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Abstract: Identification of miRNA–mRNA interactions is critical to understand the new paradigms

in gene regulation. Existing methods show suboptimal performance owing to inappropriate feature

selection and limited integration of intuitive biological features of both miRNAs and mRNAs. The

present regularized least square-based method, mintRULS, employs features of miRNAs and their

target sites using pairwise similarity metrics based on free energy, sequence and repeat identities,

and target site accessibility to predict miRNA-target site interactions. We hypothesized that miRNAs

sharing similar structural and functional features are more likely to target the same mRNA, and

conversely, mRNAs with similar features can be targeted by the same miRNA. Our prediction model

achieved an impressive AUC of 0.93 and 0.92 in LOOCV and LmiTOCV settings, respectively. In

comparison, other popular tools such as miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir

scored AUCs at 0.73, 0.77, 0.55, 0.84, and 0.67, respectively, in LOOCV setting. Similarly, mintRULS

outperformed other methods using metrics such as accuracy, sensitivity, specificity, and MCC. Our

method also demonstrated high accuracy when validated against experimentally derived data from

condition- and cell-specific studies and expression studies of miRNAs and target genes, both in

human and mouse.

Keywords: miRNA–target site interaction; least square regression; nucleotide sequence feature;

pairwise feature scoring

1. Introduction

The process of microRNA (miRNA)-directed silencing of messenger RNA (mRNA) has
been described as another layer of gene regulatory mechanism in many organisms including
animals and plants. By means of regulating gene expression at the post-transcriptional
level, miRNA are involved in a wide range of biological processes such as cell development
and maintenance [1], cell-to-cell interactions [2], and cancer growth and progression [3].
Around 90% of human genes are governed and regulated by one or more miRNAs at the
post-transcriptional level [4].

Factually, single miRNA can interact with multiple mRNAs and individual mRNA
can also be targeted by several miRNAs, forming a far more complex network of gene
regulation [5,6], which is challenging to study and understand. The interaction between
miRNA (average ~22-nt) and its target mRNA involve a seed region (~2–8 nucleotide long)
on the miRNA, which seeks a complementary site mostly in the 3′ untranslated region
(UTR) of mRNA to bind with; however, perfect seed pairing (canonical interaction) is not
required to form a miRNA–mRNA complex in a so-called non-canonical interaction [7,8]. In
previous studies, miRNA binding sites have also been identified in the 5′ UTR and coding
regions [9,10]. These interactions have shown silencing effects on gene expression [11].
Recent studies also suggested that flanking regions (other than seed binding regions) at
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both ends of mRNA also contribute towards miRNA–mRNA interactions [12,13]. These
studies reveal that the mechanisms involved in miRNA-based gene silencing are very
complex and prediction of miRNA–mRNA interactions involves deploying multi-level
characteristics of miRNA and their target sites.

Several bioinformatics-based approaches were developed to understand miRNA–
mRNA interactions. These tools mainly adopted modulating features such as Watson–
Crick pairings [14], the thermodynamic stability of miRNA and mRNA complexes [15],
and binding site abundance, availability, and accessibility [15] to predict the interactions.
Predictive methods such as TargetScan [16], miRWalk [17], MBSTAR [18], DeepMirTar [19],
miRAW [20], and RPmirDIP [21] were developed to identify association between miRNAs
and mRNAs. MBSTAR uses multiple instances of learning from validated miRNA binding
sites to calculate interaction scores. miRDB database [22,23] includes a large collection of
miRNA–mRNA interactions predicted by MirTarget tool (an inbuild component of miRDB),
which was developed based on common features of miRNA binding sites extracted from
high-throughput sequencing experiment. STarMir [24] adopts logistic modeling framework
with crosslinking immunoprecipitation (CLIP) studies to predict miRNA binding sites.
The model uses sequence-based features and targets secondary structures for predicting
the binding sites. Recently, miRAW was developed to predict non-canonical interactions
between miRNAs and target mRNAs [20]. Similarly, TargetScan used 14 different sequence
features to predict miRNA–mRNA interactions. In continuation, various databases were
developed based on these algorithms to provide predicted and experimentally verified
miRNA–mRNA interaction pairs. The most common databases that provide predicted
miRNA–mRNA interactions include miRDB, TarBase [25], and miRTarBase [26]. Previ-
ous reviews also described working strategies, data integration, feature extraction, and
limitations of the existing methods [27–29].

Early prediction tools such as GUUGle [30] have utilized a single feature based on
‘seed base pairing’ for prediction. However, most methods as mentioned above eventually
adopted multiple features that include seed pairing, free energy, sequence conservation,
and target site accessibility that were derived from known miRNA–mRNA interaction
pairs. These tools showed inconsistencies in their predictions because of inadequate
emphasis given to the selection of context-specific features and their weights to reflect
the characteristic environment for miRNA–target interactions. For example, algorithms
focusing on the sequence conservation strategy work better only for phylogenetically closer
species. One of such methods includes the miRanda algorithm [31], which considered
the conservation of miRNA binding sites and positions in 3′ UTR to identify potential
miRNA–target interactions only in closely related species. Furthermore, the strategies for
extracting and integrating the structural and functional features shared between multiple
miRNAs that could be responsible for targeting same mRNAs have been less emphasized in
previous approaches [14,32]. In other words, similarity-based feature integration strategies
have not been much explored in this context. However, a recent tool, miRTMC [33] was
developed by adopting similarity networks of miRNAs and mRNAs, and miRNA–mRNA
interaction networks. Apart from this, the datasets used to train and test these models are
consistent, leading to small overlap between predicted targets by different methods, as
highlighted in the previous articles and reviews [14,27,28,34]. Subsequently, most tools
suffer from poor sensitivity and accuracy when comparisons are made against experimental
data [29,35], raising the need for developing more sophisticated computational methods.

Here, we develop a new approach, called mintRULS (microRNA–Target Interaction
Prediction Using Kronecker-Regularized Least Square classification), which incorporates
sensitive features from miRNAs and target sites on mRNAs in a pairwise manner by
utilizing least-square regression-based classification to predict interactions between them.
We hypothesized that miRNAs with shared features are more likely to interact with the
same mRNA, while mRNAs with similar features tend to be targeted by the same miRNA.
With this hypothesis, our strategy of utilizing the similarity features within the miRNA
and mRNA species has helped overcome the limitations of the current prediction methods.
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We demonstrate that our model outperforms the existing tools in the prediction accuracy
and validate the method using experimental gene expression data from human and mouse,
which will help improve our understanding of miRNA-associated gene regulation at the
post-transcriptional level.

2. Materials and Methods

2.1. miRNA–Target Site Associations in Human and Mouse

A subset of the dataset from a previous study [36] was utilized in the present analysis.
The data include miRNA and miRNA target site (miTS) associations (MTAs) from (i) study
of miRNA interactome by CLASH (crosslinking, ligation, and sequencing of hybrids)
in HEK293 cells [8] and (ii) miRNA-target site interaction data in MirTarBase 8.0 with
experimental evidence (immunoblot, luciferase reporter assay, qRT-PCR). The combined
data were preprocessed to remove pairs with incomplete information. For example, all
miRNAs with one or more “N” letters in their nucleotide sequences were removed; whereas,
any target sites with >50% “N” letters were filtered out from the study. The final human
dataset contains 34,413 MTAs between 845 miRNAs and 32,709 miTS (from 17,625 human
mRNA transcripts), while mouse dataset includes 2829 experimentally verified interactions
between 327 miRNA and 2675 miTS (from 2424 mRNA transcripts: Unannotated: 1925,
annotated genes: 499). For better description, the adjacency matrices A845×32709 and
A327×2675 were generated for human and mouse datasets, respectively. The experimentally
verified pairs in each matrix represent positive dataset, whereas the remaining pairs were
considered as negative dataset.

2.2. Kernel Similarity Scores for miRNA

We developed a comprehensive scoring scheme by using relevant features that are
more likely to discriminate between the binding and non-binding MTAs. The rationale for
including each feature is provided below.

2.2.1. Free Energy (FE)-Based Similarity

Free energy of RNA molecules (miRNAs and mRNAs) is a very important property that
facilitates their interactions because the energy is involved in unfolding the interaction sites
to allow pairing of nucleotides between miRNAs and mRNAs. Therefore, lower overall free
energy means higher stability of the miRNA–mRNA complex, which can be interpreted as
higher possibility of the real interactions. Long et al., 2007 also found a correlation between the
folded structure of mRNA and efficacy of miRNAs-driven repression [37]. This concept has also
been previously used for the development of various miRNA–mRNA interaction prediction
tools such as MiRNATIP [38], Avishkar [39], RNAhybrid [40], and other algorithms [41].
In the current work, Python package, seqfold (https://pypi.org/project/seqfold/, accessed
on 28 March 2022) was used to calculate the minimum free energy of each miRNA. This
program takes the nucleotide sequence of a given miRNA as input to calculate free energy (also
referred as folding energy) based on the thermodynamic principles. The FE-based pairwise
similarity between two miRNAs mi and mj is calculated as Euclidean distance (Appendix A,
Equation (A1)) and is denoted as FEm

(

mi, mj

)

. The pairwise matrix representing FE-based
similarity between all miRNAs is denoted as FEm.

2.2.2. Gaussian Interaction Profile (GP) Kernel Similarity (Based on Known Associations)

The application of GP-based similarity has been successfully implemented in pre-
dicting drug–target interactions [42,43], drug–drug interactions [44], and miRNA–disease
associations [45]. Here, GP kernel similarity between two miRNAs, mi and mj, is defined
as GPm

(

mi, mj

)

.

GPm

(

mi, mj

)

= e(−ϕm ‖ IP(mi)− IP(mj)‖
2) (1)
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IP(mi) is the binary vector representing the interaction profile of miRNA, mi. ϕm is
selected to adjust the kernel width and can be calculated as:

ϕm = ϕm′/(
1

nm

nm

∑
i=1

‖IP(mi)‖
2) (2)

nm equals the total number of selected miRNAs.
Based on previous studies [46], ϕm′ is set to 1. As defined above, pairwise matrix of

GP-based similarities of selected miRNAs is denoted as GPm.

2.2.3. Needleman’s Sequence Similarity

As evident from experimentally verified miRNA-target pairs, miRNA with similar
seed sequences are more likely to regulate a similar set of genes [47]. Based on this line of
thought, the sequence-based pairwise similarity score was calculated using Needleman–
Wunsch algorithms [48]. The similarity score between two miRNAs, mi and mj is denoted
as NSm

(

mi, mj

)

, and the whole pairwise matrix is represented by NSm.

2.2.4. Simple Sequence Repeats (SSRs)-Based Similarity

SSRs are repetitive nucleotide sequences and are considered as important binding
signatures embedded at the genetic level. Previous study found that miRNAs binding to
complementary regions with SSRs showed perturbation in the RNA cross-talks in case of
myotonic dystrophy type 1 (DM1) and type 2 (DM2) [49]. Considering the significance of
SSRs in mRNA binding, we extracted repeat motifs (RF) from each miRNA using ssrtool
(https://archive.gramene.org/db/markers/ssrtool, accessed on 20 November 2021). With
the filtering criteria of minimum 3 repeats, we found 12 di-, 51 tri-, and 32 tetramers in
all miRNAs. Considering the repeat counts in each miRNA, the Gaussian profile based
pairwise similarity SRm

(

mi, mj

)

between miRNAs, mi and mj are calculated as follows:

SRm

(

mi, mj

)

= e(−ϕm ‖ RF(mi) − RF(mj)‖
2) (3)

where RF(mi) and RF
(

mj

)

are binary vectors representing all RFs in miRNAs mi and mj.
Again, ϕm is selected to adjust the kernel width and can be calculated as:

ϕm = ϕm′/(
1

nm

nm

∑
i=1

‖RF(mi)‖
2) (4)

As explained above, ϕm′ is set to 1 in this case. nm is the total number of selected
miRNA and SRm represents the corresponding pairwise matrix of SR-based similarities.

2.2.5. Integration of miRNA Similarity Scores

All four types of feature scores were combined by employing a weighted combination
approach to obtain an integrated similarity matrix, Sm, as defined below:

Sm = {(α1 × FEm) + (α2 × GPm) + (α3 × NSm) + (α4 × SRm)}/
4

∑
i=1

αi (5)

where αi represents weights given to the different similarities.

2.3. Kernel Similarity Scores for miTS

Similar to the scores for miRNAs, we employed a set of discriminatory features for
miTS as follows.

2.3.1. FE-Based Similarity between miTS

The seqfold tool was used in similar manner to calculate the minimum free energy of
each miTS, followed by calculation of FE-based similarity between two miRNA binding
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sites, ti and tj, as denoted by FEt

(

ti, tj

)

. The final symmetrical matrix of pairwise FE-based
similarities is termed as, FEt.

2.3.2. Target Site Accessibility (TA)-Based Similarity

Accessibility of the miRNA target site is responsible for easing miRNA binding and
subsequent miRNA-driven regulation [6,15]. We calculated accessibility of miTS using
RNAplfold module of ViennaRNA package (http://www.tbi.univie.ac.at/RNA/, accessed
on 20 November 2021). The pairwise similarity between TAs of two miTS ti and tj is calcu-
lated based on Euclidean distance and is denoted as TAt

(

ti, tj

)

. The matrix representing
score for chosen miTS is termed as TAt.

2.3.3. AU Content (AU)-Based Similarity

mRNA can be folded to form a secondary structure which might hinder the repression
potency of miRNA by lowering the site accessibility [50]. A previous study suggested that
lowering the GC content (or high local AU content) near the target sites and also in the 3′

UTR region of mRNA increases accessibility to interact with miRNA [6,51]. Therefore, the
GC content on each miTS was calculated separately, followed by calculation of pairwise
AU-based similarity between two miTS, ti and tj based on Euclidean distance (Appendix A,
Equation (A2)), and is dented by AUt

(

ti, tj

)

. The final similarity matrix of AU-based
similarities between different miTS is represented by AUt.

2.3.4. Simple Sequence Repeats (SSRs)-Based Similarity

Similar to miRNAs, SSR motifs were extracted from each miTS with the same filtering
criteria, and Gaussian profile-based pairwise similarity SRt

(

ti, tj

)

, between miTSs, ti and
tj were calculated. Here, we denote the whole pairwise matrix of all miTS as SRt.

2.3.5. Integration of miTS’s Pairwise Similarities

Similar to the miRNAs analysis, different similarity matrices were combined with
providing specific weightage βi to each one, as described below, to get final matrix St.

St = {(β1 × FEt) + (β2 × TAt) + (β3 × AUt) + (β4 × SRt)}/
4

∑
i=1

βi (6)

βi provides weights given to a particular feature.

2.4. mintRULS

We developed a computational model, mintRULS, which utilizes known MTAs to pre-
dict possible interactions while incorporating multiple similarity-based kernels of miRNA
and miTS. The relevance score is calculated based on Kronecker product and the regular-
ized least square (RLS) method. The adjacency matrix, Anm×nt was generated to describe
the known and unknown associations between nm miRNAs and nt miTS. For known
associations between miRNA mi and miTS tj, the association value Ami×tj

was assigned 1,
else 0.

As illustrated in Figure 1, out of the whole interaction data a random dataset with
k number of miRNAs M = {m1, m2 , . . . mk}, and l number of target sites T = {t1, t2 ,
. . . tl} is selected to form random adjacency matrix Ak×l ⊂ Anm×nt. The samples for
training can be prepared as S = {(x1, y1) , (x2, y2), . . . (xn, yn)}, where xi and yi represent
miRNA-miTS pair and corresponding binary level in the adjacency matrix, respectively
with n = k × l.
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Figure 1. Schematic representation of the workflow for feature integration, cross-validation, and

performance evaluation of the model mintRULS. miRNA: microRNA, miTS: miRNA Target Sites. CV:

Cross-Validations, LOOCV: Leave-One-Out-CV (LOOCV), LmiTOCV: Leave-miTS-Out-CV. In the

matrix Anm×nt, 1 represents positive interactions, while 0 represents no interactions between miRNA

and target site.

Further, as explained in [52], using the labeled training samples S, the following
objective function J is minimized with the goal of learning a function f to generalize it on
new miRNA–miTS samples.

J( f ) =
n

∑
i=1

(yi − f (xi))
2 + λ‖ f ‖2

K (7)

‖ f‖k is the norm of function f measured in Hilbert space with kernel function K. The
regularization parameter λ > 0 is adjusted for balancing prediction error and model complexity.



Genes 2022, 13, 1528 7 of 25

According to Representer Theorem [53], the function f in the above equation can be
expressed in the following form to get minimizer of the objective function J.

f (xi) =
n

∑
i=1

αiK(x, xi) (8)

As calculated in [54], || f ||2K = αTKα, the function can be represented as follows:

minF(α) = min
n

∑
i=1

(y − Kα)T(y − Kα) +
λ

2
αTKα (9)

As previously mentioned in [55], α in the above equation can be calculated by solving
following linear equation:

(K + λ × I)α = y (10)

where K is the Kronecker product of two kernel similarities functions, K = Sm ⊗ St, with Sm

and St as integrated similarity matrix of chosen miRNA and miTS. I is the identity matrix.
As referred in the previous studies [56,57], the eigen decomposition of the kernel matrices
Sm and St are performed as follows:

Sm = QmΛmQT
m and St = QtΛtQ

T
t

In the above eigen decomposition, Qm and QT
m represent eigenvalue vector and its

transpose, respectively for miRNAs. Similar notations stand for miTS. Λm and Λt are the
diagonal matrices. α in Equation (9) can be calculated as follows:

α = vec
(

QmCQT
t

)

(11)

where
vec(C) = (Λm ⊗ Λt )

(

Λm ⊗ Λt + λ × I)−1
)

vec
(

QT
mYTQt

)

2.5. Cross-Validations and Performance Testing

2.5.1. Cross-Validations

The performance of mintRULS model was evaluated by conducting cross-validation
(CV) mainly in two ways: (1) Leave-One-Out-CV (LOOCV) and (2) Leave-miTS-Out-CV
(LmiTOCV), using human and mouse datasets, separately. LOOCV refers to the condition
when one MTA is considered as a test sample while the remaining ones in the adjacency
matrix Ak×l are considered as training samples. In LmiTOCV, 10% of all miTS and their
associations with miRNA are considered as test data while remaining MTAs in Ak×l are
kept for training the model. To make the simulation process computationally inexpensive,
the random k miRNA and l miTS are chosen from the original adjacency matrix Anm×nt to
form a sample adjacency matrix Ak×l , with k = nm and l = 0.1 × nt. This randomization is
iterated over 100 times to reduce impacts of data overfitting, and the model is simulated
each time in both the environments, LOOCV and LmiTOCV.

2.5.2. Score Normalization and Performance Evaluation

Actual and predicted miRNA-miTS interactions were used to calculate true positive
rate (TPR), and false-positive rate (FPR). Receiver operating characteristics (ROC) curve
was drawn to determine the area under ROC curve (AUC) for estimating the performance
of the models. Additionally, other parameters such as accuracy, sensitivity, specificity, and
MCC were also calculated for human and mouse datasets, separately. Minimum miTS
sequence length as 40 and 30 nucleotides were considered to perform simulations in case
of human and mouse, respectively. In the present analysis, AUC with values 0.5 meant the
model can predict randomly, while AUC = 1 indicated the best performance of the model.
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Further, mintRULS-predicted scores were normalized using unity-based methods to
classify the miRNA-miTS pairs, as explained below:

X′ = a +
X − Xmin

Xmax − Xmin
× (b − a) (12)

where a = 0, and b = 1 was set in current model. X′ is the derived normalized score of
predicted score X for an interacting miRNA–miTS pair. Xmin and Xmax are minimum and
maximum mintRULS score obtained for that miRNA across all miTS. The normalized
score will provide space to define the strengths of the predicted interactions rather than
classifying them in binary (on/off) relationships. All the pairs were divided into three
categories based on quantile normalization of the score. The lower and upper quartile lines
are considered as boundaries between each category, as defined below:

Weak Targets: <lower quartile (25th quartile).
Moderate Targets: between lower quartile (25th quartile) and upper quartile (75th quartile).
Strong Targets: >upper quartile (75th quartile).

2.5.3. Comparison with Previous Methods

We also compared mintRULS predictions with the previous popular tools and databases
which include miRDB, TargetScan, MBSTAR, RPmirDIP, and STarMir [24]. To make the
comparison methodologically relevant and effective, we also included the tools whose
working strategies directly or indirectly focus on features of miRNAs and their target sites.
More specially, the objective here is to compare prediction power of mintRULS with other
tools, which will subsequently help to understand importance of inclusion of multiple
features (in pairwise manner) over single features. The interacting pairs predicted by these
resources were obtained as of 20 March 2021.

MBSTAR is a machine learning program that extracts features from validated potential
binding sites in the mRNA and use them to train the classifier and predict target and non-
target mRNAs. Further, by using random forest classifier, the algorithm predicts functional
binding sites in the mRNA. To choose a dataset of highly interacting miRNA–mRNA target
pairs, all human sequence pairs with scores higher than 0.5 were considered as positive
pairs and included in the present comparative analysis.

miRDB database contains miRNA-target pairs predicted by MirTarget, which is an
algorithm trained by using crosslinking immunoprecipitation (CLIP)-based binding and
miRNA expression data using the SVM machine learning framework. The algorithm looks
for the common features which are associated with both miRNA and downregulation of the
target. As a prediction score, the algorithm generates a probability score between 0 and 100
for each target site. In case of multiple target sites on mRNA, the individual score is com-
bined to calculate final score. miRDB provides only interacting pairs with score > 50. Here,
we downloaded all human interacting pairs and compared with mintRULS’s predictions.

STarMir, a web server, was developed on a logistic modeling framework and trained
using CLIP data. The method incorporates a variety of thermodynamic, structural, and
sequence-based features for seed and non-seed regions as well as different regions (e.g., (3′

UTR, CDS and 5′ UTR)) on mRNA. In terms of the prediction score, the model outputs the
probability score representing miRNA–target site interactions. As discussed in the article,
predictions with the probability score of 0.75 or higher give highly likely interacting pairs.
Therefore, only highly interacting pairs were considered in this analysis for comparison.

TargetScan predicts miRNA–target interactions by matching conserved 8-mer, 7-mer, and
6-mer sites in the seed region. TargetScanHuman (v 7.2) (https://www.targetscan.org/vert_80/,
accessed on 20 March 2021) utilizes various binding sites related characteristics and 14 features
to predict interactions between miRNA and its targets. From the database, interacting pairs
with weighted context++ score percentile higher than 50 were considered as positive pairs in the
comparative analysis.
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RPmirDIP provides interacting pairs predicted by mirDIP (microRNA Data Integration
Portal) [58] which uses a semi-supervised machine learning method “Reciprocal Perspective
(RP)”. In the present analysis, all the pairs with the recommended Difference of Scores
(DoS) of higher than 0.5 were considered.

The separate data matrix representing interactions between miRNA and targets were
prepared for each database discussed above. The interacting and non-interacting pairs
in the test dataset were searched in each data matrix, and confusion matrix was built to
calculate AUC values in each case.

2.6. Model Code Implementation and Software Availability

Python 3.7 (https://www.python.org), PyCharm Community version 2019.3 (https:
//www.jetbrains.com/pycharm/), and R 4.0.5 (https://www.r-project.org/) were used to
develop scripts and run all the simulations, accessed on 20 November 2021. All the core scripts
and related data can be accessed from https://doi.org/10.5281/zenodo.6360587.

2.7. Validation of Predictions

2.7.1. Using Condition- and Cell-Specific Studies

Experimental data that identified interactions between hsa-miR-548ba and four genes
(IFR, PTEN, NEO1, and SP110) in human ovarian granulosa cells [59] were used to validate
the mintRULS predictions. Similarly, experimentally verified interactions of miRNA hsa-
miR-34a-5p with genes including JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK, GRIA4,
and PARK2 in Human Neuroblastoma Cell Line SH-SY5Y using high-throughput miRNA
interaction reporter assay (HiTmIR) were also considered [60].

2.7.2. Using Literature-Based Data

The top predictions by mintRULS were compared with the information in literature
and databases including miRDB and TargetScan.

2.7.3. Using Expression Data of miRNA and mRNA in Gastrointestinal (GI) Cancer

TCGA level 3 gene/mature miRNA expression data for pan-GI cancers (stomach
adenocarcinoma, STAD; cholangiocarcinoma, CHOL; pancreatic adenocarcinoma, PAAD;
esophageal carcinoma, ESCA; and liver hepatocellular carcinoma, LIHC) were collected and
analyzed using QIAGEN Ingenuity Pathway Analysis (IPA) (please refer to Supplementary
Document for the methodology of IPA) to identify negative expression correlations of top
predicted miRNA–mRNA pairs from mintRULS.

2.7.4. Using Expression Data of miRNA and mRNA in Normal and Septic Mice

The expression data of miRNAs (GSE74952 study) and genes (GSE55238 study) in
control and septic mice, respectively, were downloaded from Gene Expression Omnibus
(GEO) database and analyzed using GEO2R. The mintRULS predicted pairs that showed
negative expression correlations were identified.

More methodological description of (c) and (d) are provided in Appendix A (method section).

3. Results

3.1. Performance Evaluation of mintRULS

mintRULS achieved an average AUC of 0.93 and 0.92 on the human dataset, while it
scored AUC of 0.861 and 0.865 on the mouse dataset in LOOCV and LmiTOCV simulation
environments, respectively (Table 1). The ROC profile indicating AUC measurements
in both the cases are shown in Figure 2A,B. The model also recorded high accuracy at
90.8% and 91% in LOOCV and LmiTOCV simulations, respectively, using human data,
supporting its strong prediction ability. In the case of mouse also, the achieved accuracies
were 84.6% and 84.4% in LOOCV and LmiTOCV settings (Table 1). For more intuitive
evaluations, high measurements of the other parameters including MCC, specificity, and
sensitivity (Table 1) indicated high performance of the model on human as well mouse
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datasets. In case of mouse, the prediction performance of the model has been observed
to be comparatively similar in both the simulation environments. In addition, the high
specificity indicates the better ability for identifying specific interactions between miRNA
and miTS in the mouse. We therefore interpreted that the model has the ability to predict
miRNA–target site interactions.

Table 1. Performance measurements of mintRULS by different evaluation parameter using human

and mouse datasets. LOOCV: Leave-One-Out-Cross Validation, LmiTOCV: Leave-miTS-Out-Cross-

Validation, ROC: Receiver Operating Characteristics, AUC: Area Under Curve, MCC: Matthews

correlation coefficient.

Accuracy Sensitivity Specificity MCC
AUC (ROC

Curve)

Human dataset

LOOCV 0.908 0.847 0.909 0.67 0.931

LmiTOCV 0.91 0.829 0.909 0.652 0.925

Mouse dataset

LOOCV 0.846 0.783 0.846 0.59 0.861

LmiTOCV 0.844 0.767 0.839 0.564 0.863

Figure 2. Performance of the mintRULS model using ROC profiling in case of (A) human, and

(B) mouse datasets. miTS: mRNA target site, LOOCV: Leave-One-Out-Cross Validation, LmiTOCV:

Leave-miTS-Out-Cross-Validation.

Further, comparison of mintRULS predictions with other methods were performed
using the human dataset. The methods miRDB, TargetScan, MBSTAR, RPmirDIP, and
STarMir achieved AUC of 0.73, 0.77, 0.55, 0.84, and 0.67, respectively; in comparison
mintRULS received better AUC of 0.93, in LOOCV settings, showing superior performance
of the current method (Figure 3).

3.2. Evaluation of Regularization Parameter (λ)

As defined in the method section, tuning the regularization parameter (λ) is impor-
tant to reduce the overfitting which might decrease the variance of estimated regression
parameters by adjusting the bias. Herein, we evaluated λ over different datasets in both
LOOCV and LmiTOCV settings. Using the adjacency matrix Anm×nt, five different random
data matrices, i.e., A845×1000, A845×2000, A845×3000, A845×4000, and A845×5000 comprise of
all 845 miRNAs and different numbers of random miTS, as shown in the subscript, were
prepared. Figure A1 (Appendix A), indicated that a higher miTS number tends to provide
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better AUC in both LOOCV and LmiTOCV. However, it is not advisable to choose a larger
number of miTS as it creates a very high number of empty cells in the adjacency matrix
which eventually could lead to the underperformance of the model. Based on these results,
we selected the dataset A845×3000 as optimal for further analyses.

Figure 3. Performance comparisons between predictions made by mintRULS model and other

previous methods that include miRDB, TargetScan, MBSTAR, RPmirDP, and STarMir, using Receiver

operating characteristics (ROC) curve and Area Under Curve (AUC) determination. The dark red

dashed diagonal line stands for a non-discriminatory test.

Next, using the data matrix A845×3000, AUC was measured for different values of
regularization parameter λ. Interestingly, as shown in Figure 4A, λ > 35 obtained the highest
values of AUC corresponding to 0.931 and 0.925 in the case of LOOCV and LmiTOCV,
respectively, which we interpreted as optimal in our case. With the chosen λ = 35, the model
extracts favorable features from miRNA and miTS sequence with adding some obvious
biases to predict miRNA-miTS interactions.

Figure 4. (A) Performance evaluation of regularization parameter (λ) in LOOCV and LmiTOCV

simulation environments. The 100 times iterations of the data matrix A_(845 × 3000) (miRNA: 845 and

miTS: 3000) was done with performing the model simulation. (B) Effect of variation on length of miTS

sequences on the prediction performance of the model. As in the case of (A), randomized data matrix

A_(845 × 3000) was used to perform the cross-validations in LOOCV and LmiTOCV environments.

LOOCV: Leave-One-Out-Cross Validation; LmiTOCV: Leave-miTS-Out-Cross Validation; miRNA:

MicroRNA; miTS: miRNA Target Site; AUC: Area Under the Receiver Operating Characteristic Curve.

3.3. Evaluation of miTS Sequence Length and Features

3.3.1. Effect of Longer Sequence Length

The computational models have fully or partially utilized features associated with
miTS sequences to predict interactions with miRNAs. As introduced earlier, GC content,
accessibility, seed pairing, and flanking sequences are some of the widely used features
in these models [15]; however, lack of emphasis has been given on consideration of the
length of binding sites in most of the models. This is important mainly in the sense that an
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optimized length of miTS (including seed regions and flanking regions on both sides) can
provide the best and effective features to predict more accurate interactions with miRNAs.

On this note, we performed systematic comparisons between different sequence
lengths (=10, 20, 30, 40, and 50 nucleotides) of miTS to observe its impact on the model’s
performance. As shown in Figure 4B, the higher sequence length corresponds to better
AUC, suggesting more powerful and effective features. The shorter length of miTS may
possibly cause high noises in the simulation, as also stated in [61]. However, for obvious
reasons, too lengthy sequences might side pass any mutational effect on miTS, and are thus
not recommended. Therefore, a sequence length of 40 nucleotides was considered as the
most optimal in the current analysis.

3.3.2. Feature Selection and Feature Contribution

The model is generalized over different weight combinations used for prioritizing features
of miRNA and miTS, separately. In this simulation process, the weights associated with
mRNA features were kept constantly distributed to determine individual effect by miRNA’s
features on model performance, as shown in Figure 5. In this case, Needleman sequence
similarity and GP-based similarity showed higher contributions towards better performance
of the model. Similarly, the effect of mRNA features was observed individually with no
significant differences in the measured AUC values (Figure 5). Considering these findings, we
simulated feature formulations giving more weightage to the features with more individual
contributions and achieved significant improvements in AUC up to 0.93 (Figure 5). The
model achieved higher AUCs of 0.81 and 0.80 for miRNA’s features, Needleman Sequence
(Kmi2)-, and Gaussian profile (Kmi3)-based similarities, respectively, as compared to the other
two features, free energy (Kmi1) and SSRs Gaussian-based similarity (Kmi4). The GP-based
calculations, as their intrinsic characteristic, are done with the assumption that similar miRNAs
can interact with the same targets, and vice versa, which is the base hypothesis of this study. It
can also cover nonlinear relationship of known miRNA–target interactions. Previous successful
applications of GP kernels include development of feature-based models for predicting drug–
target interactions, miRNA–disease associations, circRNA–disease association, drug–disease
associations, and drug–drug interactions [42–45,62]. Likewise, we also interpret that similarity-
based models, including the current mintRULS, have the potential to predict miRNA–target
interactions. On the other hand, SSR-based features, both from miRNA or mRNA, were not
so predictive, perhaps because of the non-specificity of SSRs (i.e., n = 3 or 4 or 5) considered
in the present study. As there are a handful of studies showing significance of SSRs in
miRNA-target binding [49,63,64], further investigation on feature manipulation is required
to better incorporate these features in the similarity-based modeling. From the different
features considered for mRNA, free energy, AU content, and accessibility were among the
top predictors in case of mintRULS. These many features and their roles in miRNA binding
have been previously discussed in the literature [14,32,65], with raising questions on their
systematic integration and incorporation to predictive modeling which is still a challenge to
the model developers.

3.4. Validation

Interacting pairs between miRNA hsa-miR-548ba and three genes which include IFR,
PTEN, and NEO1, were classified as “Strong Target”, and showed consistency with the
results in [59] (Table 2). Similarly, from the study [60], interacting pairs between miRNA
hsa-miR-34a-5p and genes including SMAD7, SMAD2, CREB1, and CLOCK, were predicted
as “Strong Target”, while binding of hsa-miR-34a-5p with GRIA4 was predicted as “Weak
Target”. It is interesting to notice that most predicted results are consistent with the
outcomes of the experimental studies (Table 2). The interaction between these many pairs
were also confirmed by performing protein level analysis in SH-SY5Y cells in the same
study. Other interactions such as hsa-miR-22 with BMP-7/6, hsa-miR-146a-3p with TRAF6
and RIPK2, and hsa-miR-125b with PARP1, p53, Beta-actin, and CPSF6 from different
studies were also verified and found consistent with the experimental outcomes (Table 2).



Genes 2022, 13, 1528 13 of 25

The experimentally validated negative interactions between hsa-miR-125b and Beta-actin,
and 18S RNA with gld-1:gfp mRNA were also predicted correctly as ‘Weak Targets’ (below
25th percentile) by mintRULS (Table 2).

Figure 5. The model performance using different weights combinations of miRNA and mRNA target

site features. SSR: Simple sequence repeats, miRNA: microRNA, miTS: miRNA Target Sites.

We also checked the performance of mintRULS for predicting interactions when
mutation(s) in the seed region of miRNA occur. To perform this experiment, mutation
information of a few randomly selected miRNAs in human (e.g., hsa-miR-124-3p, hsa-
miR-662, hsa-miR-125a-5p, etc.) and mouse (e.g., mmu-miR-342-5p, mmu-miR-690, and
mmu-miR-743a-3p) along with the effects on the interactions with their target genes were
downloaded from the PolymiRTS database [66]. In total, 40 pairs comprising 20 wild-type
(WT) and 20 mutated (mut) miRNAs with target genes were included for this experiment.
The mutation-driven changes in the interactions are described by context+ score difference
(∆S), as mentioned in Table 3. Interestingly, all the WT pairs (WT miRNAs and their target
genes) were predicted as “Strong Targets”, while 16 (out of 20) of their mutated counterparts
were predicted as “Weak Targets”, showing good consistency with the information (∆S,
representing disruption in the interaction) in the PolymiRTS database. It is noteworthy that
even the other four pairs (i.e., hsa-miR-125a-5p with ZMYM3, hsa-miR-645 with COL4A4,
mmu-miR-342-5p with RASL10B, and mmu-miR-690 with RBBP5) involving the mutated
miRNAs were predicted as “Moderate Targets” but not as “Strong Targets”, showing that
the predictions are somewhat consistent with the ∆S (Table 3). We also considered a special
case study by Dash et al., 2020, where interactions of hsa-miR-124-3p with WT PARP-1
and its mutant were observed. In this case, mintRULS performed very well by correctly
classifying interactions of the miRNA with WT PARP-1 and with four of its variants (Mut1,
Mut2, Mut3, and Mut4) (Table 3).
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Table 2. Predicted miRNA-miTS interactions using mintRULS and validation using experimental

data in human. Strong Target: Upper quartile (>75th percentile), Moderate Target: Middle quartile

(in between 25th and 75th percentile), and Weak Target: Lower quartile (<25th percentile).

miRNA Target Gene Results in
Reference

mintRULS Experimental Evidence

Predictions
(Quartile)

Classification Cells/Tissues Reference

hsa-miR-548ba

LIFR Target Upper Strong Target

ovarian granulosa cells [59]PTEN Target Upper Strong Target

NEO1 Target Upper Strong Target

hsa-miR-34a-5p

CLOCK Target Upper Strong Target

SH-SY5Y cells [60]

CREB1 Target Upper Strong Target

GRIA4 Target Lower Weak Target

SMAD2 Target Upper Strong Target

SMAD7 Target Upper Strong Target

hsa-miR-22 BMP-7/6 Target Upper Strong Target
Mouse primary kidney

fibroblasts
[67]

hsa-miR-146a-3p
TRAF6 Target Upper Strong Target

Mouse Myeloid cells
[68]

RIPK2 Target Upper Strong Target

hsa-miR-125b

CPSF6 Target Upper Strong Target HEK-293T [69]

PARP1 Target Middle Moderate Target

HEK-293T cells [70,71]p53 Target Upper Strong Target

Beta-actin Non-Target Lower Weak Target

18S RNA gld-1:gfp Non-Target Lower Weak Target Caenorhabditis elegans [72]

Table 3. Validation of mintRULS predictions in case of mutations in the seed region of miRNAs or in

the target gene itself. Upper quartile (>75th percentile), Moderate Target: Middle quartile (in between

25th and 75th percentile), and Weak Target: Lower quartile (<25th percentile).

miRNA miRNA/Seed Mutation Target Gene/Mutation Result in Reference
mintRULS Prediction

Reference
Quartile Class

hsa-miR-124-3p UAAGGCACGCGGUGAA
UGCCAA

Parp-1 (WT) Target Upper Strong Target

[73]

Mut1: PARP-1 (CC > GG) No target Lower Weak Target

Mut2: PARP-1 (TG > CA) No target Lower Weak Target

Mut3: PARP-1 (GC > AA) No target Lower Weak Target

Mut4: deletion (∆GC) No target Middle Moderate Target

cel-let-7-3p AU[G/A]CAA LIN-41

WT: Target Upper Strong Target
[74]

Mutation: No Target Lower * Weak Target *

hsa-miR-662 CCCAC[G/A]U

KLLN
Disrupted

(∆S = −0.51)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

PATE4
Disrupted

(∆S = −0.45)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

hsa-miR-125a-5p CCCUGA[G/U]

ZMYM3
Disrupted

(∆S = −0.31)

Upper Strong Target
PolymiRTS database

Lower * Moderate Target *

PRRC1
Disrupted

(∆S = −0.45)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

AQPEP
Disrupted

(∆S = −0.42)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

hsa-miR-645 [C/G]UAGGCU

COL4A4
Disrupted

(∆S = −0.38)

Upper Strong Target
PolymiRTS database

Middle * Moderate Target *

MAOA
Disrupted

(∆S = −0.4)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

IL4R
Disrupted

(∆S = −0.42)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *
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Table 3. Cont.

miRNA miRNA/Seed Mutation Target Gene/Mutation Result in Reference
mintRULS Prediction

Reference
Quartile Class

PATE4
Disrupted

(∆S = −0.45)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

hsa-miR-125a-5p CCCUGA[G/U]

ZMYM3
Disrupted

(∆S = −0.31)

Upper Strong Target
PolymiRTS database

Lower * Moderate Target *

PRRC1
Disrupted

(∆S = −0.45)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

AQPEP
Disrupted

(∆S = −0.42)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

hsa-miR-645 [C/G]UAGGCU

COL4A4
Disrupted

(∆S = −0.38)

Upper Strong Target
PolymiRTS database

Middle * Moderate Target *

MAOA
Disrupted

(∆S = −0.4)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

IL4R
Disrupted

(∆S = −0.42)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

hsa-miR-146a-3p

CP
Disrupted

(∆S = −0.57)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

ABCB1
Disrupted

(∆S = −0.35)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

mmu-miR-342-5p [G/-]GGGUGC

PIGU
Disrupted

(∆S = −0.46)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

RASL10B
Disrupted

(∆S = −0.5)

Middle Moderate Target
PolymiRTS database

Lower * Weak Target *

MCU
Disrupted

(∆S = −0.54)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

mmu-miR-690 AAGGCU[A/G]

CNOT6
Disrupted

(∆S = −0.3)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

ELOVL4
Disrupted

(∆S = −0.35)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

RBBP5
Disrupted

(∆S = −0.34)

Upper Strong Target
PolymiRTS database

Middle * Moderate Target *

mmu-miR-743a-3p AAAGAC[A/G]

MXI1
Disrupted

(∆S = −0.33)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

PRRG3
Disrupted

(∆S = −0.51)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

MBNL3
Disrupted

(∆S = −0.43)

Upper Strong Target
PolymiRTS database

Lower * Weak Target *

Higher value of the context+ score difference (∆S) indicates an increased likelihood disruption of interactions
between miRNA and target gene. * Entries for mutation in miRNAs. The values without * represents WT cases.

Other than the aforementioned case specific validation, we also compared mintRULS
predictions with the information in literature and databases. Table 4 listed a few of such
miRNA and their target genes which are also mentioned in literature and databases, along
with the mintRULS’s classifications. In most cases, the model’s classifications corroborate
with the information in literature and databases, with identifying few novel interactions.

Supporting Predictions by Expression of miRNA and mRNA in Human and Mouse

Comparison between differentially expressed miRNA and genes, IPA results (“High
predicted” or “Experimentally observed pairs only), showed that that most of the IPA
filtered pairs were predicted either as “Strong Target” or “Moderate Target”, with only a
few as “Weak Target” by our model (Table 5). In case of ESCA, 7 downregulated miRNAs
were found associated with 26 upregulated target genes, while 10 upregulated miRNAs
showed opposite expression correlation with 13 target genes (Figure 6A). Similarly, in LIHC,
3 upregulated miRNAs were associated with 2 downregulated genes; and conversely, 7
downregulated miRNAs showed associations with 20 upregulated target genes. We also
identified 28 miRNA–gene pairs with 18 upregulated miRNAs and 24 downregulated
genes in STAD. In case of CHOL, 27 downregulated miRNAs with 97 upregulated target
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genes, and 17 upregulated miRNAs with 58 downregulated target genes associations
were identified (Figure A2, Appendix A). Not enough interacting pairs were identified
in PAAD to carry forward in further analysis. Interestingly, the interacting pairs which
showed experimental evidence in IPA analysis were all predicted as “Strong Target” by
our method, indicating the strong predictability of the model. The detail of the interacting
pairs with the FC values, IPA results, and mintRULS classifications are provided in Table S1
(Supplementary Material).

Table 4. miRNA–mRNA interactions predicted by mintRULS and supporting data in literature

and databases.

miRNA Target Gene

mintRULS
Evidence

(Literature/Databases)Prediction Class
(Quartile)

Classification

hsa-miR-3941 TNPO1 Upper Strong Target miRDB

hsa-let-7d-5p BACH1 Upper Strong Target TargetScan

hsa-let-7d-5p BCL2L1 Upper Strong Target TargetScan

hsa-let-7d-5p NCAM1 Upper Strong Target New

hsa-let-7d-5p TIMP3 Upper Strong Target New

hsa-let-7d-5p IL6R Upper Strong Target TargetScan, miRDB

hsa-let-7d-5p CD44 Upper Strong Target New

hsa-let-7d-5p ITGB3 Upper Strong Target TargetScan, miRDB

hsa-let-7d-5p CCNE1 Upper Strong Target miRDB

hsa-let-7d-5p MAP4K3 Upper Strong Target TargetScan

hsa-let-7d-5p PTEN Upper Strong Target New

hsa-let-7e-5p TRIM71 Upper Strong Target TargetScan, [75]

hsa-let-7e-5p ZBTB7A Upper Strong Target New

hsa-let-7e-5p KLF9 Upper Strong Target TargetScan

hsa-let-7e-5p IGFBP5 Upper Strong Target New

hsa-let-7e-5p ALDH5A1 Upper Strong Target New

hsa-let-7e-5p CDK4 Upper Strong Target New

hsa-let-7e-5p BCL2L1 Upper Strong Target miRDB

hsa-let-7e-5p MDM4 Upper Strong Target TargetScan

hsa-let-7e-5p TIMP3 Upper Strong Target [76]

hsa-let-7e-5p PAPPA Middle Moderate Target TargetScan

hsa-let-7e-5p MYC Upper Strong Target [76]

hsa-miR-106b-5p NLN Upper Strong Target TargetScan

hsa-miR-106b-5p SLC6A4 Upper Strong Target TargetScan

hsa-miR-106b-5p GPD2 Upper Strong Target TargetScan

hsa-miR-106b-5p RASA1 Upper Strong Target TargetScan

hsa-miR-106b-5p EGLN1 Upper Strong Target TargetScan

hsa-miR-106b-5p ATAT1 Upper Strong Target New

hsa-miR-106b-5p PAX6 Upper Strong Target miRDB

hsa-miR-106b-5p PBX3 Upper Strong Target TargetScan

hsa-miR-106b-5p MCL1 Upper Strong Target TargetScan

hsa-miR-106b-5p FLT1 Middle Moderate Target TargetScan miRDB

hsa-miR-106b-5p FXN Middle Moderate Target miRDB
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Table 5. The summary of miRNA–target gene pairs with opposite expression correlation of associated

miRNA and target genes. The only pairs which showed “Experimental evidence” or “High predic-

tion” in IPA analysis were selected. The corresponding columns also list pairs which were predicted

as “Strong Target”, “Moderate Target”, and “Weak Target”. * All the miRNA-gene pairs which

showed “Experimental evidence” in IPA were predicted as “Strong Target” in mintRULS. For detailed

information, Supplementary Table S1 can be referred to. IPA: Ingenuity Pathway Analysis, mintRULS

predictions (Strong Target: upper quartile, >75th percentile; Moderate Target: middle quartile, >25th

percentile and <75th percentile; Weak Target: lower quartile, <25th percentile), STAD: stomach ade-

nocarcinoma, CHOL: cholangiocarcinoma, ESCA: esophageal carcinoma, LIHC: liver hepatocellular

carcinoma. Upward red arrow: upregulation, downward green arrow: down regulation.� � � � � � � � � � 	 
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Figure 6. The mintRULS predicted interacting pairs in the upper quartile (>75th percentile) which

have a negative correlation between miRNA and target gene expression compared in (A) normal vs.

esophageal carcinoma human cells, and (B) normal vs. septic mice. The only pairs with classification

“Experimental evidence” or “High prediction” in IPA analysis were considered. All the observations

are significant with adj p value < 0.05. FC: fold change, miRNA: microRNA. For upregulation,

Log2FC > 1, and for downregulation Log2FC < −1 criteria were set.
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In case of mouse, analysis by GEO2R filtered in 11 differentially expressed miRNAs be-
tween normal and septic mice, while 5715 mRNA transcripts were differentially expressed.
The integration of mintRULS predictions for all 11 miRNAs and the differentially expressed
mRNAs identified 15 miRNA–mRNA pairs between 4 miRNAs and 10 mRNAs which also
have a negative expression correlation between them (Figure 6B). The normalized predicted
mintRULS score, classification, and other related information for each pair are provided in
Table S2 (Supplementary Material).

4. Discussion

The increasing importance of miRNAs in regulating many biological processes in
cells and the overall human physiology is evident from several studies. One of the major
challenges in this field is the identification of functional interactions between miRNAs
and target genes. The advances in sequencing technologies and the growing volume of
reliable data on miRNAs and their target sites on genes have greatly facilitated studies
to predict the unknown and biologically relevant interactions. Bioinformatics solutions
in this realm are very diverse and inconsistent in the sense that they incorporate unique
characteristics in their algorithms and provide contradictory results [77]. Several machine
learning models have utilized learning features for predicting miRNA–miTS interactions
but could not achieve optimal performance due to the limitations in feature selection and
lack of systematic integration of multiple features.

To address some of these limitations, we employed a comprehensive list of learning
features and trained them on a large experimental dataset to predict target sites with high
accuracy. A special aspect of the current method includes the incorporation of pairwise
similarities between various features of miRNA and miTS to improve the performance of
the prediction model. The strategy for integrating pairwise correlation between miRNAs
and miTS is useful for proving our hypothesis that similar miRNAs are more likely to
target the same target site; and similar miTS tend to be targeted by the same miRNA. The
real conditions for miRNA–miTS interactions depend on several factors such as target
site accessibility [78] and complex stability [79]. mintRULS employed several of such
features including binding free energy, the abundance of SSRs, and target site accessibility
in the training process to develop an integrated objective scoring system. The working
postulate of our method is different from those of the existing methods as evidenced by its
superior prediction performance (with an AUC of 0.93) over miRDB, TargetScan, MBSTAR,
RPmirDIP, and STarMir using human dataset. We attribute the performance advantage of
mintRULS to its discrete feature selection and the integrated scoring function. As shown in
Figure 5, the kernels built from individual features of miRNAs and miTS fairly performed
with the highest AUC of 0.82, but the integrated kernel comparatively achieved higher
AUC of 0.93, showing the successful integration of different sequence-derived features
of miRNAs and mRNAs in a similarity-based fashion to train the model for predicting
interaction pairs. The 100-fold randomization of the training dataset to train the model
is extremely powerful to avoid prediction overfitting. Further, validation of predicted
interacting pairs using different datasets, i.e., previous gene expression studies, literature-
based findings, IPA knowledgebase with experimental and predicted interactions, and
the expression data of miRNA and the target genes in four type of GI cancers (Table 5
and Table S1) showed the potential of the current model to make biologically relevant
predictions. Moreover, the capability of mintRULS to predict interactions between gene
and miRNAs in WT as well as mutated cases is extremely promising (Table 3).

We also demonstrated that mintRULS program can be used to predict miRNA–miTS
interactions in mouse with a reasonable AUC of 0.86. The interacting miRNA-mRNA pairs
that show opposite expression correlation between normal and septic mice are in support
of the predictions. Negative expression correlation between miRNA and target mRNA is
not a clear indication of interactions between them, but throws the high possibility, which
can be confirmed by further experiments.
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Overall, validation of our top predictions in human and mouse shows the robustness
and superior ability of mintRULS to predict miRNA and their target site interactions.
Despite obtaining high performing and reliable prediction, mintRULS have worth-noticing
limitations, which mainly include lack of an experimentally validated negative dataset, and
exclusion of miRNA or target abundance information. The miRNA–gene interactions are
surrounded by many of the complex networks such as protein–protein interactions and
gene–gene interactions, which along with the other reliable biological information could be
incorporated in the future to further improve the prediction accuracy and to extend this
method to predict miRNA–gene interactions in other species as well.

5. Conclusions

We developed a regularized least square (RLS)-based method, mintRULS, which
uniquely utilizes multiple feature similarity-based metrics of miRNA and target sites to
predict their interactions in human and mouse. mintRULS achieved the highest AUC of
0.93 and 0.86 in case of human and mouse, respectively. The multiple iteration and random-
ization strategy has helped reduce data overfitting while improving generalization and
prediction performance. In comparison to other methods that include miRDB, TargetScan,
MBSTAR, RPmirDIP, and STarMir, mintRULS demonstrated superior prediction ability.
The model successfully utilized the existing knowledgebase as well as its unique design for
pairwise incorporation of different features of miRNAs and mRNAs to predict interactions
between them. Further, rigorous validation of the top predictions using multiple data
sources showed outstanding capability and reliability of the model. Our method also iden-
tified new miRNA–mRNA interacting pairs such as hsa-let-7d-5p and TIMP3, hsa-let-7e-5p
and ZBTB7A, and hsa-miR-106b-5p and ATAT1, which needs to be validated by further
experimental studies.

We anticipate that the current method could be easily adopted to predict miRNA–gene
interactions in other species as well to improve our knowledge of miRNA-regulated gene
expression at the post-transcriptional level in different species.
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Appendix A

Figure A1. AUC measurement after simulating mintRULS model on different values of regularization

parameter (λ). The randomization in case of each dataset was iterated over 100 times and average

AUC was calculated in (A) LOOCV, and (B) LmiTOCV environment. Definitions: Subset 1 (845 X

100) contains a matrix representing interactions among 845 miRNAs and 1000 miTS; and similarly,

for other subsets.

Figure A2. The mintRULS predicted interacting pairs in the upper quartile (>75th percentile) which

have a negative correlation between miRNA and target gene expression in different gastrointesti-

nal (GI) cancer types (A) cholangiocarcinoma (CHOL), (B) stomach adenocarcinoma (STAD), and

(C) liver hepatocellular carcinoma (LIHC). The only pairs with classification “Experimental evidence”

or “High prediction” in IPA analysis were considered. All the observations are significant with

adj p value < 0.05. FC: Fold change, miRNA: microRNA. For upregulation, Log2FC > 1, and for

downregulation Log2FC < −1 criteria were set.
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Appendix A.1. Methodology

Appendix A.1.1. miRNA/Gene Expression Analysis in Gastrointestinal (GI) Cancer

RNAseq Data Processing

TCGA level-3 gene expression data for pan-GI cancers (ESCA—esophageal carcinoma,
STAD—stomach adenocarcinoma, COAD—colon adenocarcinoma, READ—rectum adeno-
carcinoma, PAAD—pancreatic adenocarcinoma, CHOL—cholangiocarcinoma, LIHC—liver
hepatocellular carcinoma) containing fragments per kilobase of transcript per million
mapped reads upper quartile (FPKM-UQ) data were downloaded using a R Bioconduc-
tor tool, TCGAbiolinks [80]. Differential gene expression analysis was performed using
Bioconductor tool, limma. The genes were considered differentially expressed at a false
discovery rate (FDR) < 0.05 and abs (log2FC ≥ 1) as a cut-off.

miRNAseq Data Processing

TCGA level-3 miRNASeq data for Pan-GI cancers (ESCA, STAD, READ, CHOL, PAAD,
LIHC) containing reads per million (RPM) counts for each mature miRNA were down-
loaded from TCGA GDAC Firehose. The IDs were mapped to miRbase mature miRNA
name and accession ID. We first removed all miRNA with missing expression values (in at
least 25% of the samples) and also miRNA which had CPM (count per million) numbers
less than one (in at least 25% of the samples). Differential miRNA expression analysis was
performed using limma [81]. Benjamini–Hochberg (BH) adjusted p-value cut-off of 0.05, and
an absolute log2 fold change (FC) of 1 was used to obtain the list of differentially expressed
miRNAs. Since mature miRNA counts for normal samples were not available for READ
and COAD, these cancers were not considered for further processing.

miRNA Target Identification Using QIAGEN Ingenuity Pathway Analysis (IPA)

Target genes of all differentially expressed miRNAs were identified using IPA Target fil-
ter (QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuitypathway-
analysis), accessed on 20 July 2021. Further, differentially expressed miRNAs were paired
to differentially expressed mRNA targets to prioritize the identified miRNA–mRNA rela-
tionship, especially the ones which have negative expression correlation.

The workflow for integrating IPA results with the mintRULS predictions are illustrated
in Figure A3.

Figure A3. The workflow for integrating differentially expressed mRNAs and miRNA with the IPA

results and mintRULS predictions.
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miRNA/Gene Expression Analysis in Control and Septic Mice

For miRNA, we considered four control samples (Accession: GSM1938976, GSM1938977,
GSM1938978, and GSM1938979) and five cecal ligation and puncture (CLP)-based septic mice
samples (Accession: GSM1938980, GSM1938981, GSM1938982, GSM1938983, GSM1938984)
from microarray data of GSE74952 study (Affymetrix Mouse Genome 430 2.0 Array).

For mRNA, we considered four control samples (Accession: GSM1332257, GSM1332258,
GSM1332259, and GSM1332260) and five CLP septic mice (at Day 1) samples (Accession:
GSM1332273, GSM1332274, GSM1332275, and GSM1332276) from microarray data of GSE55238
study.

GEO2R analyzer was used to find differentially expressed miRNAs and genes. Further, a
python script was developed to map mintRULS predictions and differentially expressed miR-
NAs/genes to identify interacting miRNA–gene pairs which have negative expression correlation.

Appendix A.2. Calculation of Euclidean Distance Using Features

To calculate pairwise similarity between either two miRNAs or two mRNAs, the
Euclidean distance (ED) was calculated by taking miRNA/mRNA’s signatures into account,
as described below.

In case of miRNAs,

ED
(

mii, mij

)

=

√

n

∑
i=1

(

Fmii − Fmij

)2
(A1)

ED
(

mii, mij

)

is the ED between miRNAs mii and mij. Fmii and Fmij are the signatures
(e.g., Free energy) of miRNAs mii and mij, respectively.

In case of mRNAs,

ED
(

mi, mj

)

=

√

n

∑
i=1

(

Fmi − Fmj

)2
(A2)

ED
(

mi, mj

)

is the ED between mRNAs mi and mj. Similar to the illustration in case
of miRNAs, Fmi and Fmj are the signatures of mRNAs mi and mj, respectively. Here, n is
equal to 1 for both miRNAs and mRNAs.
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