overcomes some of the limitations of conventional Electronic Stability Control (ESC) systems. Based on sensor information about the host vehicle's state and the road ahead, a threat assessment algorithm predicts the future evolution of the vehicle's state. If the vehicle motion, predicted over a finite time horizon violates safety constraints, autonomous deceleration is activated in order to prevent vehicle loss of control. The safety function has been implemented in real-time. Experimental results indicate that the safety function relies less on the driver's skills than conventional ESC systems and that a more controllable and comfortable vehicle motion can be acquired when the function is active

    Nachweislich sichere Bewegungsplanung für autonome Fahrzeuge durch Echtzeitverifikation

    Get PDF
    This thesis introduces fail-safe motion planning as the first approach to guarantee legal safety of autonomous vehicles in arbitrary traffic situations. The proposed safety layer verifies whether intended trajectories comply with legal safety and provides fail-safe trajectories when intended trajectories result in safety-critical situations. The presented results indicate that the use of fail-safe motion planning can drastically reduce the number of traffic accidents.Die vorliegende Arbeit führt ein neuartiges Verifikationsverfahren ein, mit dessen Hilfe zum ersten Mal die verkehrsregelkonforme Sicherheit von autonomen Fahrzeugen gewährleistet werden kann. Das Verifikationsverfahren überprüft, ob geplante Trajektorien sicher sind und generiert Rückfalltrajektorien falls diese zu einer unsicheren Situation führen. Die Ergebnisse zeigen, dass die Verwendung des Verfahrens zu einer deutlichen Reduktion von Verkehrsunfällen führt

    Forward Invariance of Sets for Hybrid Dynamical Systems (Part I)

    Full text link
    In this paper, tools to study forward invariance properties with robustness to dis- turbances, referred to as robust forward invariance, are proposed for hybrid dynamical systems modeled as hybrid inclusions. Hybrid inclusions are given in terms of dif- ferential and difference inclusions with state and disturbance constraints, for whose definition only four objects are required. The proposed robust forward invariance notions allow for the diverse type of solutions to such systems (with and without dis- turbances), including solutions that have persistent flows and jumps, that are Zeno, and that stop to exist after finite amount of (hybrid) time. Sufficient conditions for sets to enjoy such properties are presented. These conditions are given in terms of the objects defining the hybrid inclusions and the set to be rendered robust forward invariant. In addition, as special cases, these conditions are exploited to state results on nominal forward invariance for hybrid systems without disturbances. Furthermore, results that provide conditions to render the sublevel sets of Lyapunov-like functions forward invariant are established. Analysis of a controlled inverter system is presented as an application of our results. Academic examples are given throughout the paper to illustrate the main ideas.Comment: 39 pages, 7 figures, accepted to TA

    Constraint-based navigation for safe, shared control of ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 138-147).Human error in machine operation is common and costly. This thesis introduces, develops, and experimentally demonstrates a new paradigm for shared-adaptive control of human-machine systems that mitigates the effects of human error without removing humans from the control loop. Motivated by observed human proclivity toward navigation in fields of safe travel rather than along specific trajectories, the planning and control framework developed in this thesis is rooted in the design and enforcement of constraints rather than the more traditional use of reference paths. Two constraint-planning methods are introduced. The first uses a constrained Delaunay triangulation of the environment to identify, cumulatively evaluate, and succinctly circumscribe the paths belonging to a particular homotopy with a set of semi autonomously enforceable constraints on the vehicle's position. The second identifies a desired homotopy by planning - and then laterally expanding - the optimal path that traverses it. Simulated results show both of these constraint-planning methods capable of improving the performance of one or multiple agents traversing an environment with obstacles. A method for predicting the threat posed to the vehicle given the current driver action, present state of the environment, and modeled vehicle dynamics is also presented. This threat assessment method, and the shared control approach it facilitates, are shown in simulation to prevent constraint violation or vehicular loss of control with minimal control intervention. Visual and haptic driver feedback mechanisms facilitated by this constraint-based control and threat-based intervention are also introduced. Finally, a large-scale, repeated measures study is presented to evaluate this control framework's effect on the performance, confidence, and cognitive workload of 20 drivers teleoperating an unmanned ground vehicle through an outdoor obstacle course. In 1,200 trials, the constraint-based framework developed in this thesis is shown to increase vehicle velocity by 26% while reducing the occurrence of collisions by 78%, improving driver reaction time to a secondary task by 8.7%, and increasing overall user confidence and sense of control by 44% and 12%, respectively. These performance improvements were realized with the autonomous controller usurping less than 43% of available vehicle control authority, on average.by Sterling J. Anderson.Ph.D
    corecore