4 research outputs found

    Path Generation for Wheeled Robots Autonomous Navigation on Vegetated Terrain

    Full text link
    Wheeled robot navigation has been widely used in urban environments, but little research has been conducted on its navigation in wild vegetation. External sensors (LiDAR, camera etc.) are often used to construct point cloud map of the surrounding environment, however, the supporting rigid ground used for travelling cannot be detected due to the occlusion of vegetation. This often causes unsafe or not smooth path during planning process. To address the drawback, we propose the PE-RRT* algorithm, which effectively combines a novel support plane estimation method and sampling algorithm to generate real-time feasible and safe path in vegetation environments. In order to accurately estimate the support plane, we combine external perception and proprioception, and use Multivariate Gaussian Processe Regression (MV-GPR) to estimate the terrain at the sampling nodes. We build a physical experimental platform and conduct experiments in different outdoor environments. Experimental results show that our method has high safety, robustness and generalization

    Predictive Matrix-Variate t Models

    No full text
    It is becoming increasingly important to learn from a partially-observed random matrix and predict its missing elements. We assume that the entire matrix is a single sample drawn from a matrix-variate t distribution and suggest a matrixvariate t model (MVTM) to predict those missing elements. We show that MVTM generalizes a range of known probabilistic models, and automatically performs model selection to encourage sparse predictive models. Due to the non-conjugacy of its prior, it is difficult to make predictions by computing the mode or mean of the posterior distribution. We suggest an optimization method that sequentially minimizes a convex upper-bound of the log-likelihood, which is very efficient and scalable. The experiments on a toy data and EachMovie dataset show a good predictive accuracy of the model.

    Sparse Matrix-variate t Process Blockmodels

    Get PDF
    We consider the problem of modeling binary interactions in networks, such as friendship networks and protein interaction networks, and identifying latent groups in the networks. This problem is challenging due to the facts i) that the data are interdependent instead of independent, ii) that the network data are very noise (e.g., missing edges), and iii) that the network interactions are often sparse. To address these challenges, we propose a Sparse Matrix-variate t process Blockmodel (SMTB). In particular, we generalize a matrix-variate t distribution to a t process on matrices with nonlinear covariance functions. Due to this generalization, our model can estimate latent memberships for individual network nodes. This separates our model from previous t distribution based relational models. Also, we introduce sparse prior distributions on the latent membership parameters, such tat the model selects group assignments for individual nodes. To learn the new model efficiently from data, we develop an efficient variational method. When compared with several state-of-the-art models, including the predictive matrix-variate t models and mixed membership stochastic blockmodels, our model achieved improved prediction accuracy on real world network datasets
    corecore