2,233 research outputs found

    Bioinformatics: a knowledge engineering approach

    Get PDF
    The paper introduces the knowledge engineering (KE) approach for the modeling and the discovery of new knowledge in bioinformatics. This approach extends the machine learning approach with various rule extraction and other knowledge representation procedures. Examples of the KE approach, and especially of one of the recently developed techniques - evolving connectionist systems (ECOS), to challenging problems in bioinformatics are given, that include: DNA sequence analysis, microarray gene expression profiling, protein structure prediction, finding gene regulatory networks, medical prognostic systems, computational neurogenetic modeling

    Behavioural pattern identification and prediction in intelligent environments

    Get PDF
    In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments

    Classification of microarray gene expression cancer data by using artificial intelligence methods

    Get PDF
    Günümüzde bilgisayar teknolojilerinin gelişmesi ile birçok alanda yapılan çalışmaları etkilemiştir. Moleküler biyoloji ve bilgisayar teknolojilerinde meydana gelen gelişmeler biyoinformatik adlı bilimi ortaya çıkarmıştır. Biyoinformatik alanında meydana gelen hızlı gelişmeler, bu alanda çözülmeyi bekleyen birçok probleme çözüm olma yolunda büyük katkılar sağlamıştır. DNA mikroarray gen ekspresyonlarının sınıflandırılması da bu problemlerden birisidir. DNA mikroarray çalışmaları, biyoinformatik alanında kullanılan bir teknolojidir. DNA mikroarray veri analizi, kanser gibi genlerle alakalı hastalıkların teşhisinde çok etkin bir rol oynamaktadır. Hastalık türüne bağlı gen ifadeleri belirlenerek, herhangi bir bireyin hastalıklı gene sahip olup olmadığı büyük bir başarı oranı ile tespit edilebilir. Bireyin sağlıklı olup olmadığının tespiti için, mikroarray gen ekspresyonları üzerinde yüksek performanslı sınıflandırma tekniklerinin kullanılması büyük öneme sahiptir. DNA mikroarray’lerini sınıflandırmak için birçok yöntem bulunmaktadır. Destek Vektör Makinaları, Naive Bayes, k-En yakın Komşu, Karar Ağaçları gibi birçok istatistiksel yöntemler yaygın olarak kullanlmaktadır. Fakat bu yöntemler tek başına kullanıldığında, mikroarray verilerini sınıflandırmada her zaman yüksek başarı oranları vermemektedir. Bu yüzden mikroarray verilerini sınıflandırmada yüksek başarı oranları elde etmek için yapay zekâ tabanlı yöntemlerin de kullanılması yapılan çalışmalarda görülmektedir. Bu çalışmada, bu istatistiksel yöntemlere ek olarak yapay zekâ tabanlı ANFIS gibi bir yöntemi kullanarak daha yüksek başarı oranları elde etmek amaçlanmıştır. İstatistiksel sınıflandırma yöntemleri olarak K-En Yakın Komşuluk, Naive Bayes ve Destek Vektör Makineleri kullanılmıştır. Burada Göğüs ve Merkezi Sinir Sistemi kanseri olmak üzere iki farklı kanser veri seti üzerinde çalışmalar yapılmıştır. Sonuçlardan elde edilen bilgilere göre, genel olarak yapay zekâ tabanlı ANFIS tekniğinin, istatistiksel yöntemlere göre daha başarılı olduğu tespit edilmiştir

    Fusion of Domain Knowledge for Dynamic Learning in Transcriptional Networks

    Get PDF
    A critical challenge of the postgenomic era is to understand how genes are differentially regulated even when they belong to a given network. Because the fundamental mechanism controlling gene expression operates at the level of transcription initiation, computational techniques have been devel oped that identify cis-regulatory features and map such features into differential expression patterns. The fact that such co-regulated genes may be differentially regulated suggests that subtle differences in the shared cis-acting regulatory elements are likely significant. Thus, we carry out an exhaustive description of cis-acting regulatory features including the orientation, location and number of binding sites for a regulatory protein, the presence of binding site submotifs, the class and number of RNA polymerase sites, as well as gene expression data, which is treated as one feature among many. These features, derived from dif ferent domain sources, are analyzed concurrently, and dynamic relations are re cognized to generate profiles, which are groups of promoters sharing common features. We apply this method to probe the regulatory networks governed by the PhoP/PhoQ two-component system in the enteric bacteria Escherichia coli and Salmonella enterica. Our analysis uncovered novel members of the PhoP regulon as and the resulting profiles group genes that share underlying biologi cal that characterize the system kinetics. The predictions were experimentally validated to establish that the PhoP protein uses multiple mechanisms to control gene transcription and is a central element in a highly connected network.Ministerio de Ciencia y Tecnología BIO2004-0270-

    Neurosymbolic AI for Reasoning on Graph Structures: A Survey

    Full text link
    Neurosymbolic AI is an increasingly active area of research which aims to combine symbolic reasoning methods with deep learning to generate models with both high predictive performance and some degree of human-level comprehensibility. As knowledge graphs are becoming a popular way to represent heterogeneous and multi-relational data, methods for reasoning on graph structures have attempted to follow this neurosymbolic paradigm. Traditionally, such approaches have utilized either rule-based inference or generated representative numerical embeddings from which patterns could be extracted. However, several recent studies have attempted to bridge this dichotomy in ways that facilitate interpretability, maintain performance, and integrate expert knowledge. Within this article, we survey a breadth of methods that perform neurosymbolic reasoning tasks on graph structures. To better compare the various methods, we propose a novel taxonomy by which we can classify them. Specifically, we propose three major categories: (1) logically-informed embedding approaches, (2) embedding approaches with logical constraints, and (3) rule-learning approaches. Alongside the taxonomy, we provide a tabular overview of the approaches and links to their source code, if available, for more direct comparison. Finally, we discuss the applications on which these methods were primarily used and propose several prospective directions toward which this new field of research could evolve.Comment: 21 pages, 8 figures, 1 table, currently under review. Corresponding GitHub page here: https://github.com/NeSymGraph

    Application of Wavelet Decomposition and Phase Space Reconstruction in Urban Water Consumption Forecasting: Chaotic Approach (Case Study)

    Get PDF
    The forecasting of future value of water consumption in an urban area is highly complex and nonlinear. It often exhibits a high degree of spatial and temporal variability. It is a crucial factor for long-term sustainable management and improvement of the operation of urban water allocation system. This chapter will study the application of two pre-processing phase space reconstruction (PSR) and wavelet decomposition transform (WDT) methods to investigate the behavior of time series to forecast short-term water demand value of Kelowna City (BC, Canada). The research proposes two pre-process technique to improve the accuracy of the models. Artificial neural networks (ANNs), gene expression programming (GEP) and multilinear regression (MLR) methods are the tools that considered for forecasting the demand values. Evaluation of the tools is based on two steps with and without applying the pre-processing methods. Moreover, autocorrelation function (ACF) is used to calculate the lag time. Correlation dimension is used to study the chaotic behavior of the dataset. The models’ relative performance is compared using three different fitness indexes; coefficient of determination (CD), root mean square error (RMSE) and mean absolute error (MAE). The results showed how pre-processing combination of WDT and PSR improved the performance of the models in forecasting short-term demand values

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer
    • …
    corecore