174 research outputs found

    Analysis of Speaker Clustering Strategies for HMM-Based Speech Synthesis

    Get PDF
    This paper describes a method for speaker clustering, with the application of building average voice models for speakeradaptive HMM-based speech synthesis that are a good basis for adapting to specific target speakers. Our main hypothesis is that using perceptually similar speakers to build the average voice model will be better than use unselected speakers, even if the amount of data available from perceptually similar speakers is smaller. We measure the perceived similarities among a group of 30 female speakers in a listening test and then apply multiple linear regression to automatically predict these listener judgements of speaker similarity and thus to identify similar speakers automatically. We then compare a variety of average voice models trained on either speakers who were perceptually judged to be similar to the target speaker, or speakers selected by the multiple linear regression, or a large global set of unselected speakers. We find that the average voice model trained on perceptually similar speakers provides better performance than the global model, even though the latter is trained on more data, confirming our main hypothesis. However, the average voice model using speakers selected automatically by the multiple linear regression does not reach the same level of performance. Index Terms: Statistical parametric speech synthesis, hidden Markov models, speaker adaptatio

    Glottal Spectral Separation for Speech Synthesis

    Get PDF

    Reconstructing intelligible audio speech from visual speech features

    Get PDF
    This work describes an investigation into the feasibility of producing intelligible audio speech from only visual speech fea- tures. The proposed method aims to estimate a spectral enve- lope from visual features which is then combined with an arti- ficial excitation signal and used within a model of speech pro- duction to reconstruct an audio signal. Different combinations of audio and visual features are considered, along with both a statistical method of estimation and a deep neural network. The intelligibility of the reconstructed audio speech is measured by human listeners, and then compared to the intelligibility of the video signal only and when combined with the reconstructed audio

    Normal-to-Lombard Adaptation of Speech Synthesis Using Long Short-Term Memory Recurrent Neural Networks

    Get PDF
    In this article, three adaptation methods are compared based on how well they change the speaking style of a neural network based text-to-speech (TTS) voice. The speaking style conversion adopted here is from normal to Lombard speech. The selected adaptation methods are: auxiliary features (AF), learning hidden unit contribution (LHUC), and fine-tuning (FT). Furthermore, four state-of-the-art TTS vocoders are compared in the same context. The evaluated vocoders are: GlottHMM, GlottDNN, STRAIGHT, and pulse model in log-domain (PML). Objective and subjective evaluations were conducted to study the performance of both the adaptation methods and the vocoders. In the subjective evaluations, speaking style similarity and speech intelligibility were assessed. In addition to acoustic model adaptation, phoneme durations were also adapted from normal to Lombard with the FT adaptation method. In objective evaluations and speaking style similarity tests, we found that the FT method outperformed the other two adaptation methods. In speech intelligibility tests, we found that there were no significant differences between vocoders although the PML vocoder showed slightly better performance compared to the three other vocoders.Peer reviewe

    Sampling-based speech parameter generation using moment-matching networks

    Full text link
    This paper presents sampling-based speech parameter generation using moment-matching networks for Deep Neural Network (DNN)-based speech synthesis. Although people never produce exactly the same speech even if we try to express the same linguistic and para-linguistic information, typical statistical speech synthesis produces completely the same speech, i.e., there is no inter-utterance variation in synthetic speech. To give synthetic speech natural inter-utterance variation, this paper builds DNN acoustic models that make it possible to randomly sample speech parameters. The DNNs are trained so that they make the moments of generated speech parameters close to those of natural speech parameters. Since the variation of speech parameters is compressed into a low-dimensional simple prior noise vector, our algorithm has lower computation cost than direct sampling of speech parameters. As the first step towards generating synthetic speech that has natural inter-utterance variation, this paper investigates whether or not the proposed sampling-based generation deteriorates synthetic speech quality. In evaluation, we compare speech quality of conventional maximum likelihood-based generation and proposed sampling-based generation. The result demonstrates the proposed generation causes no degradation in speech quality.Comment: Submitted to INTERSPEECH 201
    corecore