2,233 research outputs found

    Predicting stock market movements using network science: An information theoretic approach

    Full text link
    A stock market is considered as one of the highly complex systems, which consists of many components whose prices move up and down without having a clear pattern. The complex nature of a stock market challenges us on making a reliable prediction of its future movements. In this paper, we aim at building a new method to forecast the future movements of Standard & Poor's 500 Index (S&P 500) by constructing time-series complex networks of S&P 500 underlying companies by connecting them with links whose weights are given by the mutual information of 60-minute price movements of the pairs of the companies with the consecutive 5,340 minutes price records. We showed that the changes in the strength distributions of the networks provide an important information on the network's future movements. We built several metrics using the strength distributions and network measurements such as centrality, and we combined the best two predictors by performing a linear combination. We found that the combined predictor and the changes in S&P 500 show a quadratic relationship, and it allows us to predict the amplitude of the one step future change in S&P 500. The result showed significant fluctuations in S&P 500 Index when the combined predictor was high. In terms of making the actual index predictions, we built ARIMA models. We found that adding the network measurements into the ARIMA models improves the model accuracy. These findings are useful for financial market policy makers as an indicator based on which they can interfere with the markets before the markets make a drastic change, and for quantitative investors to improve their forecasting models.Comment: 13 pages, 7 figures, 3 table

    Using Deep Learning for Predicting Stock Trends

    Get PDF
    Deep learning has shown great promise in solving complicated problems in recent years. One applicable area is finance. In this study, deep learning will be used to test the predictability of stock trends. Stock markets are known to be volatile, prices fluctuate, and there are many complicated financial indicators involved. While the opinion of researchers differ about the predictability of stocks, it has been shown by previous empirical studies that some aspects of stock markets can be predictable to some extent. Various data including news or financial indicators can be used to predict stock prices. In this study, the focus will be on using past stock prices and using technical indicators to increase the performance of the results. The goal of this study is to measure the accuracy of predictions and evaluate the results. Historical data is gathered for Apple, Microsoft, Google and Intel stocks. A prediction model is created by using past data and technical indicators were used as features in the model. The experiments were performed by using long short-term memory networks. Different approaches and techniques were tested to boost the performance of the results. To prove the usability of the final model in the real world and measure the profitability of results backtesting was performed. The final results show that while it is not possible to predict the exact price of a stock in the future to gain profitable results, deep learning can be used to predict the trend of stock markets to generate buy and sell signals

    Utilizing Machine Learning to Reassess the Predictability of Bank Stocks

    Get PDF
    Objectives: Accurate prediction of stock market returns is a very challenging task due to the volatile and non-linear nature of the financial stock markets. In this work, we consider conventional time series analysis techniques with additional information from the Google Trend website to predict stock price returns. We further utilize a machine learning algorithm, namely Random Forest, to predict the next day closing price of four Greek systemic banks. Methods/Analysis: The financial data considered in this work comprise Open, Close prices of stocks and Trading Volume. In the context of our analysis, these data are further used to create new variables that serve as additional inputs to the proposed machine learning based model. Specifically, we consider variables for each of the banks in the dataset, such as 7 DAYS MA,14 DAYS MA, 21 DAYS MA, 7 DAYS STD DEV and Volume. One step ahead out of sample prediction following the rolling window approach has been applied. Performance evaluation of the proposed model has been done using standard strategic indicators: RMSE and MAPE. Findings: Our results depict that the proposed models effectively predict the stock market prices, providing insight about the applicability of the proposed methodology scheme to various stock market price predictions. Novelty /Improvement: The originality of this study is that Machine Learning Methods highlighted by the Random Forest Technique were used to forecast the closing price of each stock in the Banking Sector for the following trading session. Doi: 10.28991/ESJ-2023-07-03-04 Full Text: PD

    Techniques for Stock Market Prediction: A Review

    Get PDF
    Stock market forecasting has long been viewed as a vital real-life topic in economics world. There are many challenges in stock market prediction systems such as the Efficient Market Hypothesis (EMH), Nonlinearity, complex, diverse datasets, and parameter optimization. A stock's value on the stock market fluctuates due to many factors like previous trends of the stock, the current news, twitter feeds, any online customer feedbacks etc. In this paper, the literature is critically analysed on approaches used for stock market prediction in terms of stock datasets, features used, evaluation metrics used, statistical, machine learning and deep learning techniques along with the directions for the future. The focus of this review is on trend and value prediction for stocks. Overall, 68 research papers have been considered for review from years 1998-2023. From the review, Indian stock market datasets are found to be most frequently used datasets. Evaluation metrics used commonly are accuracy and Mean Absolute Percentage Error. ARIMA is reported as the most used frequently statistical technique for stick market prediction. Long-Short Term Memory and Support Vector Machine are the commonly used algorithms in stock market prediction. The advantages and disadvantages of frequently used evaluation metrics, machine learning, deep learning and statistical approaches are also included in this survey

    A Gated Recurrent Unit Approach to Bitcoin Price Prediction

    Full text link
    In today's era of big data, deep learning and artificial intelligence have formed the backbone for cryptocurrency portfolio optimization. Researchers have investigated various state of the art machine learning models to predict Bitcoin price and volatility. Machine learning models like recurrent neural network (RNN) and long short-term memory (LSTM) have been shown to perform better than traditional time series models in cryptocurrency price prediction. However, very few studies have applied sequence models with robust feature engineering to predict future pricing. in this study, we investigate a framework with a set of advanced machine learning methods with a fixed set of exogenous and endogenous factors to predict daily Bitcoin prices. We study and compare different approaches using the root mean squared error (RMSE). Experimental results show that gated recurring unit (GRU) model with recurrent dropout performs better better than popular existing models. We also show that simple trading strategies, when implemented with our proposed GRU model and with proper learning, can lead to financial gain.Comment: 8 figures, 16 page

    Design and Modeling of Stock Market Forecasting Using Hybrid Optimization Techniques

    Get PDF
    In this paper, an artificial neural network-based stock market prediction model was developed. Today, a lot of individuals are making predictions about the direction of the bond, currency, equity, and stock markets. Forecasting fluctuations in stock market values is quite difficult for businesspeople and industries. Forecasting future value changes on the stock markets is exceedingly difficult since there are so many different economic, political, and psychological factors at play. Stock market forecasting is also a difficult endeavour since it depends on so many various known and unknown variables. There are several ways used to try to anticipate the share price, including technical analysis, fundamental analysis, time series analysis, and statistical analysis; however, none of these approaches has been shown to be a consistently reliable prediction tool. We built three alternative Adaptive Neuro-Fuzzy Inference System (ANFIS) models to compare the outcomes. The average of the tuned models is used to create an ensemble model. Although comparable applications have been attempted in the literature, the data set is extremely difficult to work with because it only contains sharp peaks and falls with no seasonality. In this study, fuzzy c-means clustering, subtractive clustering, and grid partitioning are all used. The experiments we ran were designed to assess the effectiveness of various construction techniques used to our ANFIS models. When evaluating the outcomes, the metrics of R-squared and mean standard error are mostly taken into consideration. In the experiments, R-squared values of over.90 are attained

    Deep Learning for the Prediction of Stock Market Trends

    Get PDF
    In this study, deep learning will be used to test the predictability of stock trends. Stock markets are known to be volatile, prices fluctuate, and there are many complicated financial indicators involved. Various data including news or financial indicators can be used to predict stock prices. In this study, the focus will be on using past stock prices and using technical indicators to increase the performance of the results. The goal of this study is to measure the accuracy of predictions and evaluate the results. Historical data is gathered for Apple, Microsoft, Google and Intel stocks. A prediction model is created by using past data and technical indicators were used as features in the model. The experiments were performed by using long short-term memory networks. Different approaches and techniques were tested to boost the performance of the results. To prove the usability of the final model in the real world and measure the profitability of results backtesting was performed. The final results show that while it is not possible to predict the exact price of a stock in the future to gain profitable results, deep learning can be used to predict the trend of stock markets to generate buy and sell signals

    Financial Analysis with Artificial Neural Networks Short-term Stock Market Forecasting

    Get PDF
    Excerpt from Introduction Seldom reward is absent from risk, and stock markets are a prime example. Stock markets across the world are viewed as profitable and risky at the same time. Companies have made a business out of forecasting these markets. Quantitative analysis companies use mathematicians, financial analysts, and computer scientists to compete in the stock market. The old days of floor trading have progressed towards high-frequency trading with supercomputers housed within the exchange. For example, the New York Stock exchange has created regulations for these companies so that there’s competitive equality. The computer’s power, length of cable to the exchange, and more has been standardized so that no single company will have an advantage with the exception to algorithms. Computers are delegated the buying and selling of stocks in the New York Stock exchange. A computer receives information from the market, decides an action in microseconds, and that decision gets sent to the exchange in milliseconds. From the computer’s perspective, the difference between microseconds and millisecond is significant. The company’s trading algorithms are secretive and protected, but their performance depends on time series analysis and machine learning theory

    Design Analysis and Implementation of Stock Market Forecasting System using Improved Soft Computing Technique

    Get PDF
    In this paper, a stock market prediction model was created utilizing artificial neural networks. Many people nowadays are attempting to predict future trends in bonds, currencies, equities, and stock markets. It is quite challenging for a capitalist and an industry to forecast changes in stock market prices. Due to the numerous economic, political, and psychological aspects at play, forecasting future value changes on the stock markets is quite challenging. In addition, stock market forecasting is a difficult endeavor because it relies on a wide range of known and unknown variables. Many approaches, including technical analysis, fundamental analysis, time series analysis, and statistical analysis are used to attempt to predict the share price; however, none of these methods has been demonstrated to be a consistently effective prediction tool. Artificial neural networks (ANNs), a subfield of artificial intelligence, are one of the most modern and promising methods for resolving financial issues, such as categorizing corporate bonds and anticipating stock market indexes and bankruptcy (AI). Artificial neural networks (ANN) are a prominent technology used to forecast the future of the stock market. In order to understand financial time series, it is often essential to extract relevant information from enormous data sets using artificial neural networks. An outcome prediction neural network with three layers is trained using the back propagation method. Analysis shows that ANN outperforms every other prediction technique now available to academics in terms of stock market price predictions. It is concluded that ANN is a useful technique for predicting stock market movements globally

    Investigating the Predictability of a Chaotic Time-Series Data using Reservoir Computing, Deep-Learning and Machine- Learning on the Short-, Medium- and Long-Term Pricing of Bitcoin and Ethereum.

    Get PDF
    This study will investigate the predictability of a Chaotic time-series data using Reservoir computing (Echo State Network), Deep-Learning(LSTM) and Machine- Learning(Linear, Bayesian, ElasticNetCV , Random Forest, XGBoost Regression and a machine learning Neural Network) on the short (1-day out prediction), medium (5-day out prediction) and long-term (30-day out prediction) pricing of Bitcoin and Ethereum Using a range of machine learning tools, to perform feature selection by permutation importance to select technical indicators on the individual cryptocurrencies, to ensure the datasets are the best for predictions per cryptocurrency while reducing noise within the models. The predictability of these two chaotic time-series is then compared to evaluate the models to find the best fit model. The models are fine-tuned, with hyperparameters, design of the network within the LSTM and the reservoir size within the Echo State Network being adjusted to improve accuracy and speed. This research highlights the effect of the trends within the cryptocurrency and its effect on predictive models, these models will then be optimized with hyperparameter tuning, and be evaluated to compare the models across the two currencies. It is found that the datasets for each cryptocurrency are different, due to the different permutation importance, which does not affect the overall predictability of the models with the short and medium-term predictions having the same models being the top performers. This research confirms that the chaotic data although can have positive results for shortand medium-term prediction, for long-term prediction, technical analysis basedprediction is not sufficient
    • …
    corecore