92,867 research outputs found

    Structural Logistic Regression for Link Analysis

    Get PDF
    We present Structural Logistic Regression, an extension of logistic regression to modeling relational data. It is an integrated approach to building regression models from data stored in relational databases in which potential predictors, both boolean and real-valued, are generated by structured search in the space of queries to the database, and then tested with statistical information criteria for inclusion in a logistic regression. Using statistics and relational representation allows modeling in noisy domains with complex structure. Link prediction is a task of high interest with exactly such characteristics. Be it in the domain of scientific citations, social networks or hypertext, the underlying data are extremely noisy and the features useful for prediction are not readily available in a flat file format. We propose the application of Structural Logistic Regression to building link prediction models, and present experimental results for the task of predicting citations made in scientific literature using relational data taken from the CiteSeer search engine. This data includes the citation graph, authorship and publication venues of papers, as well as their word content

    Deep Character-Level Click-Through Rate Prediction for Sponsored Search

    Full text link
    Predicting the click-through rate of an advertisement is a critical component of online advertising platforms. In sponsored search, the click-through rate estimates the probability that a displayed advertisement is clicked by a user after she submits a query to the search engine. Commercial search engines typically rely on machine learning models trained with a large number of features to make such predictions. This is inevitably requires a lot of engineering efforts to define, compute, and select the appropriate features. In this paper, we propose two novel approaches (one working at character level and the other working at word level) that use deep convolutional neural networks to predict the click-through rate of a query-advertisement pair. Specially, the proposed architectures only consider the textual content appearing in a query-advertisement pair as input, and produce as output a click-through rate prediction. By comparing the character-level model with the word-level model, we show that language representation can be learnt from scratch at character level when trained on enough data. Through extensive experiments using billions of query-advertisement pairs of a popular commercial search engine, we demonstrate that both approaches significantly outperform a baseline model built on well-selected text features and a state-of-the-art word2vec-based approach. Finally, by combining the predictions of the deep models introduced in this study with the prediction of the model in production of the same commercial search engine, we significantly improve the accuracy and the calibration of the click-through rate prediction of the production system.Comment: SIGIR2017, 10 page

    Incorporating Clicks, Attention and Satisfaction into a Search Engine Result Page Evaluation Model

    Get PDF
    Modern search engine result pages often provide immediate value to users and organize information in such a way that it is easy to navigate. The core ranking function contributes to this and so do result snippets, smart organization of result blocks and extensive use of one-box answers or side panels. While they are useful to the user and help search engines to stand out, such features present two big challenges for evaluation. First, the presence of such elements on a search engine result page (SERP) may lead to the absence of clicks, which is, however, not related to dissatisfaction, so-called "good abandonments." Second, the non-linear layout and visual difference of SERP items may lead to non-trivial patterns of user attention, which is not captured by existing evaluation metrics. In this paper we propose a model of user behavior on a SERP that jointly captures click behavior, user attention and satisfaction, the CAS model, and demonstrate that it gives more accurate predictions of user actions and self-reported satisfaction than existing models based on clicks alone. We use the CAS model to build a novel evaluation metric that can be applied to non-linear SERP layouts and that can account for the utility that users obtain directly on a SERP. We demonstrate that this metric shows better agreement with user-reported satisfaction than conventional evaluation metrics.Comment: CIKM2016, Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 201
    • …
    corecore