80,734 research outputs found

    Understanding and Comparing Scalable Gaussian Process Regression for Big Data

    Full text link
    As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the era of big data. Hence, various scalable GPs have been developed in the literature in order to improve the scalability while retaining desirable prediction accuracy. This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness. The numerical experiments on two toy examples and five real-world datasets with up to 250K points offer the following findings. In terms of scalability, most of the scalable GPs own a time complexity that is linear to the training size. In terms of capability, the sparse approximations capture the long-term spatial correlations, the local aggregations capture the local patterns but suffer from over-fitting in some scenarios. In terms of controllability, we could improve the performance of sparse approximations by simply increasing the inducing size. But this is not the case for local aggregations. In terms of robustness, local aggregations are robust to various initializations of hyperparameters due to the local attention mechanism. Finally, we highlight that the proper hybrid of global and local scalable GPs may be a promising way to improve both the model capability and scalability for big data.Comment: 25 pages, 15 figures, preprint submitted to KB

    Closed-Loop Statistical Verification of Stochastic Nonlinear Systems Subject to Parametric Uncertainties

    Full text link
    This paper proposes a statistical verification framework using Gaussian processes (GPs) for simulation-based verification of stochastic nonlinear systems with parametric uncertainties. Given a small number of stochastic simulations, the proposed framework constructs a GP regression model and predicts the system's performance over the entire set of possible uncertainties. Included in the framework is a new metric to estimate the confidence in those predictions based on the variance of the GP's cumulative distribution function. This variance-based metric forms the basis of active sampling algorithms that aim to minimize prediction error through careful selection of simulations. In three case studies, the new active sampling algorithms demonstrate up to a 35% improvement in prediction error over other approaches and are able to correctly identify regions with low prediction confidence through the variance metric.Comment: 8 pages, submitted to ACC 201

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure

    Gaussian processes for choosing laser parameters for driven, dissipative Rydberg aggregates

    Full text link
    To facilitate quantum simulation of open quantum systems at finite temperatures, an important ingredient is to achieve thermalization on a given time-scale. We consider a Rydberg aggregate (an arrangement of Rydberg atoms that interact via long-range interactions) embedded in a laser-driven atomic environment. For the smallest aggregate (two atoms), suitable laser parameters can be found by brute force scanning of the four tunable laser parameters. For more atoms, however, such parameter scans are too computationally costly. Here we apply Gaussian processes to predict the thermalization performance as a function of the laser parameters for two-atom and four-atom aggregates. These predictions perform remarkably well using just 1000 simulations, demonstrating the utility of Gaussian processes in an atomic physics setting. Using this approach, we find and present effective laser parameters for generating thermalization, the robustness of these parameters to variation, as well as different thermalization dynamics
    • …
    corecore