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Abstract—Poor Wi-Fi quality can disrupt home users’ internet
experience, or the Quality of Experience (QoE). Detecting when
Wi-Fi degrades QoE is extremely valuable for residential Internet
Service Providers (ISPs) as home users often hold the ISP
responsible whenever QoE degrades. Yet, ISPs have little visibility
within the home to assist users. Our goal is to develop a system
that runs on commodity access points (APs) to assist ISPs in
detecting when Wi-Fi degrades QoE. Our first contribution is
to develop a method to detect instances of poor QoE based
on the passive observation of Wi-Fi quality metrics available
in commodity APs (e.g., PHY rate). We use support vector
regression to build predictors of QoE given Wi-Fi quality for
popular internet applications. We then use K-means clustering
to combine per-application predictors to identify regions of Wi-Fi
quality where QoE is poor across applications. We call samples
in these regions as poor QoE samples. Our second contribution
is to apply our predictors to Wi-Fi metrics collected over one
month from 3479 APs of customers of a large residential ISP.
Our results show that QoE is good most of the time, still we
find 11.6% of poor QoE samples. Worse, approximately 21% of
stations have more than 25% poor QoE samples. In some cases,
we estimate that Wi-Fi quality causes poor QoE for many hours,
though in most cases poor QoE events are short.

I. INTRODUCTION

Wi-Fi is the preferred technology for accessing the internet
from home. Home Wi-Fi networks can, however, disrupt end-
to-end application performance. For example, in dense urban
neighborhoods it is typical to see tens of competing Wi-
Fi networks [1], alongside many non Wi-Fi RF devices [2].
Also, a poorly located AP will leave stations with weak
signal. In these cases, Wi-Fi quality can degrade users’ internet
experience, or the Quality of Experience (QoE).

When QoE is poor, users are often helpless and just call
their residential ISP for support. In fact, the “administrators” of
home networks likely have limited to no network management
expertise [3]. The problem is that the ISP has little visibility
into what is happening within the home Wi-Fi, which leads
to painful helpdesk calls or, worse, customers who simply
change provider. Our discussions with ISPs revealed that
technical support calls represent a considerable fraction of
their operations cost and they claim that often the root cause
of the problems is the home Wi-Fi (recent results confirm that
the home Wi-Fi often bottlenecks end-to-end performance [4],
[5]).

Our goal is to build a system for ISPs to detect when
home Wi-Fi quality degrades QoE before users call. Such a
system would enable ISPs to proactively fix recurrent problems
and consequently reduce customer churn. This system can
also help to reduce the length of helpdesk calls, which in

turn would help reduce operational costs. In many cases, the
ISP provides and controls the home AP, so we leverage the
home AP as monitoring point within the home. For such
a system to scale to all the customers of an ISP, it must
work with commodity APs already deployed by ISPs. This
restriction excludes solutions that rely on APs with specialized
hardware or multiple Wi-Fi interfaces [2], [6]–[8]. In addition,
the system cannot disrupt user activity, so we exclude solutions
that require installation on end users’ devices [9] and that
employ active measurements [10], [11], since continuous ac-
tive measurements may disrupt user traffic and drain devices’
battery. Instead, we rely on periodic polling of Wi-Fi metrics
typically available on commodity APs (e.g., PHY rate and
RSSI). Wi-Fi quality, however, is highly variable [6] and
reporting every single Wi-Fi degradation would lead to too
many alarms; most often for events imperceptible to users.

The first contribution of this paper is to develop a method
to detect instances of poor QoE from Wi-Fi quality metrics.
Detecting when Wi-Fi quality degrades QoE is challenging
as we can only obtain a limited number of Wi-Fi metrics
in commodity APs and we have no information about the
applications that end users are running at a given time.1 We
rely on regression models to build predictors that estimate
the effect of Wi-Fi quality on QoE for four popular appli-
cations: web browsing, YouTube, audio and video real time
communication (RTC) (§IV). We generate training samples in
a controlled environment, where we sweep a large set of Wi-
Fi conditions, while observing application behavior (§II). To
reduce the tests with real users, we measure application quality
metrics and use state of the art methods to translate these into
QoE as captured by the degradation of mean opinion scores
(DMOS), in range [1-5](§III). Finally, we develop a method to
combine the per-application predictors into a detector of poor
QoE samples. For each possible combination of Wi-Fi quality
parameters, we generate a sample with the predicted DMOS
for each application and then we apply K-means clustering
in the resulting dataset. Our analysis of the resulting clusters
identifies ranges of Wi-Fi quality where we predict poor QoE
for most applications, which we define as poor QoE samples.

Our second contribution is to characterize the effect of
Wi-Fi quality on QoE in the wild. We apply our detection
method on Wi-Fi metrics collected from 3,479 APs of cus-
tomers of a large Asian-Pacific residential ISP over a period

1ISPs avoid running per-packet capture on APs due to privacy concerns
and to avoid overloading the AP.



of one month in 2016 (§V). Our results show that Wi-Fi quality
is often good enough for the four applications we study. We
classify 11.6% of samples as poor QoE samples, and we find
that 21% of stations have more than 25% poor QoE samples.
Then, we group consecutive poor QoE samples from a single
station into poor QoE events, which allow us to distinguish
among short, intermittent, and consistent poor QoE events. We
find that over 78% of poor QoE events are short, although we
observe poor QoE events stretching over many hours. Finally,
we analyze poor QoE events by verifying the underlying Wi-
Fi metrics. We find that the majority of poor QoE events have
average PHY rate < 15Mbps. In the other cases, we observe
an indication of interference. In particular, poor QoE events
caused by non Wi-Fi interference are more likely intermittent
than consistent.

II. EXPERIMENTAL SETUP

To understand how Wi-Fi quality affects user QoE, we
perform controlled experiments with four applications: web
browsing, YouTube streaming, and audio / video RTC. These
are popular applications that represent a large fraction of users’
traffic [6]. The typical method to assess QoE is to request
users’ explicit feedback and then average individual users’
scores into a mean opinion score (MOS) [12]. This approach,
however, is impractical for us given the wide range of Wi-Fi
configurations we must cover. For example, our tests generate
over ten thousand data points across the four applications and
we require multiple users to rate each point. Instead, during
each experiment we measure application-specific QoS metrics
and use state-of-the-art models that map application QoS to
QoE. This section describes our testbed, the Wi-Fi parameter
space we test, and our method to generate traffic and collect
per-application QoS.

A. Testbed

We emulate a Wi-Fi home network on the testbed shown
in Figure 1. We use an AP with a Broadcom BCM6362 NIC
with 802.11n 2x2 technology, and two MacBook pro stations
(STA1 and STA2) with 802.11n 2x2 technology. We choose
an AP with a Broadcom NIC because these are often deployed
by residential ISPs. In particular, this model of AP is used in
the deployment we study in §V. We only use metrics that are
commonly exposed by Wi-Fi drivers and our predictors should
generalize well for other 802.11n NICs.

The Wi-Fi testbed is located in Belgium, and it connects
to the internet through an Ubuntu 12 gateway using TC to
emulate bandwidth restrictions of a home network access link,
with 16 Mbps available bandwidth for download traffic. Our
Web and iperf servers are Ubuntu 12 computers. We also
use an Android tablet with 802.11n 1x1 technology, using
iperf in server mode to receive traffic that interferes with the
AP under test. We use the default AP Wi-Fi configurations:
20MHz channel width and long guard interval PHY rates only.
We restrict Wi-Fi physical layer (PHY) rates to only use one-
spatial-stream, due to the difficulty of reliably enabling MIMO
communication in shielded boxes. Although we only study

PHY rates up to 65 Mbps, results for higher PHY rates should
be similar to those where PHY rate is 65 Mbps, since in both
cases the transmission rate is unlikely to degrade QoE. We
expect results for 802.11ac NICs to be similar to those of
802.11n for PHY rates and modulation schemes covered in
this study.

B. Experimental parameters

We vary the Wi-Fi conditions over two axis:
Link speed. We vary the link speed by introducing 6, 12,

15, 18, 19, and 20 dBs of attenuation in the path between AP
and STA using a programmable attenuator.

Medium availability. We vary the medium availability at
the AP by introducing interference from Wi-Fi or non-Wi-
Fi sources. To introduce Wi-Fi interference, we use the iperf
client to generate competing Wi-Fi traffic in the “interfering
link”, as shown in Figure 1. The AP from the interfering
link is configured to only use PHY rate 5.5 Mbps, which
blocks the medium longer per medium access. We found that
by generating constant bit rate UDP traffic of 0.7 Mbps, 1.1
Mbps, 2.1 Mbps and 2.9 Mbps we obtain, respectively, 70%,
50%, 30% and 15% medium availability, measured by the clear
channel assessment (CCA) counters on the AP.

To generate interference from a non Wi-Fi source, we use
a signal generator to inject a narrowband sinewave to block
the AP’s CCA. We sweep the interfering sinewave in and out
of the spectral CCA range of the AP every 200ms. We vary
the percentage of time the sinewave is inside and outside this
range to create scenarios with medium availability of 100%,
75%, 50%, 25%, and 12.5%. AP’s Wi-Fi counters confirm that
we obtained the intended availability with less than 5% error.

C. Applications

For each Wi-Fi scenario, we execute automated tests with
the following applications.

Web browsing. STA1 uses PhantomJS, a headless browser,
to sequentially access 10 times a set of 10 pages on the
internet. We chose a mix of pages from the Alexa TOP 20
pages in Belgium. We access the front pages of the fol-
lowing domains: bing.com, google.be, twitter.com, live.com,
wikipedia.org, facebook.com, yahoo.com, amazon.fr, nieuws-
blad.be, and hln.be. We use JavaScript to record the page load
time (PLT) triggered by the onload event.

YouTube. STA1 uses Google Chrome to access an in-
strumented YouTube page, which downloads and plays each
YouTube video using DASH, during two minutes. We access
three YouTube videos per experiment: a politician speech, a
movie trailer, and a music clip. We choose these clips to obtain
diversity in video content. We use JavaScript to record join
time, buffering events, and video resolution changes.

Audio and video RTC. We use WebRTC to perform audio
and video RTC tests. We implemented a simple WebRTC
application, stored on the web server, that allows two peers
to communicate in an audio and/or video call. We use the
default OPUS plugin on WebRTC to encode audio and the
VP8 plugin to encode video with default options. We use



Fig. 1: Wi-Fi testbed used in the study.

the –use-fake-device-for-media-stream command line option
to perform RTC tests with a pre-recorded audio/video sample.
This setup closely resembles a real user environment, since the
audio/video processing will go through the same processing
stack as a real microphone/camera. We record the received
audio/video streams by each WebRTC peer.

We use a set of 20 different audio samples recommended
by ITU-T for speech quality assessment [13], each with an
approximate duration of eight seconds. We create a single
audio file with all the audio samples, which is then sent to
Google Chrome’s fake audio input device. To prevent echo
canceling from interfering with the audio samples, we only
examine cases where STA2 sends audio and STA1 is silent.
After the experiment, we manually extract the individual audio
samples from the received audio feed. For video, we use stan-
dard reference videos featuring human subjects from the Xiph
collection [14], namely: FourPeople, Johnny, KristenAndSara,
Vidyo1, Vidyo3 and Vidyo4. We downscaled the original video
format to 640 × 480, 30 fps to match common webcam
capabilities. We merged all the video samples, each with 300
frames (10 seconds), into a single video file, separated by
15 “black” frames to mark the transition between samples.
After the experiment, we extract individual video samples from
the received video using the “black” frames to detect sample
transition, as well as manual verification (in rare cases, none
of the “black” frames were received).

III. TRAINING SET

We use the testbed and controlled experiments presented
in the previous section to build a training set where each
sample is a vector that contains Wi-Fi metrics we passively
collect from the AP labeled with the estimated QoE for
each application. This section describes our approach to map
application QoS metrics into an estimated QoE and how we
build the training set.

A. QoE metric: Degradation MOS

For each application, we denote the application QoS to QoE
model as a function,fMOS

app : (a, xa) → yMOS , where xa is
a vector of application QoS metrics for an application a and
yMOS is an absolute MOS score. Although the models in the
literature output an estimate of the absolute MOS, our goal
is to estimate Wi-Fi’s contribution to MOS degradation. For
example, the simple act of encoding a video for real-time
transmission will reduce its quality and the absolute MOS

will capture this degradation. Yet, users today are used to
the quality loss due to encoding. Hence, we measure QoE
with the degradation MOS as the normalized output of fMOS

app

in range [1 − 5], using Equation 1. Note that we call this
function fDMOS

app to emphasize that it estimates DMOS based
on application QoS metrics, in contrast to the models we
introduce in §IV, denoted by fDMOS

Wi−Fi , which estimate DMOS
from Wi-Fi quality metrics.

fDMOS
app (a, xa) = 4.0×

fMOS
app (a, xa)−MOSmin(a)

MOSmax(a)−MOSmin(a)
+ 1.0 (1)

We set MOSmin(a) as min{fMOS
app (a, xa)} for all xa in the

experiments, and MOSmax(a) as the average fMOS
app (a, xa)

for xa during baseline experiments (i.e., no Wi-Fi impairment).
The estimated DMOS is always 5 in baseline scenarios,
and always 1 in the worst scenario. It is possible to find
MOSmax(a) by maximizing fMOS

app (a, xa) for the set of
application QoS parameters expected to be found in the
target scenario, and MOSmin(a) by minimizing fMOS

app (a, xa)
instead. We use Equation 1 to obtain estimated DMOS for each
application model. We interpret DMOS quality impairments
using the degradation category rating scale [15], where: 5,
Imperceptible; 4, Perceptible but not annoying; 3, Slightly
annoying; 2, Annoying; and 1, Very annoying.

B. QoS-to-QoE models

We select state-of-the-art QoS-to-QoE models to implement
fMOS
app (a, xa) for each application, a, we study as summarized

below. For more details on the models as well as our validation
through user studies, refer to our tech report [16].

Video RTC. There is extensive work on objective video
quality assessment. Since we have access to the original video
signal in our testbed, we use full reference analysis to calculate
the video structural similarity (SSIM). We compare each video
clip received by STA1 with the original sent by STA2 and
compute per-frame SSIM. We calculate the video’s average
SSIM (s) and map it to the video MOS score using the model
proposed by Wang et. al [17].

We noticed that under low network capacity, WebRTC often
suppresses frames to reduce bandwidth, sending as little as 10
frames per second in extreme conditions. We deal with skipped
frames using the strategy employed by Zinner et. al [18], by
comparing reference skipped frames to the last received frame.



This reduces SSIM whenever the transmitted sample presents
skipped frames or freezes.

On some experiments, we observed instances where STA1
was able to associate to the AP and communicate to STA2
through WebRTC, but could not sustain the video call due
to high packet loss. Since WebRTC prematurely terminates
the call, we could not obtain transmitted samples. For every
experiment where we observe a WebRTC connection for 10
seconds but no video traffic, we generate a sample with DMOS
= 1.0, since there is no service.

Audio RTC. There are many methods to estimate the
perceived voice quality. We use the Perceptual Speech Quality
Measure (PESQ) [19] to detect audio distortions and the E-
model [20] to account for one way delays, as proposed by
Lingfen et. al [21]. We obtain PESQ MOS by comparing the
reference and received test samples using the reference PESQ
implementation by ITU-T, and one way delay by monitoring
the median latency of WebRTC packets. Similarly to video
WebRTC experiments, we observed instances where STA1
was able to associate to the AP and communicate to STA2
through WebRTC, but could not sustain the audio call. For
every experiment where we observe a WebRTC connection
for 10 seconds but no audio traffic, we generate a sample
with DMOS = 1.0.

Web browsing. While there is extensive work showing that
web browsing QoE is a result of many influence factors, user
waiting time is consistently identified as the main system
influence factor and the page load time (PLT) as the main
application QoS metric. We use the PLT as measured by the
onload event, since for the majority of pages, the onload event
has a strong correlation with the user page load time [22]. We
employ the ITU-T G 1030 single-page web-QoE model [23],
considering the medium network context. The ITU-T G 1030
proposes a logarithmic relationship between PLT and MOS,
which is in line with most recent studies on web QoE [24],
[25]. During web browsing experiments, we limit PLT to a
maximum of 10s. When the web page takes more than 10s to
load, but the main HTML finished loading, we consider PLT
= 10s. If the main HTML never loads, we consider that the
service failed and set DMOS = 1.0.

YouTube. YouTube uses a playback buffer to smoothly play
the video. Buffering events occur when the playback buffer
empties. YouTube uses adaptive bitrate streaming in default
configuration. In this scenario, the video player dynamically
selects video bitrate during playback to avoid buffering events.
There are three main factors influencing QoE: average bitrate,
join time, and buffering events [26], [27]. Most studies agree
that users are more tolerant to initial delays. Therefore, we
model YouTube QoE as a function of buffering events and
video bitrate. For buffering events, we use the MOS model
proposed by Wamser et. al, which estimates MOS values given
the number and duration of buffering events [27]. In cases
of alterations on the video bitrate, we use SSIM to quantify
the impact of video resolution on QoE similarly to Zinner et.
al [18]. Finally, we model YouTube QoE as the minimum MOS
between the estimated MOS of the two models. By using the

TABLE I: Wi-Fi metrics measured on the access point.

Metric Description Period
BUSY % of time the medium is busy 2 s
WiFi % of time busy due to Wi-Fi traffic 2 s

nonWiFi % of time busy due to non Wi-Fi traffic 2 s
TxPhy PHY rate of last frame sent 1 s
FDR Frames sent / retransmitted to STA 1 s
RSSI Received signal strength indicator 1 s

minimum MOS, we remain faithful to each model when only
one type of impairment is present. We note that both types of
impairments happen together in less than 10% of samples in
our testbed dataset.

C. Building the training set

During each experiment, we passively measure the Wi-Fi
metrics shown in Table I on the AP. We calculate features
describing the Wi-Fi metrics considering Wi-Fi samples mea-
sured over an interval T during the application execution.
The training set consists of one feature vector per application
sample containing the mean, std, min, max, 25%-ile, and 75%-
ile for each metric in Table I, labeled with fDMOS

app (a, xa),
where xa captures a’s application QoS measured directly from
each application.

We choose T based on the duration of the application
execution. For audio and video experiments, we consider one
application sample per audio / video sample, with T = 10s.
For web browsing, we create one sample per web page access,
using T = 10s since this is the maximum page load time. For
YouTube, we create one sample per video playback, using
T = 120s since we play each video for two minutes. We
obtain a total of 3175 video samples, 3062 audio samples,
153 YouTube samples, and 5370 Web samples in the training
set.

IV. PREDICTING THE EFFECT OF WI-FI QUALITY ON QOE

This section shows how we predict the effect of Wi-
Fi quality on QoE. We must learn a function, fDMOS

Wi−Fi :
(a, xWi−Fi) → yDMOS that for each application, a, predicts
DMOS based on a feature vector computed from measured Wi-
Fi quality, xWi−Fi. We formulate the problem of predicting
the effect of Wi-Fi quality on QoE as a regression problem.

A. Building the predictor

We select support vector regression (SVR) as regression
algorithm as it outperformed linear regression, Gaussian naive
Bayes, and decision tree regression in terms of prediction
accuracy and model generality during preliminary tests. Since
SVR is not scale invariant, we normalize features based on
minimum / maximum values from the dataset. We evaluate
prediction accuracy using root mean squared errors (RMSE),
as it is common practice on regression models.

Feature selection. We perform feature selection with step-
wise regression, a method which iteratively adds features
to the feature vector in order to minimize prediction error.
Figure 2 shows prediction accuracy as we increase the number
of features. We find that using more than six features is



Fig. 2: Error for predictors with different
number of features. Fig. 3: Predictor evaluation.

Fig. 4: AP / STA1 position on validation
dataset

TABLE II: Feature selection output per application.

Application Feature vector

Video TxPhy25% BUSY25% BUSYmax

RSSImean RSSI75% WiFi25%

Audio TxPhymin RSSIstd WiFi25%,
WiFimax nonWiFimax FDRmean

YouTube TxPhymean BUSY75% RSSImean

RSSI25% WiFi25% nonWiFimin

Web TxPhymax BUSYstd RSSImin

WiFimax nonWiFimax FDRmean

unnecessary, as prediction accuracy flattens out (or reduces in
the case of YouTube). Table II shows the best feature subset
per application. We show results for predictors using two set of
features: fDMOS

Wi−Fi,best, a predictor that uses the features from
Table II; and fDMOS

Wi−Fi,means, a predictor that considers the
features available in the deployment dataset (§V), namely the
means of TxPHY, RSSI, BUSY, WiFi, and nonWiFi.

Parameter selection. We configure three SVR parameters.
SVR uses the C parameter to penalize misclassified samples
and γ parameter to set the range of influence of each support
vector in the model. High values of C and γ are known to
over-fit the dataset. The ε parameter regulates the error margin
over which predictions incur into no penalty. We find the best
combination of parameter through grid optimization, with tests
where C ∈ [1, 1000], ε ∈ [0.01, 1], and γ ∈ [0.1, 100] at
regular intervals. First, we use RMSE from ten-fold cross-
validation to track which combination of SVR parameters
works best for each predictor. We found that ε = 0.3 works
well for all applications, but several combinations of γ and
C produce low RMSE values. Since SVR models with high
γ tend to generate high-variance models, we choose a low
γ parameter (in our case, γ = 3) alongside the C which
minimizes RMSE.

Web page complexity. For web browsing, we build one
predictor per page, because the baseline PLT of different web
pages vary significantly (e.g., 0.287s for bing.com, 2.849s for
facebook.com). For simplicity, we summarize web QoE results
using three different pages with different levels of complexity:
google.be (web simple), facebook.com (web average), and
amazon.fr (web complex).

Model visualization. To understand how Wi-Fi metrics
influence the decision of predictors, we show the decision
curves for SVR models using two features: TxPhymean and
BUSYmean in Figure 5. The SVR models learn similar

boundary conditions. When Wi-Fi conditions are perfect, with
BUSYmean near 0 and TxPhymean at maximum, we observe a
predicted DMOS above 4.5 on all predictors. Similarly, when
either TxPhymean is close to 0 or BUSYmean close to 100%,
we observe a predicted DMOS below 1.5.

Figures 5a and 5b show the SVR models for video RTC and
YouTube QoE. We observe that both models predict reduced
QoE when TxPhymean is below 15 Mbps. This indicates that
these applications are sensitive to Wi-Fi bottlenecks. We also
see that YouTube is more resilient to Wi-Fi impairments. This
is due to the adaptive bitrate selection, which dynamically
adjusts video bitrate to match available bandwidth, avoiding
buffering events. Figure 5c shows the SVR model for predict-
ing audio QoE. Audio impairments only happen when Wi-
Fi conditions are extremely poor. We also observe less cases
where predicted QoE is between 1.5 and 4.5. This is because
the audio RTC application has very little room for adaptation,
so either Wi-Fi quality supports audio, in which case it works
well, or it does not and audio quality is very poor or the call
drops.

B. Validation

To validate our predictors, we generate the “Office” dataset
in an uncontrolled environment (i.e. our lab), over four weeks
in 2016. We vary the position of STA1 according to Figure 4
and automatically execute experiments every 30 minutes, from
7am to 10pm, in order to observe different levels of link speed
and interference. Each experiment consists of multiple runs as
described in §II-C. Then, we select 22 experiments where we
observe the most diverse set of Wi-Fi parameters. We follow
the same procedure as to generate the testbed dataset to obtain
the estimated DMOS per application, fDMOS

app .
We evaluate prediction errors of the two predictors,

fDMOS
Wi−Fi,best and fDMOS

Wi−Fi,means on the Wi-Fi testbed
dataset through ten-fold cross-validation. We also evaluate
fDMOS
Wi−Fi,means using the Office dataset, i.e., in these results

we learned the predictor using the testbed dataset, and evaluate
the accuracy using the office dataset.

Figure 3 shows prediction errors for each of these cases for
each application. We observe that the error of fDMOS

Wi−Fi,means

is only slightly higher than that of fDMOS
Wi−Fi,best. This result

indicates that fDMOS
Wi−Fi,means, which uses simple means, is

sufficient to estimate the impact of Wi-Fi quality on QoE. We



(a) Video RTC (b) YouTube (c) Audio RTC

Fig. 5: Visualization of YouTube, audio and video RTC SVR models with two features: mean TxPhy and BUSY.

TABLE III: Cluster centroids in QoE space.

C0 C1 C2 C3 C4 C5
Video 1.42 1.42 2.98 3.63 4.55 4.71
Audio 1.62 2.62 3.61 4.27 4.73 4.83

YouTube 1.35 1.49 2.51 3.37 4.43 4.87
Web complex 1.14 1.36 1.55 2.18 2.98 4.29
Web average 1.19 1.82 1.52 2.74 3.90 4.91
Web simple 1.74 4.48 2.70 4.30 4.74 4.98

observe higher prediction errors on the Office dataset. These
errors are closer to what we expect in a real user environment,
given that the predictor was not learned using this dataset.

C. Detection of Poor QoE

Our predictors so far work on a per-application basis, but
we have no information on the specific applications that
home users are running. Instead, our goal is to focus on the
worst cases, i.e., when we predict that multiple applications
experience poor QoE. To identify these poor QoE samples in
our Wi-Fi quality parameter space, we generate a synthetic
set by sweeping all combinations of Wi-Fi parameters. For
this analysis, we consider the predictor fDMOS

Wi−Fi,means. We
only generate samples where BUSY < 100 and BUSY =
WiFi + nonWiFi. For each Wi-Fi sample, xWi−Fi, we obtain
a six-tuple where each element is the output of one of our
per-application predictors (YouTube, Video, Audio, and Web
complex, average, and simple), fDMOS

Wi−Fi,means(a, xWi−Fi).
Then, we apply a clustering algorithm to discover groups of
related samples.

We find clusters using the K-means algorithm, which is a
simple and efficient clustering algorithm. One challenge with
K-means is to select the number of clusters, K. We test K
values between 2 and 30, and find that the fraction of explained
variance, used to quantify intra-cluster similarity, increases
very slowly for K > 6. Furthermore, a small number of
clusters eases our manual analysis to identify the meaning of
each cluster.

Table III shows cluster centroids for K=6, ordered by the
Euclidean norm. We manually analyze each cluster. Clusters
C5 and C4 generally present high DMOS on most applications,
with DMOS ≥ 4.0 on all but two applications. Clusters
C0, C1, and C2 present DMOS < 3.0 on the majority of
applications. Figures 6 and 7 show clusters disposition on Wi-
Fi QoS space, considering that only Wi-Fi interference or non
Wi-Fi interference generates medium occupancy, respectively.

TABLE IV: Station Wi-Fi technology on deployment.

Technology Before filtering After filtering
stations samples stations samples

.11n 1x1 17784 58.5M 13496 58.1M

.11n 2x2 12272 72.1M 9729 71.8M
.11g 964 3.3M 636 3.3M
Total 31020 133.9M 23861 133.2M

It is interesting to note that clusters are cohesive in the Wi-
Fi QoS space. Also, clusters associated with low DMOS (e.g.
C0) are located in regions of known poor Wi-Fi configurations
(e.g. low PHY rate and high medium occupation).

Poor QoE samples. Clusters C3, C2, C1, and C0 contain
samples where predicted DMOS < 4.0 on multiple applica-
tions. Therefore, we classify samples from clusters C3, C2, C1
and C0 as poor QoE samples. We call samples from cluster
C4 and C5 as good QoE samples.

V. EFFECT OF WI-FI QUALITY
ON QOE IN THE WILD

In this section, we analyze the effects of Wi-Fi quality on
QoE in the wild. We collect Wi-Fi measurements from 3,479
APs of customers of a large Asian-Pacific residential ISP, with
31,020 stations connected to these APs, during the month of
September, 2016. We analyze 133.9 million samples.

A. Deployment dataset

The AP logs Wi-Fi performance every second for all stations
connected to it. This AP collects all the metrics from Table I
except for FDR. Our backend system polls the APs to collect
the mean metrics every 30s. Since station metrics such as
TxPhy need traffic to reflect the link quality, we filter out
samples from inactive stations.

First, we look at deployment characteristics regarding sta-
tion usage and technology. We find some stations with very
little activity: we have less than 10 samples on 6.5% of
stations. This is because some home Wi-Fi appliances seldom
transfer data, such as “smart scales”, and there is not enough
traffic to provide valid samples. There are also APs with a
small number of samples (2.99% had less than one hour of
data). We consider one station active if we observe at least
5 minutes of activity over 24 hours (similarly for the AP).
23.6% of stations have one or less active days, which indicates
a device belonging to visitors or sporadically used.



Fig. 6: Cluster classification: Wi-Fi inter-
ference

Fig. 7: Cluster classification: non Wi-Fi
interference

Fig. 8: Predicted DMOS frequency in the
wild.

TABLE V: Cluster frequency in deployment.

C0 C1 C2 C3 C4 C5
Frequency 0.26% 0.59% 0.68% 9.93% 5.47% 83.1%

We focus our study on APs and stations that actively use the
Wi-Fi network. We filter stations with less than two active days
per week (leaving 76.9% of stations for our analysis) and APs
with less than five active days per week (we analyze 92.29%
of APs). Table IV shows the number of stations observed per
technology before and after filtering, as well as the number of
samples. Notice that we retain 99.4% of all samples, although
we filter 23.1% of stations. Over 34% of .11g stations have
less than 2 active days per week, which suggests that stations
with legacy technology are less frequently used.

B. QoE predictions per application

Figure 8 shows the cumulative fraction of predicted DMOS
per application in the deployment. We observe that over
68% of samples contain predicted DMOS above 4.5 for all
applications. This is reassuring as most of the time, Wi-Fi
works well for all applications. We observe instances where
predicted DMOS < 3.0 for all applications. We predict DMOS
below 3.0 for web complex and video RTC on 14.8% and
5.8% of samples, for YouTube and web average on 3.3% and
2.5% of samples, and for audio RTC and web simple on 1.2%
and 1.1% of samples. The difference in frequency between
applications is due to the application sensitivity to the Wi-Fi
impairments. All samples with mean TxPHY up to 6.5 Mbps
show predicted DMOS below 3.0 for web complex, on a total
of 9.14% of all deployment samples. On other predictors, this
only occurs when we also observe interference.

C. QoE across applications

Some applications require better Wi-Fi quality than others,
with a larger fraction of samples where predicted DMOS <
3.0. Now, we would like to investigate how the same Wi-
Fi quality affects QoE for different applications. We rely on
the clusters from §IV-C. Table V shows the fraction of the
samples in the deployment dataset in each cluster. Fortunately,
we find that nearly 88.4% of samples in the deployment fall
in Clusters C4 and C5, which have good QoE. We classify
11.6% of deployment samples as poor QoE samples.

Figure 9 shows the fraction of poor QoE samples per station.
ISPs can use the fraction of poor QoE samples to identify

stations with frequent Wi-Fi-related QoE issues. The majority
of stations (53%) have less than 5% poor QoE samples,
therefore, Wi-Fi is unlikely to impair user experience in those
cases. 21% of stations, however, have more than 25% poor
QoE samples, which represent frequent Wi-Fi impairments.
For the rest of this analysis, we focus on stations with at least
5% poor QoE samples.

D. Characterization of poor QoE events

We define a poor QoE event as a series of poor QoE samples
spaced by no more than a time threshold T . We select T
based on the distribution of the inter-arrival times of samples
(not shown for brevity). We use T = 2 minutes, because it
represents the knee of the curve; 74% of all samples have
inter-arrival time ≤ 2 minutes. Notice that our definition of
poor QoE events allow for some good QoE samples to occur
in-between poor QoE samples. Even in these cases, users are
likely to experience poor quality during the poor QoE event,
since Wi-Fi quality is intermittent.

Figure 10 shows the duration of poor QoE events, for T =
2 minutes. The majority of poor QoE events are short: 78%
have duration of two minutes or lower. Mobile stations going
in or out of Wi-Fi range or temporary Wi-Fi impairments, such
as those caused by a peak of Wi-Fi interference, are some
of many possible reasons for short-lived poor QoE events.
We also observe a number of long poor QoE events, some
stretching over several hours. These more persistent Wi-Fi
problems can happen when either the station is poorly located
or the AP is using a busy Wi-Fi channel.

We categorize poor QoE events into three distinct classes.
Short-lived poor QoE events are those with duration below or
equal 2 minutes We divide other events between consistent
and intermittent. Intermittent events have good QoE samples
in-between poor QoE samples. If the fraction of poor QoE
samples during a poor QoE event is greater or equal to 80%,
we call it a consistent poor QoE event, otherwise it is an
intermittent poor QoE event.

Figure 11 shows the division between short, intermittent,
and consistent poor QoE events. We group stations based on
their fraction of poor QoE samples. For stations with fraction
of poor QoE samples below 5%, 51% of poor QoE samples
belong to short or intermittent poor QoE events. Intermittent
and short-lived poor QoE events are difficult to detect and



Fig. 9: Fraction of poor QoE samples per
station

Fig. 10: Duration of poor QoE events for
T = 2 minutes.

Fig. 11: Classification of poor QoE sam-
ples per group of station.

TABLE VI: Characterization of poor QoE events

Wi-Fi metrics Consistent IntermittentTxPHYmean < 15 BUSYmean > 60
3 3 14.2% 5.0%
3 7 74.3% 73.0%
7 3 10.6% 18.6%
7 7 0.8% 3.4%

diagnose, since when we detect a good QoE samples after a
series of poor QoE samples it is unclear if the root cause was
fixed or is only temporarily absent. These stations require a
long-term monitoring approach to detect and diagnose Wi-Fi
problems. We observe that stations with a larger fraction of
poor QoE samples have less short and intermittent events, and
more consistent poor QoE events. For stations with fraction
of poor QoE samples above 50%, we observe, on average,
69% of poor QoE samples on consistent poor QoE events.
While this holds true for the majority of stations, there are
some exceptions. Some stations with a very high fraction
of poor QoE samples have nearly all samples on short poor
QoE events. In these cases, we found that this occurs because
they generate traffic for very short periods, with long inactive
intervals in-between. This prevents us from classifying poor
QoE samples into long poor QoE events.

Analysis of long poor QoE events. Next, we investigate
what is the most likely cause for intermittent and consistent
poor QoE events. We use simple thresholds on the Wi-Fi
metrics to infer the cause of poor QoE events.

We look at mean Wi-Fi metrics along all samples of a poor
QoE event to identify its most likely cause. We find that,
in general, poor QoE events show either TxPHYmean < 15
Mbps or BUSYmean > 60%. We diagnose events where
TxPHYmean < 15 Mbps as having low PHY rate, and events
where BUSYmean > 60% as having high medium occupation.
On poor QoE events with high medium occupation, we get
further insight on the root cause by comparing WiFimean and
nonWiFimean.

Table VI summarizes this analysis. We find that 74.3% of
consistent poor QoE events have only low PHY rate and 10.6%
have only high medium occupation (73.0% and 18.6% for
intermittent events). We find both low PHY rate and high
medium occupation on 14.2% of consistent poor QoE events
and on 5.0% of intermittent poor QoE events. When we
observe both low PHY rate and high medium occupation, we
more often have consistent poor QoE events. We also observe

0.8% and 3.4% of consistent and intermittent poor QoE events
where TxPHYmean is > 15 Mbps and BUSYmean < 60%.
These cases occur on the prediction boundary of poor QoE
samples, and they occur more often for intermittent events.

We further investigate cases where we only observe high
medium occupation. In these cases, we typically observe
either high WiFimean or nonWiFimean. We find that 62.5%
of consistent poor QoE events have high medium occupation
due to Wi-Fi interference, since WiFimean is > 50%. This
percentage is only 33.8% for intermittent poor QoE events,
which indicates that non Wi-Fi interference is more likely to
produce intermittent poor QoE events.

VI. RELATED WORK

Quality of Experience. Subjective quality assessment uses
human subjects to explicitly evaluate user experience [12],
[27]–[29]. Objective quality assessment proposes quality met-
rics that correlate with user opinion, but can be calculated
without user involvement [27], [30], [31]. We use objective
quality metrics to assess the effect of Wi-Fi quality on QoE.
Mapping network QoS to QoE for a number of applications
has been a popular research topic [32]–[35], but none of
these studies consider the mapping of Wi-Fi QoS to QoE.
One exception is the work of Chakraborty et al. [36]. They
propose ExBox, a system that relies on predicting the impact
of an incoming flow on QoE of a set of flows to make
flow admission control decisions in Wi-Fi enterprise networks.
ExBox assumes that some of the stations in the Wi-Fi network
are instrumented to report application QoS metrics for online
learning of a binary classifier that decides whether incoming
flows can be accepted or not. The only Wi-Fi metric that
ExBox considers is SNR. In contrast, our goal is detection and
diagnosis in home Wi-Fi, which brings different operational
constraints (e.g., no knowledge of applications, no instrumen-
tation of user devices). Although we study a similar set of
applications, we offer a more in-depth study of the relationship
between multiple Wi-Fi metrics and QoE. This work extends
our earlier workshop paper [37], which focused only on Web
QoE.

Wi-Fi performance characterization. Pei et al. [4] deploy
47 APs in a university campus and show that the Wi-Fi link
significantly contributes to end-to-end latency. Ioannis et al. [1]
characterize the Wi-Fi performance with passive measure-
ments from 167 homes, over a period of four months. Biswas



et al. [6] characterize Wi-Fi network usage and performance on
over 20 thousand industrial networks. These studies improve
our understanding of Wi-Fi quality in different settings, but
none of them addresses the issue of how Wi-Fi quality affects
QoE as we do.

VII. CONCLUSION

This paper was the first to shed light on the effects of
home Wi-Fi quality on QoE of different applications. Our first
contribution was to develop a method to detect instances of
poor QoE from Wi-Fi quality metrics. We showed that we
can predict application QoE from Wi-Fi metrics available on
commodity APs with low errors. We built on these predictors
to identify poor QoE samples. ISPs can use this method to
detect when Wi-Fi quality is likely to degrade customers’
QoE to proactively fix Wi-Fi problems. In fact, we have
interest from ISPs to incorporate these predictors with the Wi-
Fi monitoring system, which is already deployed in field trials.
Our second contribution was to characterize the effect of Wi-
Fi on QoE in the wild. We apply our predictors on Wi-Fi
metrics collected from 3,479 APs over one month. Our results
were reassuring in that in the vast majority of samples Wi-Fi
quality can sustain good QoE; still we found 21% of stations
have a fraction of poor QoE samples above 25%. ISPs can
use the fraction of poor QoE samples to identify stations with
frequent poor QoE due to Wi-Fi. In particular, intermittent
events are challenging to troubleshoot and require a long-term
monitoring approach, as we propose here.
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