3 research outputs found

    Application and Development of Computational Methods for Ligand-Based Virtual Screening

    Get PDF
    The detection of novel active compounds that are able to modulate the biological function of a target is the primary goal of drug discovery. Different screening methods are available to identify hit compounds having the desired bioactivity in a large collection of molecules. As a computational method, virtual screening (VS) is used to search compound libraries in silico and identify those compounds that are likely to exhibit a specific activity. Ligand-based virtual screening (LBVS) is a subdiscipline that uses the information of one or more known active compounds in order to identify new hit compounds. Different LBVS methods exist, e.g. similarity searching and support vector machines (SVMs). In order to enable the application of these computational approaches, compounds have to be described numerically. Fingerprints derived from the two-dimensional compound structure, called 2D fingerprints, are among the most popular molecular descriptors available. This thesis covers the usage of 2D fingerprints in the context of LBVS. The first part focuses on a detailed analysis of 2D fingerprints. Their performance range against a wide range of pharmaceutical targets is globally estimated through fingerprint-based similarity searching. Additionally, mechanisms by which fingerprints are capable of detecting structurally diverse active compounds are identified. For this purpose, two different feature selection methods are applied to find those fingerprint features that are most relevant for the active compounds and distinguish them from other compounds. Then, 2D fingerprints are used in SVM calculations. The SVM methodology provides several opportunities to include additional information about the compounds in order to direct LBVS search calculations. In a first step, a variant of the SVM approach is applied to the multi-class prediction problem involving compounds that are active against several related targets. SVM linear combination is used to recover compounds with desired activity profiles and deprioritize compounds with other activities. Then, the SVM methodology is adopted for potency-directed VS. Compound potency is incorporated into the SVM approach through potencyoriented SVM linear combination and kernel function design to direct search calculations to the preferential detection of potent hit compounds. Next, SVM calculations are applied to address an intrinsic limitation of similarity-based methods, i.e., the presence of similar compounds having large differences in their potency. An especially designed SVM approach is introduced to predict compound pairs forming such activity cliffs. Finally, the impact of different training sets on the recall performance of SVM-based VS is analyzed and caveats are identified

    Development and Interpretation of Machine Learning Models for Drug Discovery

    Get PDF
    In drug discovery, domain experts from different fields such as medicinal chemistry, biology, and computer science often collaborate to develop novel pharmaceutical agents. Computational models developed in this process must be correct and reliable, but at the same time interpretable. Their findings have to be accessible by experts from other fields than computer science to validate and improve them with domain knowledge. Only if this is the case, the interdisciplinary teams are able to communicate their scientific results both precisely and intuitively. This work is concerned with the development and interpretation of machine learning models for drug discovery. To this end, it describes the design and application of computational models for specialized use cases, such as compound profiling and hit expansion. Novel insights into machine learning for ligand-based virtual screening are presented, and limitations in the modeling of compound potency values are highlighted. It is shown that compound activity can be predicted based on high-dimensional target profiles, without the presence of molecular structures. Moreover, support vector regression for potency prediction is carefully analyzed, and a systematic misprediction of highly potent ligands is discovered. Furthermore, a key aspect is the interpretation and chemically accessible representation of the models. Therefore, this thesis focuses especially on methods to better understand and communicate modeling results. To this end, two interactive visualizations for the assessment of naive Bayes and support vector machine models on molecular fingerprints are presented. These visual representations of virtual screening models are designed to provide an intuitive chemical interpretation of the results
    corecore