10,568 research outputs found

    Causally Regularized Learning with Agnostic Data Selection Bias

    Full text link
    Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18

    EFICAz²: enzyme function inference by a combined approach enhanced by machine learning

    Get PDF
    ©2009 Arakaki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2105/10/107doi:10.1186/1471-2105-10-107Background: We previously developed EFICAz, an enzyme function inference approach that combines predictions from non-completely overlapping component methods. Two of the four components in the original EFICAz are based on the detection of functionally discriminating residues (FDRs). FDRs distinguish between member of an enzyme family that are homofunctional (classified under the EC number of interest) or heterofunctional (annotated with another EC number or lacking enzymatic activity). Each of the two FDR-based components is associated to one of two specific kinds of enzyme families. EFICAz exhibits high precision performance, except when the maximal test to training sequence identity (MTTSI) is lower than 30%. To improve EFICAz's performance in this regime, we: i) increased the number of predictive components and ii) took advantage of consensual information from the different components to make the final EC number assignment. Results: We have developed two new EFICAz components, analogs to the two FDR-based components, where the discrimination between homo and heterofunctional members is based on the evaluation, via Support Vector Machine models, of all the aligned positions between the query sequence and the multiple sequence alignments associated to the enzyme families. Benchmark results indicate that: i) the new SVM-based components outperform their FDR-based counterparts, and ii) both SVM-based and FDR-based components generate unique predictions. We developed classification tree models to optimally combine the results from the six EFICAz components into a final EC number prediction. The new implementation of our approach, EFICAz², exhibits a highly improved prediction precision at MTTSI < 30% compared to the original EFICAz, with only a slight decrease in prediction recall. A comparative analysis of enzyme function annotation of the human proteome by EFICAz² and KEGG shows that: i) when both sources make EC number assignments for the same protein sequence, the assignments tend to be consistent and ii) EFICAz² generates considerably more unique assignments than KEGG. Conclusion: Performance benchmarks and the comparison with KEGG demonstrate that EFICAz² is a powerful and precise tool for enzyme function annotation, with multiple applications in genome analysis and metabolic pathway reconstruction. The EFICAz² web service is available at: http://cssb.biology.gatech.edu/skolnick/webservice/EFICAz2/index.htm

    Network Model Selection for Task-Focused Attributed Network Inference

    Full text link
    Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments

    Assessing similarity of feature selection techniques in high-dimensional domains

    Get PDF
    Recent research efforts attempt to combine multiple feature selection techniques instead of using a single one. However, this combination is often made on an “ad hoc” basis, depending on the specific problem at hand, without considering the degree of diversity/similarity of the involved methods. Moreover, though it is recognized that different techniques may return quite dissimilar outputs, especially in high dimensional/small sample size domains, few direct comparisons exist that quantify these differences and their implications on classification performance. This paper aims to provide a contribution in this direction by proposing a general methodology for assessing the similarity between the outputs of different feature selection methods in high dimensional classification problems. Using as benchmark the genomics domain, an empirical study has been conducted to compare some of the most popular feature selection methods, and useful insight has been obtained about their pattern of agreement

    Automatically extracting polarity-bearing topics for cross-domain sentiment classification

    Get PDF
    Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning
    • …
    corecore