6 research outputs found

    From Cooperative Scans to Predictive Buffer Management

    Get PDF
    In analytical applications, database systems often need to sustain workloads with multiple concurrent scans hitting the same table. The Cooperative Scans (CScans) framework, which introduces an Active Buffer Manager (ABM) component into the database architecture, has been the most effective and elaborate response to this problem, and was initially developed in the X100 research prototype. We now report on the the experiences of integrating Cooperative Scans into its industrial-strength successor, the Vectorwise database product. During this implementation we invented a simpler optimization of concurrent scan buffer management, called Predictive Buffer Management (PBM). PBM is based on the observation that in a workload with long-running scans, the buffer manager has quite a bit of information on the workload in the immediate future, such that an approximation of the ideal OPT algorithm becomes feasible. In the evaluation on both synthetic benchmarks as well as a TPC-H throughput run we compare the benefits of naive buffer management (LRU) versus CScans, PBM and OPT; showing that PBM achieves benefits close to Cooperative Scans, while incurring much lower architectural impact.Comment: VLDB201

    An incremental database access method for autonomous interoperable databases

    Get PDF
    We investigated a number of design and performance issues of interoperable database management systems (DBMS's). The major results of our investigation were obtained in the areas of client-server database architectures for heterogeneous DBMS's, incremental computation models, buffer management techniques, and query optimization. We finished a prototype of an advanced client-server workstation-based DBMS which allows access to multiple heterogeneous commercial DBMS's. Experiments and simulations were then run to compare its performance with the standard client-server architectures. The focus of this research was on adaptive optimization methods of heterogeneous database systems. Adaptive buffer management accounts for the random and object-oriented access methods for which no known characterization of the access patterns exists. Adaptive query optimization means that value distributions and selectives, which play the most significant role in query plan evaluation, are continuously refined to reflect the actual values as opposed to static ones that are computed off-line. Query feedback is a concept that was first introduced to the literature by our group. We employed query feedback for both adaptive buffer management and for computing value distributions and selectivities. For adaptive buffer management, we use the page faults of prior executions to achieve more 'informed' management decisions. For the estimation of the distributions of the selectivities, we use curve-fitting techniques, such as least squares and splines, for regressing on these values

    Cooperative scans

    Get PDF
    Data mining, information retrieval and other application areas exhibit a query load with multiple concurrent queries touching a large fraction of a relation. This leads to individual query plans based on a table scan or large index scan. The implementation of this access path in most database systems is straightforward. The Scan operator issues next page requests to the buffer manager without concern for the system state. Conversely, the buffer manager is not aware of the work ahead and it focuses on keeping the most-recently-used pages in the buffer pool. This paper introduces cooperative scans -- a new algorithm, based on a better sharing of knowledge and responsibility between the Scan operator and the buffer manager, which significantly improves performance of concurrent scan queries. In this approach, queries share the buffer content, and progress of the scans is optimized by the buffer manager by minimizing the number of disk transfers in light of the total workload ahead. The experimental results are based on a simulation of the various disk-access scheduling policies, and implementation of the cooperative scans within PostgreSQL and MonetDB/X100. These real-life experiments show that with a little effort the performance of existing database systems on concurrent scan queries can be strongly improve

    Adaptive Database Systems Based On Query Feedback and Cached Results

    Get PDF
    This dissertation explores the query optimization technique of using cached results and feedback for improving performance of database systems. Cached results and experience obtained by running queries are used to save execution time for follow–up queries, adapt data and system parameters, and improve overall system performance. First, we develop a framework which integrates query optimization and cache management. The optimizer is capable of generating efficient query plans using previous query results cached on the disk. Alternative methods to access and update the caches are considered by the optimizer based on cost estimation. Different cache management strategies are also included in this framework for comparison. Empirical performance study verifies the advantage and practicality of this framework. To help the optimizer in selecting the best plan, we propose a novel approach for providing accurate but cost-effective selectivity estimation. Distribution of attribute values is regressed in real time, using actual query result sizes obtained as feedback, to make accurate selectivity estimation. This method avoids the expensive off-line database access overhead required by the conventional methods and adapts fairly well to updates and query locality. This is verified empirically. To execute a query plan more efficiently, a buffer pool is usually provided for caching data pages in memory to reduce disk accesses. We enhance buffer utilization by devising a buffer allocation scheme for recurring queries using page fault feedback obtained from previous executions. Performance improvement of this scheme is shown by empirical examples and a systematic simulation
    corecore