4,840 research outputs found

    Networks of intergenic long-range enhancers and snpRNAs drive castration-resistant phenotype of prostate cancer and contribute to pathogenesis of multiple common human disorders

    Get PDF
    Biological and mechanistic relevance of intergenic disease-associated genetic loci (IDAGL) containing highly statistically significant disease-linked SNPs remains unknown. Here we present the experimental and clinical evidence revealing important role of IDAGL in human diseases. Targeted RT-PCR screen coupled with sequencing of purified PCR products detects widespread transcription at multiple intergenic disease-associated genomic loci (IDAGL) and identifies 96 small non-coding trans-regulatory RNAs of ~ 100-300 nt in length containing SNPs associated with 21 common human disorders (snpRNAs). Functionality of snpRNAs is supported by multiple independent lines of experimental evidence demonstrating their cell-type-specific expression and evolutionary conservation of sequences, genomic coordinates, and biological effects. Analysis of chromatin state signatures, expression profiling experiments using microarray and Q-PCR technologies, and luciferase reporter assays indicate that many IDAGL are Polycomb-regulated long-range enhancers. Expression of snpRNAs in human and mouse cells markedly affects cellular behavior and induces allele-specific clinically-relevant phenotypic changes: NLRP1-locus snpRNAs exert regulatory effects on monocyte/macrophage trans-differentiation, induce prostate cancer (PC) susceptibility snpRNAs, and transform low-malignancy hormone-dependent human PC cells into highly malignant androgen-independent PC. Q-PCR analysis and luciferase reporter assays demonstrate that snpRNA sequences represent allele-specific “decoy” targets of microRNAs which function as SNP-allele-specific modifiers of microRNA expression and activity. We demonstrate that trans-acting RNA molecules facilitating androgen depletion-independent growth (ADIG) in vitro and castration-resistant (CR) phenotype in vivo of PC contain intergenic 8q24-locus SNP variants which were recently linked with increased risk of developing PC. Expression level of 8q24-locus PC susceptibility snpRNAs is regulated by NLRP1-locus snpRNAs, which are transcribed from the intergenic long-range enhancer sequence located in 17p13 region at ~ 30 kb distance from the NLRP1 gene. Q-PCR analysis of clinical PC samples reveals markedly increased snpRNA expression levels in tumor tissues compared to the adjacent normal prostate [122-fold and 45-fold in Gleason 7 tumors (p = 0.03); 370-fold and 127-fold in Gleason 8 tumors (p = 0.0001); for NLRP1-locus and 8q24-locus SnpRNAs, respectively]. Highly concordant expression profiles of the NLRP1-locus snpRNAs and 8q24 CR-locus snpRNAs (r = 0.896; p < 0.0001) in clinical PC samples and experimental evidence of trans-regulatory effects of NLRP1-locus snpRNAs on expression of 8q24-locus SnpRNAs indicate that ADIG and CR phenotype of human PC cells can be triggered by RNA molecules transcribed from the NLRP1-locus intergenic enhancer and down-stream activation of the 8q24-locus snpRNAs. Our results define the intergenic NLRP1 and 8q24 regions as regulatory loci of ADIG and CR phenotype of human PC, reveal previously unknown molecular links between the innate immunity/inflammasome system and development of hormone-independent PC, and identify novel diagnostic and therapeutic targets exploration of which should be highly beneficial for clinical management of PC

    Heterogeneous network embedding enabling accurate disease association predictions.

    Get PDF
    BackgroundIt is significant to identificate complex biological mechanisms of various diseases in biomedical research. Recently, the growing generation of tremendous amount of data in genomics, epigenomics, metagenomics, proteomics, metabolomics, nutriomics, etc., has resulted in the rise of systematic biological means of exploring complex diseases. However, the disparity between the production of the multiple data and our capability of analyzing data has been broaden gradually. Furthermore, we observe that networks can represent many of the above-mentioned data, and founded on the vector representations learned by network embedding methods, entities which are in close proximity but at present do not actually possess direct links are very likely to be related, therefore they are promising candidate subjects for biological investigation.ResultsWe incorporate six public biological databases to construct a heterogeneous biological network containing three categories of entities (i.e., genes, diseases, miRNAs) and multiple types of edges (i.e., the known relationships). To tackle the inherent heterogeneity, we develop a heterogeneous network embedding model for mapping the network into a low dimensional vector space in which the relationships between entities are preserved well. And in order to assess the effectiveness of our method, we conduct gene-disease as well as miRNA-disease associations predictions, results of which show the superiority of our novel method over several state-of-the-arts. Furthermore, many associations predicted by our method are verified in the latest real-world dataset.ConclusionsWe propose a novel heterogeneous network embedding method which can adequately take advantage of the abundant contextual information and structures of heterogeneous network. Moreover, we illustrate the performance of the proposed method on directing studies in biology, which can assist in identifying new hypotheses in biological investigation

    Prediction of miRNA-disease associations with a vector space model

    Get PDF
    MicroRNAs play critical roles in many physiological processes. Their dysregulations are also closely related to the development and progression of various human diseases, including cancer. Therefore, identifying new microRNAs that are associated with diseases contributes to a better understanding of pathogenicity mechanisms. MicroRNAs also represent a tremendous opportunity in biotechnology for early diagnosis. To date, several in silico methods have been developed to address the issue of microRNA-disease association prediction. However, these methods have various limitations. In this study, we investigate the hypothesis that information attached to miRNAs and diseases can be revealed by distributional semantics. Our basic approach is to represent distributional information on miRNAs and diseases in a high-dimensional vector space and to define associations between miRNAs and diseases in terms of their vector similarity. Cross validations performed on a dataset of known miRNA-disease associations demonstrate the excellent performance of our method. Moreover, the case study focused on breast cancer confirms the ability of our method to discover new disease-miRNA associations and to identify putative false associations reported in databases

    Heterogeneous Types of miRNA-Disease Associations Stratified by Multi-Layer Network Embedding and Prediction.

    Full text link
    Abnormal miRNA functions are widely involved in many diseases recorded in the database of experimentally supported human miRNA-disease associations (HMDD). Some of the associations are complicated: There can be up to five heterogeneous association types of miRNA with the same disease, including genetics type, epigenetics type, circulating miRNAs type, miRNA tissue expression type and miRNA-target interaction type. When one type of association is known for an miRNA-disease pair, it is important to predict any other types of the association for a better understanding of the disease mechanism. It is even more important to reveal associations for currently unassociated miRNAs and diseases. Methods have been recently proposed to make predictions on the association types of miRNA-disease pairs through restricted Boltzman machines, label propagation theories and tensor completion algorithms. None of them has exploited the non-linear characteristics in the miRNA-disease association network to improve the performance. We propose to use attributed multi-layer heterogeneous network embedding to learn the latent representations of miRNAs and diseases from each association type and then to predict the existence of the association type for all the miRNA-disease pairs. The performance of our method is compared with two newest methods via 10-fold cross-validation on the database HMDD v3.2 to demonstrate the superior prediction achieved by our method under different settings. Moreover, our real predictions made beyond the HMDD database can be all validated by NCBI literatures, confirming that our method is capable of accurately predicting new associations of miRNAs with diseases and their association types as well

    Tissue-Specific Target Analysis of Disease-Associated MicroRNAs in Human Signaling Pathways

    Get PDF
    MicroRNAs are a large class of post-transcriptional regulators that bind to the 3′ untranslated region of messenger RNAs. They play a critical role in many cellular processes and have been linked to the control of signal transduction pathways. Recent studies indicate that microRNAs can function as tumor suppressors or even as oncogenes when aberrantly expressed. For more general insights of disease-associated microRNAs, we analyzed their impact on human signaling pathways from two perspectives. On a global scale, we found a core set of signaling pathways with enriched tissue-specific microRNA targets across diseases. The function of these pathways reflects the affinity of microRNAs to regulate cellular processes associated with apoptosis, proliferation or development. Comparing cancer and non-cancer related microRNAs, we found no significant differences between both groups. To unveil the interaction and regulation of microRNAs on signaling pathways locally, we analyzed the cellular location and process type of disease-associated microRNA targets and proteins. While disease-associated proteins are highly enriched in extracellular components of the pathway, microRNA targets are preferentially located in the nucleus. Moreover, targets of disease-associated microRNAs preferentially exhibit an inhibitory effect within the pathways in contrast to disease proteins. Our analysis provides systematic insights into the interaction of disease-associated microRNAs and signaling pathways and uncovers differences in cellular locations and process types of microRNA targets and disease-associated proteins

    Integration of molecular network data reconstructs Gene Ontology.

    Get PDF
    Motivation: Recently, a shift was made from using Gene Ontology (GO) to evaluate molecular network data to using these data to construct and evaluate GO. Dutkowski et al. provide the first evidence that a large part of GO can be reconstructed solely from topologies of molecular networks. Motivated by this work, we develop a novel data integration framework that integrates multiple types of molecular network data to reconstruct and update GO. We ask how much of GO can be recovered by integrating various molecular interaction data. Results: We introduce a computational framework for integration of various biological networks using penalized non-negative matrix tri-factorization (PNMTF). It takes all network data in a matrix form and performs simultaneous clustering of genes and GO terms, inducing new relations between genes and GO terms (annotations) and between GO terms themselves. To improve the accuracy of our predicted relations, we extend the integration methodology to include additional topological information represented as the similarity in wiring around non-interacting genes. Surprisingly, by integrating topologies of bakers’ yeasts protein–protein interaction, genetic interaction (GI) and co-expression networks, our method reports as related 96% of GO terms that are directly related in GO. The inclusion of the wiring similarity of non-interacting genes contributes 6% to this large GO term association capture. Furthermore, we use our method to infer new relationships between GO terms solely from the topologies of these networks and validate 44% of our predictions in the literature. In addition, our integration method reproduces 48% of cellular component, 41% of molecular function and 41% of biological process GO terms, outperforming the previous method in the former two domains of GO. Finally, we predict new GO annotations of yeast genes and validate our predictions through GIs profiling. Availability and implementation: Supplementary Tables of new GO term associations and predicted gene annotations are available at http://bio-nets.doc.ic.ac.uk/GO-Reconstruction/. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online

    mintRULS: Prediction of miRNA-mRNA Target Site Interactions Using Regularized Least Square Method

    Get PDF
    Identification of miRNA-mRNA interactions is critical to understand the new paradigms in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The present regularized least square-based method, mintRULS, employs features of miRNAs and their target sites using pairwise similarity metrics based on free energy, sequence and repeat identities, and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs sharing similar structural and functional features are more likely to target the same mRNA, and conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our method also demonstrated high accuracy when validated against experimentally derived data from condition- and cell-specific studies and expression studies of miRNAs and target genes, both in human and mouse

    Exploring microRNA Biology using Integrative Bioinformatics

    Get PDF
    Deregulation of energy metabolism is one of the emerging hallmarks of cancer required for proliferation and metastasis. MicroRNAs are small RNA molecules that have crucial roles in the regulation of biological processes in organisms, including metabolism. Due to recent discovery of miRNAs in humans, roles of miRNAs in metabolism of tumour cells, and effects these have on cancer patients, are still obscure and in need of expansion. Currently, experimental and computational data on the miRNAs are being analysed by a wide range of statistical methods; however, these methods in their original forms posses many limitations. Therefore, new ways of utilising these statistical methods are needed in order to unravel the roles of miRNAs in cancer metabolism. In this thesis, the roles of a specific miRNA, miR-22, and the three metabolic target genes were investigated through the use of classical statistical methods, revealed that miR-22, the metabolic target genes, and the interactions between them, were beneficial to survival outcome of breast cancer patients. Furthermore, novel combinations of the conventional statistical methods were invented in order to investigate the global miRNA regulations on metabolic target genes. These new procedures were demonstrated by using publicly available data sets. In one analysis, it was found that miRNAs could be divided into six clusters according to the metabolic target genes through a novel combination of statistical methods. A new statistical method was also invented to provide a generalised means to test for clustering based on sets of correlations.Open Acces
    • …
    corecore