6 research outputs found

    Reinforcement learning for robotic manipulation using simulated locomotion demonstrations

    Get PDF
    Mastering robotic manipulation skills through reinforcement learning (RL) typically requires the design of shaped reward functions. Recent developments in this area have demonstrated that using sparse rewards, i.e. rewarding the agent only when the task has been successfully completed, can lead to better policies. However, state-action space exploration is more difficult in this case. Recent RL approaches to learning with sparse rewards have leveraged high-quality human demonstrations for the task, but these can be costly, time consuming or even impossible to obtain. In this paper, we propose a novel and effective approach that does not require human demonstrations. We observe that every robotic manipulation task could be seen as involving a locomotion task from the perspective of the object being manipulated, i.e. the object could learn how to reach a target state on its own. In order to exploit this idea, we introduce a framework whereby an object locomotion policy is initially obtained using a realistic physics simulator. This policy is then used to generate auxiliary rewards, called simulated locomotion demonstration rewards (SLDRs), which enable us to learn the robot manipulation policy. The proposed approach has been evaluated on 13 tasks of increasing complexity, and can achieve higher success rate and faster learning rates compared to alternative algorithms. SLDRs are especially beneficial for tasks like multi-object stacking and non-rigid object manipulation

    Visual motion estimation and tracking of rigid bodies by physical simulation

    Get PDF
    This thesis applies knowledge of the physical dynamics of objects to estimating object motion from vision when estimation from vision alone fails. It differentiates itself from existing physics-based vision by building in robustness to situations where existing visual estimation tends to fail: fast motion, blur, glare, distractors, and partial or full occlusion. A real-time physics simulator is incorporated into a stochastic framework by adding several different models of how noise is injected into the dynamics. Several different algorithms are proposed and experimentally validated on two problems: motion estimation and object tracking. The performance of visual motion estimation from colour histograms of a ball moving in two dimensions is improved considerably when a physics simulator is integrated into a MAP procedure involving non-linear optimisation and RANSAC-like methods. Process noise or initial condition noise in conjunction with a physics-based dynamics results in improved robustness on hard visual problems. A particle filter applied to the task of full 6D visual tracking of the pose an object being pushed by a robot in a table-top environment is improved on difficult visual problems by incorporating a simulator as a dynamics model and injecting noise as forces into the simulator.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Prediction learning in robotic pushing manipulation

    No full text
    Abstract — This paper addresses the problem of learning about the interactions of rigid bodies. A probabilistic frame-work is presented for predicting the motion of one rigid body following contact with another. We describe an algorithm for learning these predictions from observations, which does not make use of physics and is not restricted to domains with particular physics. We demonstrate the method in a scenario where a robot arm applies pushes to objects. The probabilistic nature of the algorithm enables it to generalize from learned examples, to successfully predict the resulting object motion for previously unseen object poses, push directions and new objects with novel shape. We evaluate the method with empirical experiments in a physics simulator. I
    corecore