
Deep Learning for the Prediction of Stock
Market Trends

Arvand Fazeli
Brock University

Department of Computer Science
St. Catharines, Ontario, Canada

af17tv@brocku.ca

Sheridan Houghten
Brock University

Department of Computer Science
St. Catharines, Ontario, Canada

shoughten@brocku.ca

Abstract—In this study, deep learning will be used
to test the predictability of stock trends. Stock markets
are known to be volatile, prices fluctuate, and there
are many complicated financial indicators involved.
Various data including news or financial indicators can
be used to predict stock prices. In this study, the focus
will be on using past stock prices and using technical
indicators to increase the performance of the results.
The goal of this study is to measure the accuracy of
predictions and evaluate the results. Historical data is
gathered for Apple, Microsoft, Google and Intel stocks.
A prediction model is created by using past data
and technical indicators were used as features in the
model. The experiments were performed by using long
short-term memory networks. Different approaches
and techniques were tested to boost the performance of
the results. To prove the usability of the final model in
the real world and measure the profitability of results
backtesting was performed. The final results show that
while it is not possible to predict the exact price of
a stock in the future to gain profitable results, deep
learning can be used to predict the trend of stock
markets to generate buy and sell signals.

I. INTRODUCTION

There has been much research on the predictabil-
ity of stock markets, and although researchers have
different opinions, many empirical studies show that
some aspects of stock markets can be predicted [21].

There are multiple ways to predict the volatile
prices of stocks. Information, including news,
tweets, technical indicators, and fundamental in-
dicators, can be processed to later find patterns
for predicting future prices. For making investment
decisions machine learning models can be incorpo-
rated to make such predictions.

In this study, deep learning along with technical
indicators are used to predict the price of stocks. A
suite of long short-term memory (LSTM) networks
is developed for a range of time series prediction.
Different architectures are tested to improve the
performance, and we propose a new solution to

create a profitable model: instead of predicting the
prices, we focus on predicting the trends. The dif-
ference between the values of LSTM prediction and
backtesting is explained and we test the profitability
of the model by using backtesting to reach practical
results.

The remainder of this paper is structured as
follows. Section II gives an introduction to deep
learning and technical analysis. LSTM networks
are explained and technical indicators are also de-
scribed. Section III reviews previous related work.
Sections IV and V are the primary sections describ-
ing the conducted experiments and results. Section
IV describes the dataset, and the processing of
the data. We also describe the experiment that is
designed for building the model and training the
dataset. Section V elaborates experimental results
from using LSTM network. Section VI provides
conclusions and discusses possible future work.

II. BACKGROUND

Although there are multiple ways to predict stock
markets, the most common ones use either technical
indicators, which focus on historical trading data,
or fundamental data, which focuses on financial
statements such as revenue of a company.

A. Technical Analysis

Technical analysis uses past market data to predict
the direction of prices [28], and is based on using
statistical methods to identify patterns.

Technical indicators are mathematical calcula-
tions that use past price and volume to identify
the direction and strength of market trends. They
can be broken down into four major types: trend,
momentum, volume and volatility.

Some indicators are more favored than the others
and have been proven more useful in past empirical
studies. In [23], the profitability of MACD and
RSI (both defined below) are evaluated, and these978-1-7281-0858-2/19/$31.00 c©2019 IEEE

indicators are concluded to be profitable for some
stocks. The author of [29] states that the efficiency
of a back propagation neural network was most
improved by the addition of MACD. In [22] the
authors find that RSI and MACD outperform the
buy-and-hold strategy.

1) Relative Strength Index (RSI): The RSI is a
momentum indicator that can signal oversold or
overbought securities [12]. RSI ranges between 0
and 100; a stock is usually considered overbought
when RSI goes above 70 and oversold when it
goes below 30. Some analysts use other data ranges
such as 80 and 20 or 90 and 10. RSI is typically
used on a 14-day time frame and is calculated by
RSI = 100 100

(1+RS) , where RS = AverageGain
AverageLoss .

2) Moving Average Convergence Divergence
(MACD): MACD is a trend indicator to reveal
changes between two moving averages of a security
price [6]. It is calculated by subtracting the 26-day
exponential moving average (EMA) from the 12-
day EMA. The exponential moving average (EMA)
is a weighted moving average (WMA) that gives
more weight to recent data. The result will be a 9-
day EMA of the MACD, also referred to as signal
line. This line can be used as a buying signal when
the MACD crosses above its signal line. MACD
helps investors understand whether the uptrend or
downtrend is getting stronger or weaker [6].

3) MACD Histogram: MACD is usually dis-
played along with a histogram. When the MACD is
below the signal line, the histogram will be below
the baseline and when it is positive the values are
reflected on the MACD histogram [6].

The MACD histogram, created by Thomas As-
pray, measures the difference between MACD and
its signal line (the 9-day EMA). It was developed
to show crossovers in MACD and generate trading
signals [7]. The MACD histogram can be used as a
potential buy signal when it is below the zero line
and begins to converge towards it, and as a potential
sell signal when it is above the zero line and begins
to converge towards it [8].

4) Williams %R: Williams %R can be used to
find entry and exit points in the market, it compares
a stock’s closing price to the high-low range over
a specific period, typically 14 days or more [16].
This indicator is helpful in showing the difference
between the period high and closing price within
the range of days. Williams %R is calculated as
(−100)∗ Highest High−Closing Price

Highest High−Lowest Low , where highest
high is the highest price over the trading period and
lowest low is the lowest price over the same period.

5) Volatility: Volatility is the rate at which the
price increases or decreases for a given set of

Fig. 1: Buy (green arrow) and sell (red arrow)
signals generated by system

returns. It is used as an indication of the amount
of risk related to a security’s value. High volatility
value is an indication that the price can fluctuate
drastically in either direction. Mathematically, it is
the standard deviation calculated over a time period.

B. Backtesting

Backtesting is used to measure the performance of
a trading strategy. Backtesting works by simulating
trades with past data to determine if the trading
strategy is profitable or not. A trading strategy is
a strategy to trade stocks based on predefined rules
[14]. For this purpose we need to create buy and
sell signals, as shown in Figure 1; these signals
can be generated by a system. If the results of
backtesting are positive it can be an indicator that
the trading strategy is successful. After training
our neural network, we generate buying and selling
signals based on the trading strategy. For backtesting
we use a platform to simulate and test the strategy.
The results give us insight about the performance
of our approach in the real world. Based on the
results we can modify our approach or the model
to improve the results.

III. RELATED WORK

Predicting the stock market has been the subject
of many studies. Dealing with the wide variety
of data sources to create a prediction tool is a
daunting task. However, deep learning has shown
great advantages in processing non-stationary data,
and has been used more recently in the finance
realm. We briefly review previous work that has
used deep learning for stock prediction.

In [26], the authors proposed a method to build
deep learning hierarchical decision models that can
include complex features. To do so, a framework

was set up to train the data, and then a four-step
algorithm was used for model construction to build
deep portfolios and create an automated process to
select portfolios. This method was tested on the
IBB Index, and showed that deep learning may
have the potential to dramatically improve predictive
performance in conventional applications.

In [33], the author analyzed the influence of
news articles on stock prices. After downloading
the headlines, the stock trend was correlated with
headlines, concentrating on predicting whether a
stock price rose or fell. Recurrent neural networks
were used to map the function between sentiment
values and the target price. The performed experi-
ments tried to predict stock prices using information
from both numerical analysis and textual analysis.
Numerical analysis was performed using long-short
term memory (LSTM), and resulted in a mean-
squared error (MSE) of 0.00045. Textual analysis
was then performed on the news headlines, and the
author claimed 78% accuracy in predicting their
influence on stock prices. When the results from
textual analysis were augmented over the predictions
from numerical analysis, MSE improved to 0.00037.

In [20] the authors proposed an investment strat-
egy for creating portfolios based on predicted future
fundamental indicators. Fundamental data, such as
revenue, operating income and debt, were gathered,
and computed features of the reported data were
analyzed. Using deep learning, future fundamentals
were forecast based on a trailing 5 year window.
Quantitative analysis demonstrated a significant im-
provement in MSE over a naive strategy. On a sim-
ulation to assess future financial reports, applying
earning yields (EBIT/EV) during a 12 month period
achieved a 44% annual return.

In [17], the authors used deep learning to predict
one-month-ahead stock returns in a cross-section
of the Japanese stock market. The predictive stock
returns used information from the past five points of
time for 25 factors from the MSCI Japan Index. The
performance of a long-short portfolio was compared
with support vector regression and random forests.
Several patterns of DNN with different numbers of
layers were examined, and four patterns of DNN
outperformed both other methodologies.

In [32], the researchers used an artificial neural
network (ANN) to create a trading system by using
technical indicators. A multilayer perceptron (a class
of feedforward ANN) was used to predict buy-sell
signals by analyzing time-series data, using data
from Dow30 stocks for the period 1997-2017. Hold,
buy and sell signals were generated based on peak
and valley points. In comparison to buy and hold

the model provided mixed results. It was suggested
that the parameters should be individually tuned for
each stock to improve performance.

In [25], the authors used deep learning for a
time series prediction problem. Average monthly
statistics for the S&P 500 split by industry are
gathered from January 1990 until October 2015.
LSTM networks were used to determine the di-
rectional movements. With daily returns of 0.46%
and the Sharpe ratio (a measurement to understand
the return of an investment compared to its risk)
of 5.8 prior to transaction costs, they found LSTM
networks outperformed other methods and showed
that deep learning can be deployed in this domain.

In [31], the importance of different network de-
sign choices and hyperparameters were tested. It was
found that some parameters (e.g. the last layer of the
network) had a large impact on performance, while
others (e.g. the number of LSTM layers) were of
minor importance. They concluded that variational
dropout was on all tasks superior to no-dropout or
naive dropout. Adam [27] and Adam with Nesterov
momentum (Nadam) [24] usually performed the best
of those examined. During the experiments, they
looked at one dimension for a certain hyperparame-
ter. However it is to be noted that hyperparameters
can influence each other.

In [18], the authors searched for accuracy using
different statistical measures. After tuning the hy-
perparameters, they concluded that it may not be
possible to predict the adjusted closing price solely
based on the open, high, low, close and adjusted
closing price. They ran the LSTM algorithm using
backtesting data, and although the LSTM model
had an accuracy of 80% on predicting the adjusted
closing price, they suggested that it would be naive
to conclude that their model could do an excellent
prediction of the market.

IV. METHODOLOGY

In this section we present our approach, which
concentrates on trend prediction. Later we optimize
the hyperparameters of the model to improve the
results. We will describe the metrics for evaluating
the performance of the model and the details of the
new approach.

A. Data

Our data is chosen from one of the companies
from S&P 500. We selected a stock that had a shift
in trends for the last 120 days, which is equivalent
to our test data size. Data was downloaded from
3/13/2014 until 3/12/2019 for Apple Stock (AAPL)
from “Yahoo! Finance” to conduct the experiments.

Our data is the stock price over approximately five
years. The data consists of six columns:

1) Open: The price the stock started trading at
when the exchange opened.

2) High: The highest price the stock has seen
during the day.

3) Low: The lowest price the stock has seen
during the day.

4) Close: The stock price at the last close of the
market.

5) Volume: The volume is the number of shares
that changed hands during a given day.

6) Adjusted Close: The adjusted closing price also
factors for dividends.

The data in each column is converted into an
array, and technical indicators are created based on
these values.

B. Training the model

This process includes comparing the actual value
with the value generated by randomly assigned
weights. Backpropagation is used to train the net-
work. During this process the weights of neurons are
updated based on the previous epoch or iteration.

During training, the number of epochs is counted
by multiplying the number of iterations by batch
size. An epoch, which is useful for periodic evalu-
ation, is one pass over the entire data [15].

1) Multivariate Time Series: By using LSTM
networks it is possible to forecast data using mul-
tiple input variables. In a univariate time series,
the forecast depends on one time dependant vari-
able. Unlike univariate time series, multivariate time
series can have multiple variables. Each of these
variables depend on their past value and can be
dependent on other values.

2) Features: To create the model we use the
following features: opening price, high price, low
price, closing price, adjusted closing price, volume,
volatility, Williams %R and RSI; the last three of
these are technical indicators that were created using
the initial data. We will later examine the effect of
these indicators on the performance of the model.

3) Feature Scaling: To standardize the range of
features, we used scaling. We used min-max scaling,
with a range of -1 to 1. By using feature scaling we
normalize the range of values, using the formula

x′ =
x−min(x)

max(x)−min(x)
, where x is an original

value and x′ is the corresponding normalized value.
4) Stacked Long Short Term Memory: Recurrent

layers can be stacked on top of each other. In
a gated recurrent unit(GRU), the hidden state is
passed from one layer to the other. This makes the

GRU learn transformations [19]. GRU performances
are generally on par with LSTMs [19]. Stacked
LSTMs can be defined as multiple LSTM layers
used in sequential order. The first layers of LSTM
return their full output sequences, but the last one
only returns the last step in its output sequence,
thus dropping the temporal dimension [3]. In our
model four layers of LSTM are used to improve
performance. The overall architecture is shown in
Fig. 2.

Fig. 2: Architecture of the model

5) Reducing Overfitting: Dropout prevents over-
fitting and the term refers to removing a hidden unit
temporarily from the network. Dropout in our model
is a configurable value that indicates the number
cells to dropout during the process.

Gaussian Noise is added during training to reg-
ularize the layer. The amount of noise added is a
configurable hyperparameter. Injected gradient noise
causes improvement in different models [30].

6) Overall Architecture: The overall architecture
of the network consists of four layers of LSTM
networks. To create the input data, features are
scaled and sliding windows are created. Then the
data is reshaped for input of the LSTM network.
The first layer consists of 100 units, with an initial
dropout of 0.2; later this value will be optimized
through hyperparameter optimization. It should also
be noted that zero dropout was tested but not
extensively because initial results indicated using
it did not improve results. We add gaussian noise
of 0.05 to the model and use batch normalization.
The second, third and fourth layers each have 200
units with the same dropout value. The input format
is (batch size, times steps, input dimension) and
the batch size (none) will be set later in training of
the model.

C. Frameworks and Libraries

To train the model we used Keras framework [5].
Keras is a Python framework which provides neural
networks API by running on top of TensorFlow,
CNTK, or Theano [5]. Our framework will also use
TensorFlow [10] on top of Keras. TensorFlow is a
free software library focused on machine learning. It
uses graph structures and each edge between nodes
is a multidimensional tensor. Other Python libraries
including Pandas [11], Numpy [2], and Scikit-learn
[9] were also used to process the information. Back-
trader [1] and Talos [13], discussed later, were used
for backtesting and hyperparameter optimization.

D. Experiments

The stock we examine is AAPL, selected for the
reasons described in Section IV-A. We will later ex-
amine the effect technical indicators have on the loss
of our model and then optimize the hyperparameters
through grid search and measure the performance of
the model. To measure the performance of the model
in the real world we will use backtesting. To further
examine the functionality of the final model, we will
test the approach on three other stocks.

1) Initial Experiments: Our initial goal was to
predict the price of a stock at a certain point in
time. After creating the model and optimizing it, we

generated the buy and sell signals. After backtesting
was performed, the results showed that the value of
the portfolio decreased, even when the commission
was set to 0. We tried to penalize the model for
loss of value and add threshold but again the results
were not satisfactory. One reason for the failure of
the experiments was that the loss function was set
for the price instead of the profit, so that a lower
MSE did not result in higher profit. Another reason
could be that the neural networks failed to find an
accurate pattern in day to day price changes.

Our next experiments focused on predicting the
price change, aiming to predict if the price change
would be positive or negative each day. Again, after
training the model, the results of the backtesting
indicated that the initial portfolio decreased in value.

The third phase of the initial experiments focused
on predicting the RSI. That resulted in just one buy-
ing signal.When the trading strategy was changed
with closer overbought and oversold signals, it did
not result in an increase in the portfolio value.

2) Final Experiments: Our later experiments fo-
cus on predicting the trend of the market. One good
indicator for predicting the trends is the MACD
histogram. As mentioned earlier, a trading strategy
that uses the MACD histogram can be used to
generate a buying signal when the MACD histogram
moves from zero to a positive value and a sell signal
when the price change crosses below zero.

The data was split into test, training and validation
sets. Ten percent of the data, which equals approxi-
mately to 120 days, starting from 2018/09/10, is set
as test data, and the rest is used for training. The
validation will be 10% of the training data.

Before passing the data we must reshape our
inputs. The input of the LSTM has three dimensions:
number of samples, time samples and number of
features. In the model, mean squared error (MSE)
was used as the loss function and LeakyRelu was
set as the activation function. Adam [27] was set
initially as the optimization algorithm. Once we
have a suitable model to predict a day ahead, we
tune the hyperparameters and select the best set of
configurations.

The number of epochs is set to 100 and batch
size to 32. Because the optimization is an iterative
process, it is necessary to go over the training set
multiple times. The data is divided into smaller
batches before being fed to the neural networks. We
also reduce the learning rate when our metric (MSE)
has stopped improving. This is done because it is
noted in [4] that models often benefit from doing so.
The ReduceLROnPlateau callback in Keras monitors
a quantity and the learning rate is reduced if no

Parameter Values

Dropout From 0.1 to 0.5 in 5 steps

Optimizer Adam, Nadam, SGD

Loss Function Huber Loss, Mean Squared Error

Activation Function ReLU, LeakyReLU

TABLE I: Parameter space for optimizing

improvement is seen for a defined number of epochs.
3) Hyperparameter Optimization: After creating

a working model, we optimize hyperparameters. To
do so we must choose which hyperparameters we
want to optimize. Based on previous research, we
know that a few parameters have a bigger impact
on the results than the others. The parameters we
focus on are shown in Table I. Based on previous
research (including [31]), these values were selected
to create a parameter space for grid search.

There are three different optimization strategies:
grid search, random search and probabilistic reduc-
tion. We use grid search, which scans the data with a
set of predefined hyperparameters. It builds a model
on each parameter configuration and ultimately se-
lects the model with best performance. The frame-
work that use to optimize the hyperparameters is
Talos [13]. Talos is an open source framework, and
is used for hyperparameter optimization with Keras
models. After an experiment is started, a scan object
is created which is used in the main program. By
using the parameter space, the framework yields the
next permutation through multiple iterations until all
permutations of the parameter space are processed.

4) Backtesting: To perform backtesting we used
BackTrader [1]. We chose a simple trading strat-
egy that goes long on prices. When the MACD
Histogram moves from a negative value toward a
positive value we go long on the stock. We also con-
sider a threshold of 5% for crossing the zero-line,
to account for mistakes. If the portfolio’s value is
higher than the initial amount and the buy and hold
strategy, we can say the approach was successful.

V. RESULTS

A. Calculating Returns

The focus of the experiment, as explained in Sec-
tion IV-D2, was on predicting the MACD histogram
and using that along with a trading strategy. When
the MACD histogram crosses above zero we buy and
sell when it crosses below zero. The mean squared
error for our experiment without using technical
indicators was 0.04057.

To calculate how much this model yields profit,
we identify days that cross above or below zero

Fig. 3: Predicted MACD histogram with zero line

to generate buy and sell signals. From the data in
Fig. 3, these are [6,11,23,26,40,43,44,58,72,75,125].
Since we are only considering to go long the buy
signals are [11,26,43,58,75] and the sell signals are
[23,40,44,72,125]. To remove sudden fluctuations in
our data, we add a threshold of 5% for the zero-
line in the MACD histogram, so that the prices
have to cross above or below the threshold line. The
resulting trading days are the buy and sell signals
fed into Backtrader as input data.

Backtrader has a list of configurations that can
be set. For testing purposes we are only interested
in setting the commission value since it may have
the highest impact on the final result. In the first
experiment, the commission is set to zero and later
the final value is calculated after optimizing the
model with a commission to a flat rate of $10, which
is a typical price offered for online trading. After
feeding the input data to Backtrader, the program
starts simulating the trading. The size for each trade
is set to 500. The cost of the investment is equal to
the size of trade multiplied by the value of the equity
on the first purchase. The return on investment (ROI)
is calculated as ROI =

(
Net profit

Cost of investment ∗ 100
)

.
The results of backtesting are shown in Fig. 4.

Although the final portfolio shows a loss, when
compared to the stock price, the values indicate the
results can be optimized to create a profitable model.

B. The Effect of Technical Indicators

The goal of this experiment is to examine the use
of technical indicators on the performance of our
model. We will examine the use of three main tech-
nical indicators: RSI, Williams %R and Volatility.
Table II shows the effect of these indicators on the
loss value. As we can see, by using only RSI we can
decrease the loss of the model to the lowest amount.

C. Hyperparameter Optimization Results

To further improve the results and also to examine
which hyperparameters have better effects on the

Fig. 4: Backtesting using Backtrader, with buy and
sell signals for the test period (after red line).

Technical Indicator MSE

Volatility 0.02699

William %R 0.03845

RSI 0.02053

All Indicators 0.02598

No Indicator 0.04057

TABLE II: The effect of technical indicators.

model for future research, hyperparameter optimiza-
tion is performed, running the experiment for 60
different combinations based on the hyperparameter
space to find the set of parameters with lowest MSE.

1) Analysis of results: By using LeakyReLU the
results improve and MSE comes below 0.1 while by
using the ReLU function MSE goes well above 0.2.
To summarize the results, the top ten best results
are selected and displayed in Table III. The best
parameter space is the first row with the MSE of
0.00484. The model is evaluated with these param-
eters and the results are calculated to examine the
performance.

D. Final Experiments

After selecting the best parameters from optimiz-
ing the hyperparameters and modifying our model,
we run the experiments again to see how it increases
the value of our portfolio. Fig. 5 shows the actual
and predicted data.

Days [77,78,82,111] cross the zero line. Analyz-
ing the predicted results to generate buy and sell sig-
nals we determine [77,82] for buying and [78,111]
for selling. Our final portfolio value increased to

MSE Dropout Optimizer Loss fn

0.004845492 0.1 Nadam MSE

0.004993705 0.1 Nadam Huberloss

0.005018013 0.18 Nadam MSE

0.005358382 0.1 Adam Huberloss

0.005375063 0.18 Nadam MSE

0.005381555 0.1 Ndam Huberloss

0.005391314 0.26 Adam Huberloss

0.005471755 0.18 Aadam MSE

0.005537316 0.26 Nadam MSE

0.00564124 0.34 Nadam MSE

TABLE III: Ten best results of hyperparameter op-
timization. In all of the ten best cases, Activation
was LeakyRelu.

Fig. 5: Original and Predicted data

$1015075.00, which shows that optimizing the hy-
perparameters has a positive impact for this single
testing set. Based on the beginning purchase and the
end value, the return on investment for 128 days is
equal to 6.1%. It should also be noted that the ROI
with the buy and hold strategy for the same period
of time is equal to -16.37%.

A summary of the results before and after opti-
mization are shown in Table IV.

Expriment MSE ROI

Before Optimization 0.040576865 -18.04%

After Optimization 0.004845492 6.67%

TABLE IV: Comparison of the experiments

Company Symbol ROI Buy & Hold

Apple AAPL 6.61% -16.37%

Microsoft MSFT 25.99% 27.51%

Google GOOG 5.769% 9.22%

Intel Corp INTC 16.9% 2.34%

TABLE V: Comparison of ROI for different stocks

E. Testing Other Stocks

To further test our approach we selected three
more stocks from the information technology sector
of S&P 500. These stocks were selected because
they are from the same sector but showed different
performance over the time period examined.

We use the same process and select the hyper-
parameters from our previous experiment. The final
results are shown in Table V. For all of these results
(including for the last experiment), the commission
was set to $10. The beginning balance is the amount
of money spent to buy 500 shares. Our approach
showed a positive ROI for all four stocks. In com-
parison to buy and hold, the performance of our
approach was significantly better for both Apple
and Intel, comparable for Microsoft, but worse for
Google. During this same time period the overall
performance for S&P 500 was +0.05%.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we used long-short term memory
(LSTM) networks to predict the trend of markets
and generate buy and sell signals to create a prof-
itable model. In predicting the MACD histogram,
promising results were seen. This is a suitable
indicator to predict the trend of the market.

We chose Apple’s stock and created an LSTM
network to test our approach and later conducted
the experiment for other stocks chosen from S&P
500. The network’s architecture was improved by
studying previous research and backtesting was used
to evaluate the model’s outcome in the real world.

We examined the effect of RSI, Williams %R and
volatility on the loss of the model. It was shown that
by using only RSI, the model’s loss was reduced,
which contributed to the performance of the model.

We also measured the effect of hyperparameter
optimization with the use of grid search to identify
the best set of hyperparameters, which is one of
the main differences of our work in comparison
to previous research using LSTMs. It was shown
that choosing a different optimizer and activation
function had a substantial effect on the loss of the

model. By reducing the loss value it was possible
to increase the return on investment from a negative
value to 6.67%. This paves the way for future
research with the focus of identifying stocks with
higher returns and creating portfolios with multiple
stocks.

Our results show that deep learning can be inte-
grated with technical analysis to create a profitable
portfolio by choosing the correct technical indicator.
It should also be noted that the results of the
portfolio can be further optimized by choosing more
complicated trading strategies.

The achieved results lay the ground for further
research. This could include examining the effect
of different input data. The data can be gathered
from other sectors and different stock markets. Other
technical indicators can also be used to decrease the
loss value. The research could be further expanded
to modify the formulas for technical indicators and
also test which indicators have a higher correlation
with other factors such as volatility, etc. to catego-
rize the prediction models.

Different neural network architectures may also
achieve better results. Our work is consistent with
previous research in that we used stacked LSTMs.
Although a brief investigation was performed to
evaluate other options, the stacked layers produced
the best results. Further work could investigate this
more fully, including evaluation of the optimal num-
ber of layers to use.

Another topic would be to integrate the method-
ology with other analyses such as sentiment analysis
[34]. With the help of sentiment analysis, it may be
possible to generate buy signals sooner and integrate
that into the model. Another research direction is
the use of fundamental indicators such as revenue.
The combination of these methods along with the
examination of the approach on a wider area of
stocks can be a suitable choice for future research.

ACKNOWLEDGEMENTS

This research was supported in part by the Nat-
ural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES

[1] Backtrader. https://www.backtrader.com/. Last accessed 26
June 2019.

[2] Fundamental package for scientific computing with python.
https://numpy.org/. Last accessed 1 September 2019.

[3] Getting started with the keras sequential model. https:
//keras.io/getting-started/sequential-model-guide/. Last ac-
cessed 6 April 2019.

[4] Keras documentation. https://keras.io/callbacks/. Last
accessed 20 May 2019.

[5] Keras: The python deep learning library. https://keras.io.
Last accessed 10 September 2018.

[6] Macd. https://www.investopedia.com/terms/m/macd.asp.
Last accessed 6 April 2019.

[7] Macd historgram. https://stockcharts.com/school/doku.php?
id=chart school:technical indicators:macd-histogram. Last
accessed 6 April 2019.

[8] Macd historgram in technical analysis. https://commodity.
com/technical-analysis/macd/. Last accessed 6 April 2019.

[9] Machine learning in python. https://github.com/scikit-learn/
scikit-learn. Last accessed 1 September 2019.

[10] An open source machine learning framework. https://github.
com/tensorflow/tensorflow. Last accessed 1 September
2019.

[11] Python data analysis library. https://pandas.pydata.org/.
Last accessed 1 September 2019.

[12] Relative strength index - rsi. https://www.investopedia.com/
terms/r/rsi.asp. Last accessed 10 September 2018.

[13] Talos documentation. https://autonomio.github.io/docs
talos/#introduction. Last accessed 25 May 2019.

[14] Trading strategy. https://www.investopedia.com/terms/t/
trading-strategy.asp. Last accessed 02 May 2019.

[15] What does sample, batch, epoch mean? https://keras.io/
getting-started/faq/#what-does-sample-batch-epoch-mean.
Last accessed 6 April 2019.

[16] Williams %r. https://www.investopedia.com/terms/w/
williamsr.asp. Last accessed 10 September 2018.

[17] M. Abe and H. Nakayama. Deep learning for forecasting
stock returns in the cross-section. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pages
273–284. Springer, 2018.

[18] W. Ahmed and M. Bahador. The accuracy of the lstm model
for predicting the s&p 500 index and the difference between
prediction and backtesting, 2018.

[19] C. Ahuja and L. Morency. Lattice recurrent unit: Im-
proving convergence and statistical efficiency for sequence
modeling. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[20] J. Alberg and Z. C. Lipton. Improving factor-based quanti-
tative investing by forecasting company fundamentals. stat,
1050:13, 2017.

[21] E. Chong, C. Han, and F. C. Park. Deep learning networks
for stock market analysis and prediction: Methodology, data
representations, and case studies. Elsevier, 2017.

[22] T. Chong and W. Ng. Technical analysis and the london
stock exchange: testing the macd and rsi rules using the
ft30. Applied Economics Letters, 15(14):1111–1114, 2008.

[23] T. Chong, W. Ng, and V. Liew. Revisiting the performance
of macd and rsi oscillators. Journal of risk and financial
management, 7(1):1–12, 2014.

[24] T. Dozat. Incorporating nesterov momentum into adam.
2016.

[25] T. Fischer and C. Krauss. Deep learning with long short-
term memory networks for financial market predictions.
European Journal of Operational Research, 270(2):654–
669, October 2018.

[26] J. B. Heaton, N. G. Polson, and J. H. Witte. Deep learning
for finance: deep portfolios. Applied Stochastic Models in
Business and Industry, 33(1):3–12, 2017.

[27] D. Kingma and J. Ba. Adam: A method for stochastic
optimization. International Conference on Learning Rep-
resentations, 12 2014.

[28] C. D. Kirkpatrick and J. R. Dahlquist. Technical Analysis:
The Complete Resource for Financial Market Technicians.
Financial Times Press. Wiley, 2006.

[29] M. Klassen. Investigation of some technical indexes in
stock forecasting using neural networks. In WEC (5), pages
75–79. Citeseer, 2005.

[30] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser,
K. Kurach, and J. Martens. Adding gradient noise improves
learning for very deep networks. stat, 1050:21, 2015.

[31] N. Reimers and I. Gurevych. Optimal hyperparameters for
deep lstm-networks for sequence labeling tasks. CoRR,
abs/1707.06799, 2017.

[32] O. B. Sezer, A. M. Ozbayoglu, and E. Dogdu. An artificial
neural network-based stock trading system using technical
analysis and big data framework. In Proceedings of the
SouthEast Conference, pages 223–226. ACM, 2017.

[33] A. Tipirisetty. Stock price prediction using deep learning.
page 60, 2018.

[34] Y. Zhao, B. Qin, T. Liu, et al. Sentiment analysis. Journal
of Software, 21(8):1834–1848, 2010.

