21,416 research outputs found

    Statistical mechanics of complex networks

    Get PDF
    Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic

    Techniques for clustering gene expression data

    Get PDF
    Many clustering techniques have been proposed for the analysis of gene expression data obtained from microarray experiments. However, choice of suitable method(s) for a given experimental dataset is not straightforward. Common approaches do not translate well and fail to take account of the data profile. This review paper surveys state of the art applications which recognises these limitations and implements procedures to overcome them. It provides a framework for the evaluation of clustering in gene expression analyses. The nature of microarray data is discussed briefly. Selected examples are presented for the clustering methods considered

    Parameters for apple quality: and an outline for a new quality concept - part 1 report

    Get PDF
    In real life it is hard to distinguish between the two life processes, growth and differentiation. We cannot expect one measured parameter to represent only one aspect of vital quality. But for most parameters we can recognise emphases on one or more aspects of the vital quality concept. We made this prelimary classification both by thinking about the concept and by looking at the experimental results. Also the conventional parameters are interpreted as a result of these processes in a more holistic way than usual. We realise that various parameters all concerning the same aspect of our quality concept can show different levels of the aspect. To belong to the same aspect of the quality concept does not automatically mean that their correlation (see annex 14.2) must be high. We still have to get a lot of more experience to validate the parameters’ character. Here we present our first research on this topic, including the unanswered questions and realise that more experimental series will bring more and more certainty. After this first project we cannot say which parameters are so similar that it makes the other redundant. Until now we learned something from every parameter to develop our quality concept. Most inspiring for the new quality concept were the crystallisations, the delayed luminescence and the Bovis-value

    Online Spatio-Temporal Gaussian Process Experts with Application to Tactile Classification

    No full text

    Quantumlike Chaos in the Frequency Distributions of the Bases A, C, G, T in Drosophila DNA

    Get PDF
    Continuous periodogram power spectral analyses of fractal fluctuations of frequency distributions of bases A, C, G, T in Drosophila DNA show that the power spectra follow the universal inverse power-law form of the statistical normal distribution. Inverse power-law form for power spectra of space-time fluctuations is generic to dynamical systems in nature and is identified as self-organized criticality. The author has developed a general systems theory, which provides universal quantification for observed self-organized criticality in terms of the statistical normal distribution. The long-range correlations intrinsic to self-organized criticality in macro-scale dynamical systems are a signature of quantumlike chaos. The fractal fluctuations self-organize to form an overall logarithmic spiral trajectory with the quasiperiodic Penrose tiling pattern for the internal structure. Power spectral analysis resolves such a spiral trajectory as an eddy continuum with embedded dominant wavebands. The dominant peak periodicities are functions of the golden mean. The observed fractal frequency distributions of the Drosophila DNA base sequences exhibit quasicrystalline structure with long-range spatial correlations or self-organized criticality. Modification of the DNA base sequence structure at any location may have significant noticeable effects on the function of the DNA molecule as a whole. The presence of non-coding introns may not be redundant, but serve to organize the effective functioning of the coding exons in the DNA molecule as a complete unit.Comment: 46 pages, 9 figure
    • 

    corecore