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Abstract

We consider the problem of modeling binary interactions in networks,
such as friendship networks and protein interaction networks, and identi-
fying latent groups in the networks. This problem is challenging due to
the facts i) that the data are interdependent instead of independent, ii)
that the network data are very noise (e.g., missing edges), and iii) that
the network interactions are often sparse. To address these challenges,
we propose a Sparse Matrix-variate ¢ process Blockmodel (SMTB). In
particular, we generalize a matrix-variate ¢ distribution to a ¢ process on
matrices with nonlinear covariance functions. Due to this generalization,
our model can estimate latent memberships for individual network nodes.
This separates our model from previous ¢ distribution based relational
models. Also, we introduce sparse prior distributions on the latent mem-
bership parameters, such tat the model selects group assignments for indi-
vidual nodes. To learn the new model efficiently from data, we develop an
efficient variational method. When compared with several state-of-the-art
models, including the predictive matrix-variate ¢ models and mixed mem-
bership stochastic blockmodels, our model achieved improved prediction
accuracy on real world network datasets.

1 Introduction

A critical task in relational learning is to model interactions among objects in
a network, such as proteins in an interaction network and people in a social
network, and to identify latent groups in the network. This task is encountered
for many real-world applications. For example, we might want to discover com-
mon research interests from groups of researchers who are co-authors of many



papers, or predict the functions of a protein based on a latent group it belongs
to.

This task, however, presents new modeling challenges. First, we cannot use
classical independence or exchangeability assumptions made in machine learn-
ing and statistics for relational data analysis; the objects are interdependent
via interactions or links between them, necessitating new models that capture
relations among objects. Second, the relationships among objects may be quite
complicated. A simple linear (or bilinear) model may not be sufficient to model
the complex relationships. Third, the network data are often sparse; since the
nodes of a network are often far from being fully connected, an adjacent matrix
representing the network structure contains many zeros. This sparsity imposes
additional difficulty for modeling.

To address these challenge, we propose a Sparse Matrix-variate ¢ process
Blockmodel (SMTB). A ¢ distribution is known to enhance sparsity and has
been used in many sparse Bayesian models, such as variational relevance vector
machine [1] and sparse probabilistic projection [2]. Recently matrix-variate ¢
distributions on matrices have been used to model relational data (e.g., [3, 4]).
We extend the work in [4] in two ways: 1) While [4] matrix-variate ¢ distribution
model (MVTM) has high prediction accuracy in term of modeling interactions
between nodes, it cannot reveal latent groups of nodes in a network. By con-
trast, we use nonlinear covariance functions in our model so that we generalize
the matrix-variate ¢ distributions to a stochastic process on matrices. This
generalization allows us to estimate latent memberships for individual network
nodes. ii) Also, we introduce sparse prior distributions on the latent member-
ship parameters, such that the model selects group assignments for individual
nodes. In particular, we use an exponential prior distribution that not only
forces the latent membership parameters to be nonnegative but also serves as a
sparsity regularizer. Furthermore, we present an efficient method to learn the
new model efficiently from data. When compared with several state-of-the-art
models, including the predictive matrix-variate ¢ models (MVTM) [4] and mixed
membership stochastic blockmodels (MMSB) [5], our model achieved improved
prediction accuracy on real world network datasets.

The rest of the paper is organized as follows. In Section 2, we present the
proposed sparse matrix-variate ¢ process blockmodel. In Section 3, we describe
related work. Section 4 presents experimental results, followed by the conclu-
sions in Section 5.

2 Sparse Matrix-variate ¢t Process Blockmodels

First we introduce our notations. We denote a constant by ¢ and an identity
matrix by I. We use an n by n interaction matrix Y to represent the noisy binary
relationships between n network nodes. We denote the index set of observed
interactions by @. We use an n by n latent interaction matrix X to represent
the noiseless version of Y. We represent the d by 1 membership vector for node
i as u;, where d is the number of latent clusters. All the membership vectors



are put together in the matrix U = (uy,...,u,) € R¥". Given the partially
observed matrix Y, our objective is to predict missing interactions in Y and
estimate U to identify latent groups of networks nodes.

2.1 Matrix-variate ¢ process models

In the relational setting, we assume that latent matrix X takes the form:
X =U"WU, (1)

where W € R4*? denotes the interactions among groups and the membership
matrix U represents the assignment of individual nodes to latent groups. If
W is an identity matrix, X becomes the direct product of UT and U and this
model reduces to classical matrix factorization.

Since interactions tend to be sparse, we hope X can be modeled as a sparse
matrix. To this end, we use a matrix-variate ¢ distribution [6] on W, i.e.,
W ~ Ta.a(W;p,0,,T), where p is the degree of freedom, 2 and Y define the
column-wise and row-wise covariance matrix respectively.

Now we set ! =1 and T = I. Replacing U by a mapping ¢(U), we obtain
#(U)TQ¢(U) = K(U,U) as the covariance matrix for columns of X. Using
another mapping for U, we obtain G(U, U) as the covariance matrix for rows
of X (different mappings allow us to obtain model the column-wise and row-wise
relationships differently). As a result, X follows a matrix-variate ¢ process [6].
The matrix-variate ¢ process is a nonparametric Bayesian model on matrices.
Formally, we have the following definition:

Definition 1 (Matrix-variate ¢ process). . A matriz-variate t process is a
stochastic process whose projection on any finite matriz follows a matriz-variate
t distribution.

Specifically, the t process on X has the following form:

X~ TPpn(X;p,0,K,G), (2)
ie.,
Ca[i(p+2n—1) IRV
pX) = 52 K|72"|G| 2
3" Tpl5(p+n—1)]
L, + K'XG !XT |2 (pt2n—1), (3)

2.2 Noise Model

We consider a Gaussian distribution to model the noise between the observable
measurement Y and the latent variation X. We then have

Y = Xij + €,



where €;; ~ N(0,0%) and the density of X is defined in Eq.(2). Therefore, the
log probability of the noise model is

1
mP(YolX) = (Yo, X)=—75 > (Y —Xi)? +e (4)
(4,5)€0

2.3 Variational approximation

Our task is to estimate the parameter U. Ideally we want to maximize the
evidence, i.e., P(Yp|U) = [ P(Y|X)P(X|U)dX over U. However, the com-
putation of the evidence is intractable since we cannot marginalize out the latent
variable X parameter in this integration.

One can use a Markov Chain Monte Carlo method to sample the parameter.
However, due to the large size of Y, a sampling method could be very slow.
In this work, we employ a variational approximation method in an expanded
model.

Specifically, we first expand the original ¢ process prior:

X R K0 « 0
F ) (5 ) (5 2)

where r = m + n.
Then we will use the following properties of a joint ¢ distribution.

Theorem 1.

P(X) = TPun(X;p,0,K,G) (5)

P(Z) = Tonm(Z;p,0,1,,1,) (6)
PX|Z,R,L) = TP, .(X;p+n+m,pu %, ¥), (7)
PRIZ) = Tum(R;p+m,0,K,Z"Z +1,,), (8)
P(L|Z) Tom(L;p+m,0,Z"Z +1,,,G), (9)

where p = RTZ(Z'Z +1,)"'R, T = K+ R (Z'Z+1,,)"'R and ¥ =
G+LT(Z"Z+1,)"'L. We denote by © = {Z,R,L} as the free variables.

Theorem 1 suggests that we can employ the conditional distributions over ©
to approximate a distribution on X. The approximation could be efficient since
m <n.

Now we use this idea to approximate the joint log-likelihood of the expanded
model:

In P(Y|U)

In / P(Y|X)P(X|U,0)P(0)dXd0

Q

In P(Oriap) + In / P(Y[X)P(X|U, Oiap)dX

> 10 P(Oyap) + / P(X|U, Oyap) In P(Y|X)dX.  (10)
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Note that we use a Maximum-a-Posteriori (MAP) approximation to obtain the
second equation above. The inequality in the third equation holds because of
the concavity of the logarithmic transformation.

Based on the definition of matrix-variate ¢ distributions, we can easily obtain

InP©®) = InP(Z)+WInPR|Z)
= —s;In|l, +Z"Z| - s2In|K| — s51n |G|
—ssn|I, + K'R(Z'Z+1,)'RT|
—s3In|I, + (Z"Z+1,)'RG7'R"| +¢, (11)

p+2m—1 _p+n+mfl
2 2

where s; = , 82 =5, 83 = are all constants.
Based on the distribution P(X|0) = TP, o(X; p+n+m, p, X, ¥), we have
the following proposition to calculate the mean and variance of Vec(X).

Proposition 1. The mean and variance of the vector Vec(X) are given by:

E(Vee(X)|©) = Vec(p), (12)
1

where ® denotes the Kronecker product.

The result directly comes from [6].
Then we can compute the second term in Eq. (10) as follows:

/P(X\U,@MAP)lnP(Y|X)dX

= E[-L(Yo,p)+s1 Y Zii¥;+d, (14)
(i,5)€0

where s4 = is a constant.

1
2% (pFmIn—2)
We can further parameterize the above equation by defining Q = R(I,, +
Z'Z)"Y? ¢ R"™ and P = LT (I, + ZTZ)~'/?2 € R**™. We can then have

the following minimization problem:

Qpin - f(QZPU) (15)

where f(Q,Z,P,U) is defined as

f(Q,Z,P,U)= —U(Yo,QZP") +s1In|L,, +Z"Z| + sy In |K| + 52 In |G|
+s3ln|I, + K 'QQ" |+ s3In|I, + G 'PP'|
+sa Yy (K+QQ"),,(G+PP") (16)
(i.)€0

In the above, K and G define the covariance functions of U by which the
nonlinear interaction between U is modeled.



2.4 Sparse prior

To make U sparse, we impose an exponential prior on U. This is equivalent to
adding a L; regularizer, i.e.,

Q,an,an,U f(Q7ZaPaU) +)‘|U|17 (17)

where A is a hyperparameter and we set its value based on cross-validation.

2.5 Optimization and prediction

We use a projected gradient descent method to optimize the cost function (17).
The optimization results will provide the estimates of latent memberships U.

Furthermore, using the estimates of P, Q and Z, we can use the conditional
mean of X, i.e., E(X) = QZP" to predict unobserved interactions.

3 Related Work

Modeling the interaction among nodes in social and biological networks has
become an active research area in recent years. One popular approach is the
stochastic block model and its variations and extensions. [7, 8, 9, 5, 10]. This
type of approaches assigns each node in a network to one or multiple latent
clusters. Our model belongs to this type of approaches too. What separates
ours from the previous ones is the nonparametric Bayesian ¢ process modeling,
which allows us to capture complex nonlinear network interactions. Also, due
to the models’ nonparametric nature, the model complexity is adaptive with
the amount of data available.

Another type of network (or relational) models focuses on the latent simi-
larity between two nodes and instead of modeling their latent cluster member-
ships. Such approaches include the latent distance model [11] and matrix-variate
t model [4]. Although these approaches may achieve accurate predictions for
missing interactions, they cannot reveal latent cluster structures, limiting their
applications in practice. As described in Section 1, our model is closely related
to the work by [4]; we generalizes it to the nonparametric model and uses sparse
priors to learn latent memberships for network nodes.

4 Experiment

In this section, we illustrate how our new model, SMTB, works on synthetic
data and compare it with alternative methods on several real world network
datasets.

4.1 Experiment on Synthetic Data

First, we test SMTB on a synthetic dataset to answer the following two ques-
tions:



1. Is SMTB robust to noise?
2. Can SMTB output block structures?

To generate the synthetic data, we first randomly sample a 40 x 40 clean
interaction matrix, representing a network with four 10-node cliques. In each
clique the nodes are fully connected (so the corresponding sub-matrix is dense),
as shown in Figure 1(a). We then randomly remove some elements from the
clean interaction matrix and add Gaussian noises to the remaining elements.
We use this noisy matrix as our observation Y (Figure 1(b)). Given Y we
run SMTB to obtain the latent interaction matrix X, as an estimate for the
original interaction matrix. The result is shown in Figure 1(c). Clearly, the
model identifies the block structure embedded in the noisy observation Y and
recovers the latent structure to a reasonable accuracy. We also measure the
mean square errors (MSE) based on the exact interaction matrix in 1(a). The
MSE value of the noisy matrix is 0.269 and that of the estimated X is only
0.131, demonstrating the power of SMTB in filtering out the network noise and
recovering the letent structure.

Furthermore, we plot the estimated membership matrix U in Figure 1(d).
Note that u; indicates which latent group node 7 should belong to. As shown in
Figure 1(d), the estimated memberships are consistent with the original block
structure in (a).

4.2 Experiment on Real-world Datasets

We use three real-world datasets to test SMTB. It should be noted that the
number of edges in a network is in the quadratic order of the number of nodes,
and the prediction will be made on each edge. The large number of edges makes
the estimation problem computationally challenging.

The used network datasets are summarized in the following;:

e The first dataset represents friendship ties among 90 12t"-graders from
the National Longitudinal Study of Adolescent Health !. The data is
represented by a symmetric matrix corresponding to an undirected graph.
Y;; = 1 means identity nodes 7 and j are friends. This dataset is named
as “Friends”.

e The second dataset is a protein-protein interaction data of E.coli [12].
There are 230 proteins, where Y;; = 1 means the i*" protein interacts

with the j** protein. This dataset is named as “E.coli”.

e The third dataset is a protein-protein interaction dataset, which consists
of 283 yeast proteins from the third class of the data produced by [13].
Y;; = 1 means the i*" protein is likely to function with the j* protein.
This data is represented by an asymmetric matrix. Note that by using
different column- and row-wise covariance functions, SMTB can be applied
to model asymmetric networks. This dataset is named as “Yeast”.

Lyww.cpc.unc.edu/projects/addhealth
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Figure 1: Ilustration of SMTB estimation on synthetic data. As shown in (c),
SMTB significantly reduces the noise in the observation (b). Also SMTB reveals
the correct node memberships shown in (d), consistent with the block structure
in the clean (unknown) interaction matrix (a).

On these datasets, we compare our model, SMTB, with the following com-
petitive ones:

e Non-negative Matrix Factorization (NMF) [14]. NMF factorizes an in-
teraction matrix to low-dimensional representations with non-negativity
constraints. NMF has been successfully applied to a wide range of appli-
cation and is used as a baseline method here.

e Mixed membership stochastic blockmodels (MMSBs) [5]. MMSB is a
state-of-the-art approach for network modeling.

e Predictive matrix-variate ¢ models (MVTMs) [4]. MVTM is another ad-
vanced model for relational data and closely related to our model.

For nonnegative matrix factorization, we adopt an implementation in the statis-
tics toolbox of Matlab 2009. For the mixed membership stochastic blockmodel,



Table 1: The AUC values averaged over 10 runs. We vary the number of the
latent groups for all the models. The highest average AUC value for each setting
is highlighted.

Data [ NMF MVTM MMSB SMTB

Friends
d=3 66.10 65.31 72.17 76.11
d=5 70.02 67.51 72.03 74.94

FE.coli
d=3 75.30 78.89 80.83 87.40
d=5 77.15 82.09 83.58 87.83

Yeast

d=3 89.16 89.85 83.19 92.58
d=5 91.07 82.09 81.60 93.24

we use the default setting of the software downloaded from the authors’ web-
site previously. For the predictive matrix-variate ¢ model, we adopt the code
kindly provided by the authors 2. For both this model and SMTB, we fix
the degree of freedom p to 10. For SMTB, we use the Gaussian covariance
function (i.e., the RBF kernel function). The kernel width is selected from
[0.01,0.05,0.1,0.15,0.20,0.25, 0.30, 0.35, 0.40, 0.45, 0.50] by five-fold cross vali-
dation.

Since for these datasets we do not know the true latent groups, we use the
prediction accuracy on hold out edges to compare all these models (actually one
cannot even use MVTM to identify latent groups). Specifically for each of these
datasets, we randomly choose 80% of the matrix elements (edges) for training
and use the remaining for testing. The experiment is repeated 10 times. We
evaluate all the models by Receiver Operating Characteristic (ROC) curves and
Area Under Curve (AUC) values averaged over 10 runs.

Figure 2 shows the ROC curves of all the models. The higher a ROC curve,
the better the predictive performance. We change the number of latent clusters
(i-e., the length of u;) from 3 to 5. As shown in Figure 2 SMTB consistently
achieves better performance than the other models. Among these models, NMF
achieves the lowest accuracy, probably caused by its simple modeling of re-
lational data; NMF simply treats an interaction matrix as a regular matrix
without exploring the underlying structure of network data. The performance
of MMSB is often better than MVTM but slightly worse than SMTB. A special
case appears for the yeast dataset, on which both SMTB and MVTM outper-
form MMSB. Since this data is very sparse, we expect that the ¢ distributions
and processes used by MVTM and SMTB help them achieve higher accuracy.

For a detailed comparison, we report the average AUC values in Table 1.
SMTB consistently outperforms all the other models in terms of the average
AUC.

2http://www.nec-labs.com/~zsh/files/MVIM-1.18.zip
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bership stochastic blockmodels (MMSBs), and predictive matrix-variate ¢ mod-
els on three network datasets (Friends, E.coli and Yeast). We randomly hold
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5 Conclusions and Future Work

In this paper, we have presented a new model, SMTB, for modeling interactions
of network nodes and discovering latent groups in a network. Our results on
real network datasets demonstrate SMTB outperforms several the state-of-art
models.

As to the future plan, we will explore other likelihood functions (e.g., probit
functions) to better model binary interactions or more complex relationships
between network nodes.
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