4 research outputs found

    Predicting the effect of home Wi-Fi quality on QoE

    Get PDF
    International audiencePoor Wi-Fi quality can disrupt home users' internet experience, or the Quality of Experience (QoE). Detecting when Wi-Fi degrades QoE is extremely valuable for residential Internet Service Providers (ISPs) as home users often hold the ISP responsible whenever QoE degrades. Yet, ISPs have little visibility within the home to assist users. Our goal is to develop a system that runs on commodity access points (APs) to assist ISPs in detecting when Wi-Fi degrades QoE. Our first contribution is to develop a method to detect instances of poor QoE based on the passive observation of Wi-Fi quality metrics available in commodity APs (e.g., PHY rate). We use support vector regression to build predictors of QoE given Wi-Fi quality for popular internet applications. We then use K-means clustering to combine per-application predictors to identify regions of Wi-Fi quality where QoE is poor across applications. We call samples in these regions as poor QoE samples. Our second contribution is to apply our predictors to Wi-Fi metrics collected over one month from 3479 APs of customers of a large residential ISP. Our results show that QoE is good most of the time, still we find 11.6% of poor QoE samples. Worse, approximately 21% of stations have more than 25% poor QoE samples. In some cases, we estimate that Wi-Fi quality causes poor QoE for many hours, though in most cases poor QoE events are short

    Predicting the effect of home Wi-Fi quality on QoE: Extended Technical Report

    Get PDF
    Poor Wi-Fi quality can disrupt home users' internet experience, or the Quality of Experience (QoE). Detecting when Wi-Fi degrades QoE is extremely valuable for residential Internet Service Providers (ISPs) as home users often hold the ISP responsible whenever QoE degrades. Yet, ISPs have little visibility within the home to assist users. Our goal is to develop a system that runs on commodity access points (APs) to assist ISPs in detecting when Wi-Fi degrades QoE. Our first contribution is to develop a method to detect instances of poor QoE based on the passive observation of Wi-Fi quality metrics available in commodity APs (e.g., PHY rate). We use support vector regression to build predictors of QoE given Wi-Fi quality for popular internet applications. We then use K-means clustering to combine per-application predictors to identify regions of Wi-Fi quality where QoE is poor across applications. We call samples in these regions as poor QoE samples. Our second contribution is to apply our predictors to Wi-Fi metrics collected over one month from 3479 APs of customers of a large residential ISP. Our results show that QoE is good most of the time, still we find 11.6% of poor QoE samples. Worse, approximately 21% of stations have more than 25% poor QoE samples. In some cases, we estimate that Wi-Fi quality causes poor QoE for many hours, though in most cases poor QoE events are short

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Entendendo o efeito das condições da rede na qualidade de experiência do usuário

    Get PDF
    Foi previsto que, até 2022, aproximadamente 82% do tráfego na Internet será tráfego de vídeo (CISCO, 2019). A expectativa é de que as pessoas assistam os vídeos em diferentes equipamentos, como celulares, smart TVs, computadores e tablets. Ao mesmo tempo, os usuários têm se tornado cada vez mais exigentes quanto à qualidade dos vídeos. Nesse contexto, torna-se crucial que provedores de internet entendam como condições de rede afetam a qualidade dos vídeos, visto que isso impacta diretamente na qualidade de experiência (QoE) do usuário. O objetivo principal deste trabalho é estudar a relação entre o tamanho do buffer do driver WiFi e a QoE percebida, fazendo uso de métodos interpretativos. A análise é baseada em experimentos que consistem na coleta de dados de uma aplicação de vídeo que é transmitida em uma rede monitorada. Coleto métricas de vídeos do YouTube usando uma extensão do Google Chrome, implementada em javascript. Mais especificamente, foram coletados dados que permitem a obtenção de: latência inicial, taxa do vídeo, mudanças na taxa do vídeo e ocorrência e duração de rebufferizações. Essas métricas servem como proxies para a QoE percebida pelo usuário. Para entender como as métricas de QoE se comportam com mudanças no desempenho da rede, vario as condições de rede, como, por exemplo, a taxa de perda de pacotes e, crucialmente, o tamanho do buffer do driver de WiFi do roteador de modo a analisar como as métricas de QoE se comportam sujeitas a essas variações. No futuro experimentos serão realizados com clientes voluntários de um provedor de internet para a criação de um modelo de inferência de métricas de QoE a partir de métricas de rede e o tamanho do buffer do driver WiFi
    corecore