
Gardner-Webb University
Digital Commons @ Gardner-Webb University

Undergraduate Honors Theses Honors Program

2017

Financial Analysis with Artificial Neural Networks
Short-term Stock Market Forecasting
Andrew Linzie
Gardner-Webb University

Follow this and additional works at: https://digitalcommons.gardner-webb.edu/undergrad-honors

Part of the Finance and Financial Management Commons

This Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Gardner-Webb University. It has been accepted
for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ Gardner-Webb University. For more
information, please see Copyright and Publishing Info.

Recommended Citation
Linzie, Andrew, "Financial Analysis with Artificial Neural Networks Short-term Stock Market Forecasting" (2017). Undergraduate
Honors Theses. 6.
https://digitalcommons.gardner-webb.edu/undergrad-honors/6

https://digitalcommons.gardner-webb.edu?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.gardner-webb.edu/undergrad-honors?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.gardner-webb.edu/honors-program?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.gardner-webb.edu/undergrad-honors?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/631?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.gardner-webb.edu/undergrad-honors/6?utm_source=digitalcommons.gardner-webb.edu%2Fundergrad-honors%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.gardner-webb.edu/copyright_publishing.html

Financial Analysis with Artificial Neural Networks
Short-term Stock Market Forecasting

An Honors Thesis

Presented to
The University Honors Program

Gardner-Webb University
18 April 2017

by

Andrew Linzie

Accepted by the Honors Faculty

____________________________ _________________________________
Dr. Miroslaw Mystkowski, Thesis Advisor Dr. Tom Jones, Associate Dean, Univ. Honors

____________________________ _________________________________
Dr. Eddie Stepp, Honors Committee Dr. Robert Bass, Honors Committee

____________________________ _________________________________

Dr. Candice Rome, Honors Committee Dr. Lorene Pagcaliwagan, Honors Committee

2

Contents
1 Introduction... 4

2 Time Series Analysis .. 5

2.1 Introduction .. 5

2.2 History of Time Series Analysis... 7

2.3 Time Series Definitions ... 9

2.3.1 Continuous and Discrete Time Series... 9

2.3.2 Stationary versus Non-Stationary ... 10

2.3.3 Noisy Processes .. 11

2.4 Linear and Nonlinear Forecasting Models .. 11

2.4.1 Introduction .. 11

2.4.2 Linear Regression ... 12

2.4.3 Generalized Autoregressive Conditional Heteroskedasticity .. 13

3 Artificial Neural Networks ... 14

3.1 Introduction .. 14

3.2 Layers .. 15

3.3 Nodes .. 17

3.4 Weights .. 18

3.5 The Activation Function ... 19

3.6 Performance of a Neural Network ... 21

4 Review of Literature ... 21

5 Error Back-Propagation with Stochastic Gradient Descent ... 30

5.1 Introduction .. 30

5.2 Gradient Descent... 31

5.3 Hidden Layer Stage and the Delta Rule.. 32

5.4 Optimizing Learning .. 33

5.5 Algorithm ... 34

6 Extreme Learning Machines .. 35

6.1 Introduction .. 35

6.2 Essential Concepts .. 36

6.2.1 Linear Algebra Notation ... 36

6.2.2 Moore-Penrose Generalized Inverse .. 37

6.2.3 Minimum Norm Least Square Solution of General Linear Systems 38

6.3 Extreme Learning Machine: Approximation Problem.. 39

6.4 Extreme Learning Machine Algorithm ... 41

7 Methods .. 42

7.1 Introduction .. 42

7.2 Combining Time Series Analysis and Artificial Neural Networks .. 43

7.3 Structuring of Data... 44

3

7.4 Acquiring, Preprocessing, and Formatting Data ... 45

7.5 Extreme Learning Machine Algorithms ... 47

7.5.1 Model Selection ... 47

7.5.2 Testing ... 47

7.6 Stochastic Gradient Descent Algorithms... 48

7.6.1 Model Selection ... 48

7.6.2 Testing ... 48

7.6.3 Scripts .. 49

8 Results ... 49

8.1 Design of Training, Validation, and Testing Sets .. 49

8.2 Error Metrics .. 50

8.3 Tabled Results... 51

9 Discussion .. 52

9.1 Nodes, Training Time, Mean-Squared Error ... 52

9.2 Directional Change .. 53

9.3 Projecting Data .. 54

9.4 Threshold Responses ... 55

10 Conclusion ... 56

11 Appendix .. 58

11.1 Graphs (below) .. 58

11.2 Source Code .. 68

11.2.1 Extreme Learning Machine Script ... 68

11.2.2 Back-Propagation with Stochastic Gradient Descent Script ... 70

11.2.3 Script for Creating Training/Validation Sets .. 73

11.2.4 Script for Creating Testing Sets .. 75

4

1 Introduction
Seldom reward is absent from risk, and stock markets are a prime example. Stock markets

across the world are viewed as profitable and risky at the same time. Companies have made a

business out of forecasting these markets. Quantitative analysis companies use

mathematicians, financial analysts, and computer scientists to compete in the stock market.

The old days of floor trading have progressed towards high-frequency trading with

supercomputers housed within the exchange. For example, the New York Stock exchange has

created regulations for these companies so that there’s competitive equality. The computer’s

power, length of cable to the exchange, and more has been standardized so that no single

company will have an advantage with the exception to algorithms. Computers are delegated

the buying and selling of stocks in the New York Stock exchange. A computer receives

information from the market, decides an action in microseconds, and that decision gets sent to

the exchange in milliseconds. From the computer’s perspective, the difference between

microseconds and millisecond is significant. The company’s trading algorithms are secretive

and protected, but their performance depends on time series analysis and machine learning

theory.

 Time series analysis is a popular method for forecasting financial systems, but over past

decades, machine learning has become an essential area of research with relevant applications

in classification and level estimation; both fit into the field of regression analysis within

mathematics. Classification refers to the labeling of unseen data as a finite number of

categories, while level estimation refers to guessing the numeric value of some process. For

the stock market, classification refers to forecasting the direction of change, while predicting

the price of the market is level estimation.

5

More generally, this thesis focuses on level estimation of blue chip stocks using artificial

neural networks, a type of machine learning model, to forecast next-day closing values. Two

different optimization methods are investigated to use with artificial neural networks. Back-

propagation with stochastic gradient descent is the first method, and it is successful at

forecasting nonlinear patterns in stock markets. The other model is an extreme learning

machine, which is a method new to the recent decade. Models are trained, validated, and tested

for measuring these two methods against each other to discover if extreme learning machines

are comparatively successful.

Each chapter within this paper is purposed with informing the reader about the history,

theory, and application of mathematics and computer science techniques for analyzing stocks.

Chapter two presents the history of time series analysis, definitions, important concepts, and

linear and nonlinear forecasting models. The structure and components of artificial neural

networks are thoroughly explained within chapters three. Questions like, “is the stock market

predictable?” or “what does academic literature reflect about the success of artificial neural

networks in financial markets?” are answered within chapter four. Chapters five and six

present the mathematical theory of stochastic gradient descent and extreme learning machines.

Chapter seven explains the different methods which were used to receive the tabled results of

chapter eight. Lastly, chapter nine interprets the results from chapter eight, chapter ten provides

the thesis’ conclusion, and the appendix contains all graphs and source code.

2 Time Series Analysis
2.1 Introduction

Time flows at a smooth pace and links together the phenomena of life, so quite naturally,

the study of systems through time, time series analysis, is fundamentally important. A time

series is an ordered set of observations by time and is plotted with time increasing to the right

6

and the system's value increasing above. The purpose of studying a time series is to analyze

the serial correlation of observations with future values, termed forecasting. Methods gleaned

from time series analysis have been applied in many relevant fields like chemistry, biology,

physics, psychology, finance, and business with the purpose of planning for the future.

 Time series analysis is a branch of mathematics that investigates the dependence

structure of a sample of observations. The application of theorems derived from time series

analysis allows for accurate forecasting; the term accurate is user-defined, and the accuracy of

these forecasts depend on numerous parameters. Some things to consider include the sample

data's origin, amount of data, interval between observations, choice of model, estimation of

model parameters, forecasting length, suspected noise, and desired accuracy are just a few of

these important factors. The analyst has the freedom of choosing these parameters to receive

their desired empirical results. With the uncertainty and freedom associated with time series

analysis, one should question the goals of this branch.

 The objective of studying time series includes basic application, theory, and model

building. At the most basic level of analysis, one might desire to try to describe a system with

the construction of a mathematical series. One might propose a hypothesis for explaining the

behavior of a time series or relate the observation to imposing rules. Someone could use learned

information from analyzing a time series to forecast into the future; forecasting relies on the

assumption that future values will follow similar properties of the past. Determining the

causation of a time series will give the analyst better forecasts. An analyst could use time series

methods to return indicators of ominous events or empirically alter parameters to examine the

results. The most general objective is to use the derived theory of time series for building

predictive models. These models could be applied towards forecasting rain fall, the warming

7

of the earth, or forecasting stock market values. Mathematics is the language of the cosmos,

beautifully presented, structurally complex, and the applications of times series analysis are

endless. 1

2.2 History of Time Series Analysis
Time series analysis has been studied by mathematicians through history, but the theory

of the field changed within the early 1900s. Within mathematics, researchers can become stuck

on a problem, and approaching the problem from a different perspective is sometimes

necessary for advancements. As mathematics has progressed through the centuries, the

perspective of many branches changed, but time-series analysis resisted this change the

longest.

 The initial perspective of time-series analysis was deterministic as researchers believed

and searched for the equations that described any time series without their errors. The errors

within these systems were thought to be observation errors and not part of the underlying

process. Analysts tried to predict change within financial markets with Fourier series and

analogous methods. Trade, population, epidemics, and policy are a few of the many factors

that affect financial markets, and these are not deterministic in any sense. 2 The study of

differential equation is concerned with finding unique solutions to rates of change problems

through time; many mathematicians have approached the study of time-series with differential

equations. Until 1926, the search for the deterministic equations describing the cyclical

movement of financial markets continued.

 In 1927, Udny Yule, a British statistician, deviated from previous deterministic views

by providing an analogy for a random component within an analyzed system. He started a wave

1 Kendall, Maurice G. Time-Series. 2d ed. ed. New York :: Hafner Press, 1976, 12.
2 Kendall, Maurice G. Time-Series. 2d ed. ed. New York :: Hafner Press, 1976, 4.

8

of new literature that contributing to the development of time-series analysis through the 20th

century. Within his paper, “On a Method of Investigating Periodicities in Disturbed Series,

with special reference to Wolfer’s Sunspot Numbers,” Yule describes the difference between

superposed fluctuations and true disturbances. Here is an excerpt from the introduction of his

paper explaining this idea:

“When periodogram analysis is applied to data respecting any physical phenomenon in

the expectation of eliciting one or more true periodicities, there is usually, as it seems

to me, a tendency to start from the initial hypothesis that the periodicity or fluctuations

are masked solely by such more or less random superposed fluctuations – fluctuations

which do not in any way disturb the steady course of the underlying periodic function

or functions. It is true that the periodogram itself will indicate the truth or otherwise of

the hypothesis made, but there seems no reason for assuming it to be the hypothesis

most likely a priori.

If we observe at short equal intervals of time the departures of a simple

harmonic pendulum from its position of rest, errors of observation will cause

superposed fluctuations of the kind supposed in fig. 1. But by improvement of

apparatus and automatic methods of recording, let us say, errors of observation are

practically

eliminated. The

recording

apparatus is left

to itself, and

unfortunately

Figure 2.1: Yule (1927)

9

boys get into the room and start pelting the pendulum with peas, sometimes from one

side and sometimes from the other. The motion is now affected, not by superposed

fluctuations but by true disturbances, and the effect on the graph will be of an entirely

different kind. The graph will remain surprisingly smooth, but amplitude and phase

will vary continually.” 3

Giving a better explanation, Yule is saying that there are random fluctuations that effect

the underlying system. This idea that a system contains errors contributed to the idea that

modeling time series should account for random fluctuations, modernly termed shocks. Today,

these shocks are denoted by 𝜖𝑡 ~𝑁(0, 𝜎2), which is termed a random variable normally

distributed with mean zero and variance sigma-squared. The concept of a process with its

shocks leads to the concept of a stochastic time-series and is the subject of prolific discussion

within academia. As people desire any predictive advantage within stock markets, the study of

stochastic processes can be applied towards financial markets.

2.3 Time Series Definitions

2.3.1 Continuous and Discrete Time Series
A time series is a sequence of n observations ordered by time. Let {𝑦𝑡𝑛

}or

𝑦𝑡1
, 𝑦𝑡2

, . . . , 𝑦𝑡𝑛
denote a time series at equally spaced intervals 𝑡1,𝑡2,. . . , 𝑡𝑛for natural n. The

length between these observations are different depending on the system being analyzed. For

example, the time interval between measuring temperature and wind speed is much different

than measuring the harvest of crops between years. Temperature and wind speed are examples

of continuous time series, while the size of a harvest of crops between years is an example of

a discrete time series. A continuous time series represents a constantly changing system over

3 Yule, George Udny. "On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's

Sunspot Numbers." Philosophical Transactions of the Royal Society of London: Series A. Containing Papers of a

Mathematical or Physical Character 226 (04/29/ 1927): 267-98. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=hsr&AN=521326766&site=eds-live.

10

an interval of time, while a discreet time series has a finite amount of observations. Within

statistics, a time series has a mean and variance which are used for forecasting models.

 A decomposition model may be used to better explain the interactions between

different factors affecting the change in a series. Let, 𝑦𝑡 be the value, 𝑠𝑡 be the seasonal

variation, 𝑟𝑡 be the trend, 𝑐𝑡be the cyclic component, and let 𝜖𝑡~𝑁(0, 𝜎2) be the irregular

component of the series, then the decomposition model can be presented as:

𝑦𝑡 = 𝑠𝑡 + 𝑟𝑡 + 𝑐𝑡 + 𝜖𝑡

 The seasonal variation is the pattern

influenced by the time of the year, the trend of

a series reflects the long-term progression, the

cyclic component is the repeating but non-

periodic pattern present within a time series,

and there is always a shock value 𝜖𝑡 in an

observable process. This is to say that many

factors go into the value of a time series,

which effects the visual randomness. The different components of 𝑦𝑡 are recognizable in

international airline passenger data, which measures the number of people traveling

internationally each year. The seasonal variation, trend, cycle, and shock are obvious.

2.3.2 Stationary versus Non-Stationary
The study of time series forecasting is divided into two types of stochastic models

termed stationary and non-stationary models. Stationary models assume that the process

remains within a statistical equilibrium where the mean and variance of the time series do not

vary over time; a non-stationary process has no constant mean and variance level. If a trend

exists within the data, then the process is non-stationary. Stationarity is an unrealistic quality

Figure 2.2:Airline Passenger Time Series

11

to assume for an industry, business, or economically related process, but stationary models

have been shown to be appropriate for some non-stationary processes. 4 Non-stationary time

series require different forecasting methodology because they possess greater variation.

2.3.3 Noisy Processes
As Yule suggested the noise of the surrounding environment combine into a third

series. Some sources of noise come from political, technological, or geographic events within

the world, and this noise is reflected in stock prices. In particular, the stock market is assumed

to be a non-stationary process, forecasting stocks is modeled with non-stationary methods.

 There are numerous examples of external noise which can complicate mathematical

model building. Within the first few days of his term, President Donald Trump claimed on

Twitter that the Federal government would not build a fleet of Air Force One planes. Ignoring

political opinions, Boeing's stock took an immediate dive following those comments because

those planes represented over $4 billion in contracts, which Boeing had begun building.

2.4 Linear and Nonlinear Forecasting Models

2.4.1 Introduction
The purpose of this section is to describe common methods used for general

forecasting. Linear and nonlinear forecasting models, the ideas of model selection, and

parameter estimation are presented. The common idea of the models presented below is that

they rely on already known information to forecast future values of the process.

 Linear models are appropriate for short-term forecasting, they have the advantage of

being very quick, but they lack the accuracy and adaptive qualities that non-linear models

possess. If the market has a threshold response where the price hits a certain level and starts to

climb rapidly, a linear model would not react quickly to the change or be able to predict the

4 Box, George E. P., Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time Series Analysis : Forecasting and

Control. Fifth edition / ed. Hoboken, New Jersey :: John Wiley & Sons, Inc., 2016. 1 online resource, 1-10.

12

end of the trend. Similarly, if there were a slow climb in price to a sudden drop, termed a

bubble, then a linear model would not perform well in this situation either. To summarize,

linear models are not accurate for highly volatile markets where the changes in price are sudden

and large, but they offer a useful perspective which helps to understand the method of

forecasting.

2.4.2 Linear Regression
 The simplest model that everyone learns within statistics or economic classes is the

linear regression model, which provides a best-fit line to a sample of data. The deterministic

equation modeling linear regression is given below.

𝑦𝑡 = ∑ 𝛽𝑘𝑥𝑘,𝑡 + 𝜖𝑡

 Within this model, the future values 𝑦𝑡 are based upon the linear combination of the

input values 𝑥𝑘,𝑡 with its estimated 𝛽𝑘 value and the disturbance term 𝜖𝑡. The parameters

needed to use the linear regression method requires 𝛽𝑘̂, an estimation of 𝛽, and this is estimated

by minimizing the sum of square differences between the actual observation 𝑦𝑡 and the

observations predicted by the linear model, 𝑦𝑡̂. 5 Less obviously, McNelis proposes the

estimation problem as

𝑀𝑖𝑛𝛹 = ∑ 𝜖𝑡̂
2

𝑇

𝑡=1

= ∑(𝑦𝑡 − 𝑦𝑡̂)2

𝑇

𝑡=1

𝑠. 𝑡. 𝑦𝑡 = ∑ 𝛽𝑘𝑥𝑘,𝑡 + 𝜖𝑡

𝑦𝑡̂ = ∑ 𝛽̂𝑥𝑘,𝑡

5 McNelis, Paul D. Neural Networks in Finance : Gaining Predictive Edge in the Market. Academic Press Advanced Finance

Series. Burlington, MA: Academic Press, 2005, 14-17.

13

𝜖𝑡~𝑁(0, 𝜎2)

2.4.3 Generalized Autoregressive Conditional Heteroskedasticity
 With nonlinear models, people try to approximate the underlying process by creating

non-linear functional forms and create assumptions for estimating parameters. Proposed by

Bollerslev(1986, 1987) and Engle (1982), GARCH is a method for forecasting, and Engle

received the Nobel Prize in 2003 for his research on this model. 6,7,8 The 𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) model

has 𝜎2 terms of order 𝑝 and the other components is a 𝐴𝑅𝐶𝐻(𝑞) model.

 First, this model involves forecasting the variance of a process based upon previous

variance forecasts and parameters, which defines the evolution of the conditional variance.

McNelis thoroughly explains, “the variance of the disturbance term directly affects the mean

of the dependent variable and evolves through time as a function of its own past value and the

past squared prediction error.” 5 Below, a mathematical description of the GARCH model is

provided.

𝑦𝑡 = 𝑥𝑡
′𝑏 + 𝜖𝑡

𝜖𝑡|ψt~𝑁(0, 𝜎𝑡
2)

𝜎𝑡
2 = 𝜔 + 𝛼1𝜖𝑡−1

2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞
2 + 𝛽1𝜎𝑡−1

2 + ⋯ + 𝛽𝑝𝜎𝑡−𝑝
2 = 𝜔 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑝

𝑖=1

 The parameters for the different variables can be found by the typical method of

maximizing the sum of the logarithm likelihood function over the entire sample.

6 Bollerslev, Tim. "Generalized Autoregressive Conditional Heteroskedasticity." Journal of Econometrics 31, no. 3 (1986):

307-27. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=4987693&site=eds-live.
7 Bollerslev, Tim. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return." 1987.
8 Engle, Robert F. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom

Inflation." Econometrica 50 (07// 1982): 987-1007. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=hsr&AN=521173546&site=eds-live.

14

For those not familiar with statistics, the main point of this chapters was to stress the

mathematical logic of forecasting; the future is estimated with known or historical values.

Forecasting with machine learning is similar because an artificial neural network is trained on

previous values to forecast stocks. There are many other models that could have been presented

within this section, but there’s nothing to gain from presenting this information since all future

information relates to machine learning.

3 Artificial Neural Networks
3.1 Introduction
 The previous chapter about time series analysis discussed the classical techniques of

estimating the future values of some process. The process is assumed to be stochastic, and the

process may be stationary or non-stationary. These properties alone are not an exhaustible list

of the ways to classify a system, but they are the most important when determining which type

of model to use. The question now becomes, is this process better estimated with a linear or a

non-linear model? Since this thesis is concerned with the forecasting stock markets, a non-

linear model is necessary for regression. As discussed in previous chapters, the noise from

geopolitical events can drastically effect the accuracy of forecast. The changes within the stock

market can be violent and sudden, and these changes are most accurately predicted with a non-

linear model.

 The pure time series analysis approach includes building a model, parameter

estimating, and determining how to update those parameters to fit the future. Machine learning

is the other method of approach, and machine learning has become popular for forecasting in

recent years. The machine learning approach is significantly more complicated because the

method requires the user to know how to program, build models, estimate parameters, and

structure data to be successful. From academic articles detailed within the review of literature

15

chapter, the consensus among researchers is that machine learning models, when correctly

tuned, always outperform time series analysis models. The machine learning approach used

within this thesis is known as an artificial neural network.

 Artificial neural networks are used on a regular basis by people across the world. Hand

writing classification at the post office, speech synthesis from Google or Siri, and image

classification are all examples of regression with neural networks. They can be applied to

nearly any problem that has available data and can be quantified numerically or by labels. The

method of training, validating, and testing neural networks is adopted within this thesis for the

purpose of stock market forecasting. A detailed description is provided within this chapter for

understanding the mathematical theory presented in chapters five and six. Artificial neural

networks have a detailed history, and for those who are interested in the origins of neural

networks, Warren McCulloch, Walter Pitts, Donald Hebb, Frank Rosenblatt, David E.

Rumelhart, James McClelland, and many more are the innovators of artificial neural networks.

9,10,11,12

3.2 Layers
 Artificial neural networks were developed with inspiration from the human brain's

structure. The human brain contains neurons, synapses, and electrical signals communicated

over those synapses. An artificial neural network has similar components with nodes,

9 Cowan, Jack. "Discussion: Mcculloch-Pitts and Related Neural Nets from 1943 to 1989." Bulletin of Mathematical

Biology 52, no. 1/2 (01// 1990): 73. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=72259295&site=eds-live.
10 Hebb, D. O. The Organization of Behavior : A Neuropsychological Theory. Wiley's Books in Clinical Psychology: New

York : Wiley, 1949., 1949.
11 Rosenblatt, F. "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain." In

Neurocomputing: Foundations of Research., edited by James A. Anderson and Edward Rosenfeld, 92-114. Cambridge, MA,

US: The MIT Press, 1988.
12 Rumelhart, D. E. and et al. "Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1:

Foundations." Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations

(1986): NoPg. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=20h&AN=33837881&site=eds-live.

16

connections, and weights representing the human

brain's neurons, synapses, and strengths of electrical

signals, respectively. Humans are able to logically

deduce, artistically express themselves, and possess

consciousness because of the brain’s structure. An

artificial neural network implements that structure,

and there are three different layers within a neural

network: the input layer, the hidden layer, and the

output layer. An artificial neural network can take on

many forms where connections, loops, and multiple

directions of connections are permitted, but only one type of neural network is presented within

this paper. Do not be mistaken, while they are similar, artificial neural networks do not

resemble humans brains in size or abstract reasoning. Google is working on creating an human

brain sized artificial neural network; Although, empirical observation has proven that neural

networks do not need extensive computational power for successful domain specific

regression. Feed-forward neural networks are a subset of the many types of neural networks,

and they are explored below.

 A feed forward neural network is like the function 𝑦 = 𝑓(𝑥) in mathematics. The input

layer is where information is “fed” into the model to provide numbers for the hidden layer to

mathematically transform. The hidden layer uses an activation function to squash the inputs

for the output layer. Depending on the type of problem a neural network is build for, many

hidden layers may be needed to receive accurate results. A neural network with only one hidden

layer is termed a “Single-layer feed-forward neural network,” and single-layer feed forward

Figure 3.1: A general artificial neural

network architecture

17

neural networks are the only type used within this thesis. The output layer collects the results

of regression or classification within the hidden layer and sums the results. Between these three

layers, there are connections from every node to every other node within the next layer, and on

each of these connections there is an associated number which determines the strength of the

connection. The specifics of these components are explained in detail in parts 4.3, 4.4, and 4.5.

3.3 Nodes
 The nodes of a neural network resemble the neurons of a human brain, and the nodes

within each of the three layers have a different function. The nodes within the input layer are

purposed with mapping an input vector 𝑥 multiplied by weights into the hidden nodes. The

hidden layer nodes take a vector 𝑥 ∗ 𝑤 from the previous layer for inputting into an activation

function. The output layer nodes sum the weights multiplied by the hidden layer node outputs,

and the results are the output of each output node. Mathematically, this process can be

expressed as the output at the 𝑘𝑡ℎ node.

𝑦𝑘 = 𝜙(∑ 𝑤𝑘𝑗𝑥𝑗

𝑚

𝑗=0

)

This formula explains the process of propagating

values from the input nodes towards the output nodes; the

previous layer node's outputs are multiplied by their

weights, summed, and the summed value is the input to an

activation function. To better understand this process, refer

to figure 4.

 The number of nodes contained within each layer

is dependent on the domain specific application. The

number of nodes within the input layer is the same number of
Figure 3.2: Perceptron

18

features a researcher thinks accurately represents the amount of information which should be

provided to the neural network to receive correct classifications within the output layer. The

number of hidden layer nodes is empirically determined through the process of model selection

and varies; Given 𝑛 input nodes, the Kolmogorov-Arnold Representation Theorem gives the

general rule that 2𝑛 + 1 nodes with a single hidden-layer neural network can approximate any

nonlinear piecewise continuous function. 13 The output layer contains the same amount of

nodes as the target values of the neural network.

Applying this knowledge to the stock market, the input nodes or features, would be

relevant information like the close, open, volume, high, low, technical indicators, or other

information deemed important for regression. The hidden nodes would be chosen by the

method of iteratively determining the best number or by using a validation set. The output layer

typically consists of only one node when applied to forecasting stock markets. The level

estimation method is used to predict the next closing value 𝑡 time units into the future, and the

classification method is used for forecasting the sign change of a stock 𝑡 time units into the

future.

3.4 Weights
 The weights of the neural network are initialized randomly and modified to solve the

transformation problem between the input and output layers. Within a single-layer feed-

forward neural network, there are two sets of weights; the first set of weights exists between

the input and hidden layers while the other set is between the hidden and output layers. Each

node has a connection and corresponding weight to every other node in the next layer. The

purpose of this connection scheme is to control how influential each feature is in reducing the

13 Tikhomirov, V. M. "On the Representation of Continuous Functions of Several Variables as Superpositions of Continuous

Functions of a Smaller Number of Variables." In Selected Works of A. N. Kolmogorov: Volume I: Mathematics and

Mechanics, edited by V. M. Tikhomirov, 378-82. Dordrecht: Springer Netherlands, 1991.

19

error within output layer. Any weights within the neural network are initialized within the

interval [0, 1]. A weight with a value of 1 allows the previous layer node to be “fully on,” while

a weight with the value of 0 turn that node “fully off.” Along with the activation function,

number of nodes within different layers, and available data sets, the weights are one of the

most important component within a neural network. The weights of a neural network transform

an input from an n-dimension space into an output in an m-dimension space, which is

mathematically described as 𝑓: ℝ𝑚 → ℝ𝑛.

3.5 The Activation Function
 The activation function of a neural network determines the output of a node. It is termed

an activation function because the value outputted at each node effects or activates the next

layer of nodes. An activation function is also called a “squasher function” because it limits the

output of each node to a predetermined range. The activation function is meant to model the

process of natural learning within the human brain. An important characteristic of the function

is that a small change in the input to the node has a corresponding small change in the output

of the node. It is necessary for an activation function to be differentiable at all points, which is

discussed further in chapter five. 14

 The input layer uses no activation function, while the hidden layer always uses an

activation function. The output layer can use an activation function but typically uses the linear

activation function 𝑓(𝑥) = 𝑥. The output layer is used to sum the results of the transformation

within the hidden layer, and does not need to modify the classified data. There are many

different types of activation functions which may be used for neural networks. Examples of

continuously differentiable nonlinear activation functions commonly used in neural networks

14 Haykin, Simon. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR, 1998.

20

are sigmoidal nonlinearities, which includes the logistic function and the hyperbolic tangent

function (refer to figure 5).

 It is important to include a few observations about the domain and range of the logistic

and hyperbolic tangent function. As their inputs approach infinity, the limit of the logistic

function approaches 0 and 1 while hyperbolic tangent approaches −1 and 1. The range changes

very little for both function where they asymptotically approach their limits, and finding

weights which minimize error for large inputs is difficult. To remedy this problem, data is

scaled to the domain of [0, 1] or [−1, 1] prior to training, and the choice of the interval depends

on the method of scaling and activation function. The effect of scaling input data to a specified

range allows the network to fully take advantage of the activation function. This step is known

Figure 3.3: Logistic and Hyperbolic Tangent Functions

21

as preprocessing, and the practical implementation is discussed in chapter seven.

3.6 Performance of a Neural Network
 The main point and take-away stressed within this chapter is the possibility of taking

some input in an n-dimensional space and transforming it into an m-dimensional space, which

means that neural networks can be used for classifying data. Whether this method is successful

or not is another question entirely. The success of a neural network depends on many different

factors relating to its structure, provided information, and optimization method.

 In practice, the choosing the structure of the network stems from theory or past

researcher’s success. Tuning the network for the domain specific problems involves

experimenting with choosing different parameters iteratively or exhaustively and influences

the success of a neural network. Within chapters five and six, two methods are proposed for

updating the weights of a neural network to successfully forecast the next day's closing price,

and chapter seven highlights the implementation of those optimization methods.

4 Review of Literature
The results and ideas presented within this paper would not be possible without the

contributions from researchers of the past, so this chapter presents previous research on market

analysis. The concepts of time series analysis and artificial neural networks have been detailed,

but the advantages and disadvantages of either one has not been discussed. Many questions

arise when forecasting short-term stock returns like is the stock market random or predictable?

Do time series analysis methods outperform machine learning methods? Which neural network

weight optimization method creates better forecasts? These questions are answered through

the work of other researchers, and all decisions made in chapter seven have been based upon

the successes and failure of others. When discussing financial forecasting, there are three

beliefs which researchers commonly hold towards the methods and results of for profit market

22

analysis.

One school of thought asserts that no one can achieve better than average accuracy in

predicting the direction or level of change in the stock market. Fama created the Efficient

Market Hypothesis to reflect this idea, and Jensen believes that there is concrete proof that the

Efficient Market Hypothesis holds. 15,16 The Efficient Market Hypothesis states that all markets

are extremely efficient, meaning all the information of a stock is already reflected in its price;

it’s impossible to profit from signal analysis and model building similar to the methods

presented within chapter two and three. This belief was widely debated within the financial

community in the 1970s, but many academic articles have found results contradicting this

theory. The Efficient Market Hypothesis is commonly used to argue that financial markets

follow a Random Walk Model; this is called the Random Walk Hypothesis.

Lo and MacKinlay tested the random walk hypothesis for weekly stock market returns by

comparing variance estimators derived from data sampled at different frequencies. They

concluded that the random walk model was strongly rejected for the entire sample period and

for all sub-periods for a variety of aggregate return indexes and size-sorted portfolios.17

Similarly, Lendasse, et. al., had the goal of breaking the Random Walk Hypothesis with non-

linear statistical methods, and they were able to create an artificial neural network model which

found non-linear relationships within the stock data.18 Hassan, Nath, and Kirley used Hybrid

Hidden Markov, artificial neural network, and genetic algorithm models with the goal of

15 Fama, Eugene F. "Efficient Capital Markets: A Review of Theory and Empirical Work." The Journal of Finance 25, no. 2

(1970): 383-417. http://dx.doi.org/10.2307/2325486.
16 Jensen, Michael C. "Some Anomalous Evidence Regarding Market Efficiency." Journal of Financial Economics 6, no. 2

(1978/06/01 1978): 95-101. http://dx.doi.org/http://dx.doi.org/10.1016/0304-405X(78)90025-9.
17 Lo, Andrew W. and A. Craig MacKinlay. "Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple

Specification Test." The Review of Financial Studies 1, no. 1 (1988): 41-66. http://dx.doi.org/10.1093/rfs/1.1.41.
18 Lendasse, A., E. de Bodt, V. Wertz, and M. Verleysen. "Non-Linear Financial Time Series Forecasting - Application to

the Bel 20 Stock Market Index." European Journal of Economic and Social Systems 14, no. 1 (01/01/Number 1/2000 2000):

81. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=ejs998204&site=eds-live.

23

forecasting three major stocks; their results indicated that the next day’s closing price could be

predicted within 2% of the actual value of the stock.19 Post Fama and Jensen literature indicates

that the Efficient Market Hypothesis fails to hold when machine learning methods are used and

stock markets do not follow random walks.

The second type of financial analyst encourages fundamental macroeconomic analysis of

financial environments and has the goal of finding correlations between exogenous variables.

This thesis does not address the macroeconomic methods that are used to forecast financial

markets. This type of analysis is synonymous with forecasting by humans, but not surprisingly,

humans are bias in their predictions. O’Connor, Remus, and Griggs had humans forecast

artificial time series to discover if the trend’s direction effected forecasting accuracy. They

determined that “People were found to be surprisingly inaccurate,” and that they had

significant difficulties in dealing with downward-sloping series; the study showed that the

direction of a time series’ trend makes a significant difference in the accuracy of a forecast.20

Mosteller et al. and Edmendson found that people are able to draw best fit lines which are

significantly close to a least-squares regression method, which says that people can assess

trends very well.21 In contrast, Collyer, Standley, and Bowater found that people tended to

merely bisect the scatter plots.22 People are less accurate and efficient when compared to

computer centered approaches.

19 Hassan, Md Rafiul, Baikunth Nath, and Michael Kirley. "A Fusion Model of Hmm, Ann and Ga for Stock Market

Forecasting." Expert Systems With Applications 33, no. 1 (2007): 171-80. http://dx.doi.org/10.1016/j.eswa.2006.04.007.
20 O'Connor, Marcus, William Remus, and Ken Griggs. "Going up-Going Down: How Good Are People at Forecasting

Trends and Changes in Trends?" Journal of Forecasting 16, no. 3 (1997): 165. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9708223194&site=eds-live.
21 Hoaglin, David C., Frederick Mosteller, and John W. Tukey. "Fitting Straight Lines by Eye." Exploring Data Tables,

Trends & Shapes (01// 2006): 225. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=74780855&site=eds-live.
22 Collyer, Charles E., Kerrie A. Stanley, and Caroline Bowater. "Psychology of the Scientist: Lxiii. Perceiving Scattergrams:

Is Visual Line Fitting Related to Estimation of the Correlation Coefficient?" Perceptual and Motor Skills 71, no. 2 (1990):

371-78. http://dx.doi.org/10.2466/PMS.71.5.371-378.

24

The tertiary view focused on applying time series analysis and machine learning methods

based upon rigorously proven mathematics with the intention of forecasting financial returns.

Time series analysis methods like ARIMA and GARCH along with machine learning concepts

like support vector machines, artificial neural networks, genetic algorithms, fuzzy logic, and

more all fall into this category. The results from numerous studies stemming from this school

of thought have evidence against the Efficient Market Hypothesis.

Concerning which method of analysis results in higher success, articles published across

many journals assert that machine learning models consistently outperform time series analysis

models. Hamzaçebi, Akay, and Kutav compared direct and iterative methods classifying with

neural networks against multiple methods. They asserted that ARIMA was the worst

performing of the seven methods they compared while the artificial neural network performed

the best.23 Yümlü, Gürgen, and Okay used four different models including EGARCH and

multi-layered neural network models to predict the ISE-XU-100 daily values, and over the

four-years of testing data, EGARCH performed the worst.24 Hassan, Nath, and Kirley

compared a hybrid neural network model against ARIMA when forecasting Apple, IBM, and

Dell’s stocks; they only tested over five weeks of data, but the neural network model beat

ARIMA.25 Hamzaçebi and Bayramoǧlu used ARIMA and artificial neural networks to forecast

daily closing prices of the ISE-XU-100, and the neural network produced significantly better

results. Even when neural network and time series analysis methods were combined into hybrid

models like in Roh’s paper, the pure neural network model outperformed the hybrid models.

23 Hamzaçebi, Coşkun, Diyar Akay, and Fevzi Kutay. "Comparison of Direct and Iterative Artificial Neural Network

Forecast Approaches in Multi-Periodic Time Series Forecasting." Expert Systems With Applications 36, no. Part 2

(1/1/2009 2009): 3839-44. http://dx.doi.org/10.1016/j.eswa.2008.02.042.
24 Yümlü, Serdar, Fikret S. Gürgen, and Nesrin Okay. "A Comparison of Global, Recurrent and Smoothed-Piecewise Neural

Models for Istanbul Stock Exchange (Ise) Prediction." Pattern Recognition Letters 26 (1/1/2005 2005): 2093-103.

http://dx.doi.org/10.1016/j.patrec.2005.03.026.
25 Hassan, Md Rafiul, Baikunth Nath, and Michael Kirley. "A Fusion Model of Hmm, Ann and Ga for Stock Market

Forecasting." Expert Systems With Applications 33, no. 1 (2007): 171-80. http://dx.doi.org/10.1016/j.eswa.2006.04.007.

25

26 The list of articles which detail neural networks forecasting more accurately than ARIMA,

GARCH, or similar methods are too numerous to list in this thesis. Since academic literature

has empirically determined the success of utilizing artificial neural networks, the focus changes

to determining the optimal neural network model for forecasting daily closing prices.

Most of the benefits of neural networks come from rigorously proven theorems about the

abilities and limitations of neural networks of different sizes. The most important theorem is

the Universal Approximation Theorem which says that any continuous function can be

uniformly approximated by a continuous neural network having only one internal hidden layer

and with an arbitrary continuous sigmoidal nonlinearity.27 Because of this theorem and from

the successes of other researchers, a single hidden layer neural network is used for financial

forecasting of short term stock returns.

There are two different approaches one may take when training and testing an artificial

neural network. The direct method trains and validates on historical data and does not update

the weights of the network during testing, while the iterative method differs by updating the

network to reflect new information after the day is forecasted. A Bayesian would say that any

new information would only benefit the accuracy of the network and should be utilized, but

what other researchers found contradicts this belief. Hamzacebi, Akay, and Kutay compared

direct and iterative methods by creating neural networks for both approaches and forecasting

stock returns; they determined that “the direct method is superior.” 28 Zhang supports these

26 Hyup Roh, Tae. "Forecasting the Volatility of Stock Price Index." Expert Systems With Applications 33 (1/1/2007 2007):

916-22. http://dx.doi.org/10.1016/j.eswa.2006.08.001.
27 Cybenko, G. "Approximation by Superpositions of a Sigmoidal Function." Mathematics of Control, Signals & Systems 2,

no. 4 (12// 1989): 303. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=71058362&site=eds-live.
28 Hamzaçebi, Coşkun, Diyar Akay, and Fevzi Kutay. "Comparison of Direct and Iterative Artificial Neural Network

Forecast Approaches in Multi-Periodic Time Series Forecasting." Expert Systems With Applications 36, no. Part 2

(1/1/2009 2009): 3839-44. http://dx.doi.org/10.1016/j.eswa.2008.02.042.

26

results with his conclusion that the direct method is better for forecasting.29 In contrast,

Weigend, Huberman, and Rumelhart showed that iterative forecasting results in better accuracy

when analyzing the sunspot data set.30 Intuitively, an iterative method would be necessary for

real time forecasting, but it may not matter for daily forecasting. For simplicity, the direct

method is used for forecasting daily stock returns and is explained thoroughly in chapter seven.

Artificial neural networks are trained with the specific goal of level estimation or

classification, where a estimation network forecasts the magnitude of a stock, and a classifier

network predicts the sign of change. Some investors only care about the direction of change,

others will want to know the magnitude of change, and the rest will want to know both. The

question naturally arises, which method is more accurate and does any success translate to

profit? Leung, Daouk, and Chen compared multiple models and developed threshold trading

rules with the goal of profiting. Their experiment suggested that the classification models

outperform the level estimation models in terms of predicting the direction of the stock market

movement and maximizing returns from investment trading.31 Kara, Boyacioglu, and Baykan

also developed two efficient models for classification and level estimation, and they concluded

that the classification model outperformed the level estimation model in terms of predicting

the direction of the stock market movement and maximizing returns from investment trading.32

The classification neural network method can be thought of as a specialized level

29 Zhang, Xiru. "Time Series Analysis and Prediction by Neural Networks." Optimization Methods and Software 4, no. 2

(01/01/Number 2/January 1994 1994): 151. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=ejs11809694&site=eds-live.

30Weigend, A S, B A Huberman, and D E Rumelhart, "Predicting Sunspots and Exchange Rates with Connectionist

Networks." Non-linear Modelling and Forecasting, SFI Studies in the Sciences of Complexity, Proceedings, 1992.
31 Leung, Mark T., Hazem Daouk, and An-Sing Chen. "Forecasting Stock Indices: A Comparison of Classification and

Level Estimation Models." International Journal of Forecasting 16 (1/1/2000 2000): 173-90.

http://dx.doi.org/10.1016/S0169-2070(99)00048-5.
32 Kara, Yakup, Melek Acar Boyacioglu, and Ömer Kaan Baykan. "Predicting Direction of Stock Price Index Movement

Using Artificial Neural Networks and Support Vector Machines: The Sample of the Istanbul Stock Exchange." Expert

Systems With Applications 38 (5/1/May 2011 2011): 5311-19. http://dx.doi.org/10.1016/j.eswa.2010.10.027.

27

estimation neural network because the level estimation network will forecast the magnitude

and indirectly the direction of change, but the classification network cannot do both. Since

artificial neural networks are especially good at forecasting nonlinear spikes and crashes, level

estimation is used for the models presented in chapter seven. The classification and level

estimation proficiency of these models are quantified in chapter eight and discussed in chapter

nine.

If profitability is the main goal, many researchers are able to forecast the sign of change

for daily closing prices significantly higher than the Efficient Market Hypothesis’ implied 50%

accuracy. Kara, Boyacioglu, and Baykan created support vector machine and artificial neural

network models for forecasting the ISE National 100 Index and achieved classification

accuracies of 71.52% and 75.74% on average, respectively. Diler used technical indicators to

train his back-propagation artificial neural network, and his results showed that the direction

of the ISE National 100 Index could be forecasted with a rate of 60.81%. 33 Rodriguez,

Gonzalez-Martel, and Sosvilla-Rivero used neural networks to determine the profitability of

trading in security markets. Their results indicated that the neural network based trading

strategies they developed, when applied to the General Index of the Madrid stock exchange,

are always superior to a buy-and-hold strategy for bear and stable markets; this was in the

absence of trading costs. 34

If used correctly, artificial neural networks are proficient at classification and level

estimation for many different domains, but they have disadvantages as well. Guresen and

Kayakutlu said that artificial neural networks are popular for complex financial markets, but

33 Diler, A I., “Predicting direction of ISE national-100 index with back propagation trained neural network.” Journal of

Istanbul Stock Exchange 7 (2003): 65-81.
34 Fernández-Rodrı́guez, Fernando, Christian González-Martel, and Simón Sosvilla-Rivero. "On the Profitability of

Technical Trading Rules Based on Artificial Neural Networks:. Evidence from the Madrid Stock Market." Economics

Letters 69 (1/1/2000 2000): 89-94. http://dx.doi.org/10.1016/S0165-1765(00)00270-6.

28

they claim that noise caused by changes in market conditions makes it hard to reflect the market

variables directly into the models without any assumptions. 35 Similarly, Kim asserted that

“ANN often exhibits inconsistent and unpredictable performance on noisy data,” and stock

markets are noisy systems. 36 Other issues with neural networks come from their ability to learn

trained data extremely well but this does not imply good results from testing with unseen data.

Ticknor says that one drawback of using standard back-propagation networks is the potential

for overfitting the training data set, which results in reduced accuracy on unknown test sets. 37

Another negative aspect of back-propagation trained neural networks is the amount of

parameters which must be optimized for gradient descent to converge to a local or global

minimum solution. For back-propagation, this includes the learning rate, hidden-layer nodes,

momentum, activation function, weight optimization method, and any additional parameters

that optimization method uses. Li, et. al compared extreme learning machines to back-

propagation trained neural networks. Back-propagation theory stresses that the parameters of

hidden-layer nodes needs to be greater than or equal to the input nodes which is 1,011 features

in their problem. They found that after several trials of running, it was impossible for their

servers to support that many nodes since back-propagation training required too much memory.

38 The authors proposed an extreme learning machine model for forecasting stock returns

instead of the traditional back-propagation neural networks.

The subject of debate within this paper is whether extreme learning machines offer a

35 Güreșen, Erkam and Gülgün Kayakutlu. "Forecasting Stock Exchange Movements Using Artificial Neural Network

Models and Hybrid Models." Intelligent Information Processing IV (01//2008): 129. http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edb&AN=76873933&site=eds-live.
36 Kim, Kyoung-jae. "Financial Time Series Forecasting Using Support Vector Machines." Neurocomputing 55 (1/1/2003

2003): 307-19. http://dx.doi.org/10.1016/S0925-2312(03)00372-2.
37 Ticknor, Jonathan L. "A Bayesian Regularized Artificial Neural Network for Stock Market Forecasting." Expert Systems

With Applications 40 (10/15/15 October 2013 2013): 5501-06. http://dx.doi.org/10.1016/j.eswa.2013.04.013.
38 Li, Xiaodong, Haoran Xie, Ran Wang, Yi Cai, Jingjing Cao, Feng Wang, Huaqing Min, and Xiaotie Deng. "Empirical

Analysis: Stock Market Prediction Via Extreme Learning Machine." Neural Computing & Applications 27, no. 1 (2016):

67-78. http://dx.doi.org/10.1007/s00521-014-1550-z.

29

significant advantage over the traditional method of forecasting with back-propagation trained

neural networks. The extreme learning machine model was originally proposed by Huang et

al. from Nanyang University in Singapore. 39 Literature detailing the application of extreme

learning machines is recent to this decade, and researchers attest to their proficient ability to

forecast in financial markets when compared with back-propagation neural networks. Milacic,

Vujovic, and Miljkovic purposed their research towards comparing extreme learning machines

and back-propagation neural networks to forecasting gross domestic product growth rate; the

authors determined that extreme learning machines had lower root-mean-squared error, higher

correlation between the actual and forecasted series, and that “The extreme learning machine

algorithm can be effectively utilized in GDP applications and particularly in the GDP

estimations.” 40

Extreme learning machines require significantly fewer computations and train faster than

back-propagation neural networks. Li, et al. compared hybrid radial basis function extreme

learning machines to back-propagation networks when they were applied towards using news

articles and the iterative level estimation method. Their results showed that the “RBF-ELM

achieved higher prediction accuracy and faster prediction speed when compared to BP-NN.”

41 Their article represents the new direction of machine learning and financial forecasting

because news articles are now being exploited for high-frequency trading. Incremental

learning, error reduced model selection, and online learning algorithms exist for extreme

learning machines have already been rigorously proven and provided by Feng, et al. and Liang,

39 Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme Learning Machine: Theory and Applications."

Neurocomputing 70 (1/1/2006 2006): 489-501. http://dx.doi.org/10.1016/j.neucom.2005.12.126.
40 Milačić, Ljubiša, Srđan Jović, Tanja Vujović, and Jovica Miljković. "Application of Artificial Neural Network with

Extreme Learning Machine for Economic Growth Estimation." Physica A: Statistical Mechanics and its Applications 465

(1/1/1 January 2017 2017): 285-88. http://dx.doi.org/10.1016/j.physa.2016.08.040.
41 Li, Xiaodong, Haoran Xie, Ran Wang, Yi Cai, Jingjing Cao, Feng Wang, Huaqing Min, and Xiaotie Deng. "Empirical

Analysis: Stock Market Prediction Via Extreme Learning Machine." Neural Computing & Applications 27, no. 1 (2016):

67-78. http://dx.doi.org/10.1007/s00521-014-1550-z.

30

et al. 42,43 The potential for improving the training and testing time of big data problems are

only starting to be explored, and more information can be found at the academic home page of

Guang-Bin Huang. 44,45

 Different beliefs regarding forecasting, methods of forecasting, and the results from

academic studies of financial markets have been presented within this chapter. The Efficient

Market and Random Walk Hypotheses are rejected in favor of the tertiary belief that machine

learning models can detect nonlinear patterns in stock market time series. The experiment

proposed within chapter seven, recorded in chapter eight, and discussed in chapter nine propose

that these nonlinear patterns can be useful for forecasting daily closing prices of blue chip

stocks. Recent research suggests that extreme learning machines could be significantly more

useful for short-term financial forecasting than back-propagation neural networks. The theory

of both optimization algorithms are presented in the following two chapters.

5 Error Back-Propagation with Stochastic Gradient Descent
5.1 Introduction

The most popular method for optimizing the weights of a neural network is called error

back-propagation. Back-propagation is a proven method and has been applied within many

different domains but most notably for deep learning. In March 2016, a neural network called

Alpha Go, which was trained with a deep learning method, beat Lee Sedol, a 9-dan

professional, at the board game Go without any handicaps. Many researchers thought that

beating a master Go player was still decades away, but AlphaGo has proven to be a master

42 Guorui, Feng, Huang Guang-Bin, Lin Qingping, and Robert Gay. "Error Minimized Extreme Learning Machine with

Growth of Hidden Nodes and Incremental Learning." IEEE Transactions on Neural Networks 20, no. 8 (2009): 1352-57.

http://dx.doi.org/10.1109/TNN.2009.2024147.
43 Liang, N. y., G. b. Huang, P. Saratchandran, and N. Sundararajan. "A Fast and Accurate Online Sequential Learning

Algorithm for Feedforward Networks." IEEE Transactions on Neural Networks 17, no. 6 (2006): 1411-23.

http://dx.doi.org/10.1109/TNN.2006.880583.
44 http://www.ntu.edu.sg/home/egbhuang/reference.html
45 http://www.ntu.edu.sg/home/egbhuang/index.html

31

against many internationally ranked players. The benchmark reinforced neural networks as a

powerful machine learning tool and error back-propagation is a typical method for training

neural network models.

Back-propagation itself does not specify the numerical method for updating the weight,

for gradient descent is the most common optimization method. Back-propagation uses the

gradient descent theory as a method of modifying the weights of a neural network in two stages.

For this thesis, they will be called the “Hidden layer stage” and the “Delta rule.” Both stages

are used to iteratively modify the weights of a neural network in small increments to reduce

the training error on a dataset.

5.2 Gradient Descent
Gradient descent is known as a steepest descent method for finding the minimum of a

function, which is used for finding the optimal weights for domain specific regression. The

gradient is a generalization of the derivative, and if 𝑓(𝑤1 , … , 𝑤𝑛) is a differentiable, real-valued

function of several variables, then its gradient is the vector whose components are the 𝑛 partial

derivatives of 𝑓. In chapter three, a requirement for the activation function was differentiability

and this was because of gradient descent’s preconditions.

 More generally, if the multi-variable function 𝐹(𝑥) is defined and differentiable in a

neighborhood of a point 𝑊, then 𝐹(𝑊) decreases fastest if one goes from 𝑊 in the direction

of the negative gradient of 𝐹 at 𝑊, denoted −∇𝐹(𝑊). For small enough 𝜂, then it follows that

𝑊𝑛+1 = 𝑊𝑛 − 𝜂∇𝐹(𝑊𝑛) implies 𝐹(𝑊𝑛+1) ≤ 𝐹(𝑊𝑛) for 𝑛 ≥ 0. Within the machine learning

community, 𝜂 is called the learning rate because the constant directly effects the speed at which

the network updates its weights.

Basically, the gradient is subtracted to optimally minimize the function and ultimately,

minimize the weights 𝑊. If one considers a sequence of values 𝑊0, 𝑊1, … , 𝑊𝑛 such that

32

𝑊𝑛+1 = 𝑊𝑛 − 𝜂𝑛∇𝐹(𝑊𝑛), 𝑛 ≥ 0, then 𝐹(𝑊0) ≥ 𝐹(𝑊1) ≥ 𝐹(𝑊2) …, and hopefully the

sequence will converge to a local minimum.. In special cases where 𝐹 is a convex function, all

local minima are global minima, so the gradient converge to the global minimum, which is

best weight optimization possible.

 The letter 𝑊 was used in the previous paragraph to denote the weights of a neural

network, which is optimized by using a twostep process involving a cost function and the

equation of the previous paragraph. The loss function is constructed for measuring the error of

a neural network’s forecasts on the training set. Given forecasts 𝑦̂, real values 𝑦, and weights

𝑊, then the loss function is expressed as

𝐿(𝑦̂, 𝑦, 𝑊) =
1

2
‖𝑦̂ − 𝑦‖2

2.

 The benefit of using this function is that the
1

2
 term is canceled by the exponent when

the gradient is computed. The next step updates the weights by computing the ∇𝐿𝑊𝑖

individually for the weights of the network, which is explained further in the next section.

𝑊𝑖+1 = 𝑊𝑖 − 𝜂∇𝐿𝑊𝑖

5.3 Hidden Layer Stage and the Delta Rule
Back-propagation is a supervised learning method, so a neural network learns the data

set iteratively. The first step involves taking a training example and propagating it though the

network to compute the actual error term 𝛿𝑗 = (𝑔(𝑥) − 𝑦) of the output nodes. This process is

done as explained in chapter 3 where the weights of a neural network are randomly assigned

from an interval, and the output of all neurons towards the output nodes are computed to

receive the classification. For multiple nodes, the actual error terms would be 𝛿1, 𝛿2, … , 𝛿𝑗, and

using an superscript signifies which layer the delta is from. For example, if 𝛿𝑗
3 refers to the

output layer, then 𝛿𝑗
2 would refer to actual error of the last hidden layer at node 𝑗.

33

 The back-propagation process starts when a layer’s deltas are calculated using the next

layer’s deltas. If ⊙ represents the element-wise multiplication (Hadamard product), 𝑙 refers to

the layer, 𝑎𝑙 refers to the activation of a later, ∗ represents the dot product, and 𝑤𝑙 are the

weights, then process of computing these error terms 𝛿𝑗
𝑙 is described as

𝛿𝑗
𝑙 = ((𝑤𝑙)𝑇 ∗ 𝛿𝑗

𝑙+1) ⊙ (𝑎𝑙 ⊙ (1 − 𝑎𝑙))

 Finally, this result is used to calculated the gradient of the loss function for each weight

within the network.

𝜕𝐿

𝜕𝑤𝑗
𝑙 = 𝛿𝑙+1 ∗ 𝑎𝑙

 The gradients of these weights are used within the gradient descent algorithm to modify

the weights and achieve a local minimum or global minimum. The point of this process is to

determine how much error each individual weight contributed, and modify them in the

direction negative to the gradient proportionally to the error each weight contributed.

5.4 Optimizing Learning
There are a few parameters to choose like the learning rate 𝜂, momentum 𝜔,

regularization constant 𝛼, and the batch size for stochastic gradient descent. Depending on

their values, this will decide the success of the neural network. These parameters must be found

empirically or exhaustively by varying the parameters across numerous training sessions and

recording the best set of parameters.

From previous experiments, if the learning rate is too fast, then gradient descent diverges,

but if the learning rate is too slow, then gradient descent will not converge to an optimal

solution; as mentioned in section 5.2, the learning rate 𝜂 can be adaptive depending on how

quickly the loss function decreases. The number of hidden layer nodes can be chosen according

to Kolmogorov-Arnold Representation Theorem as mentioned previously in chapter 3.

34

The two-phase method proposed within section 5.2 and 5.3 is typically further optimized

by adding a regularization term to the loss function and a momentum to the weight update

function. The regularization term penalizes larger weights, and tries to create a set of weights

that fit the training set but possess the smallest Euclidian norm possible. Regularization is used

to solve the problem of overfitting a training set because if the neural network is optimized

extremely well for the data set, then the neural network will not perform as well on data it has

not seen before. In this sense, the goal of regularization is to increase the generalization of the

neural network. To achieve this goal, the term 𝛼‖𝑊‖2
2 is added to the loss function. The

parameter 𝛼 is found experimentally by creating, testing the neural network, and varying 𝛼.

𝐿(𝑦̂, 𝑦, 𝑊) =
1

2
‖𝑦̂ − 𝑦‖2

2 + 𝛼‖𝑊‖2
2

 The momentum term increases the speed of convergence of the neural network, which

can help the gradient descent optimization process find a better solution (lower minimum). To

achieve faster convergence, the difference between the previous sets of weights Δ𝑤 along with

a momentum constant 𝜔 is used to accelerate the learning process.

𝑊𝑖+1 = 𝑊𝑖 − 𝜂∇𝐿𝑊𝑖
+ 𝜔Δ𝑊

At this point, the entire algorithm for gradient descent has been described, but this is not

exactly how the back-propagation neural networks were optimized for this thesis. The only

way that “Stochastic gradient descent” differs from regular gradient descent is that training

examples are randomly chosen from the training set in batches. A concise software

implementation of this optimization process is given within section 5.5.

5.5 Algorithm
Given a training set and set of weights, there are two phases for training a neural network:

propagation and weight update.

35

Phase 1: Propagation

• Forward propagate the training input through the neural network to generate the

network’s output values.

• Backward propagate all the propagation’s output activations through the neural

network for generating the deltas of all output and hidden neurons.

Phase 2: Weight Update

• For each weight, the weight’s output delta and input activation are multiplied to find

the gradient of the weight.

• The weight is updated by subtracting a percentage of the weight’s gradient, and a new

weight is formed for the next iteration.

6 Extreme Learning Machines
6.1 Introduction
 There is always a need for new artificial intelligence models, which have unique

features and are promising for classification and regression. In 2004, Guang-Bin Huang, et. al,

proposed a new approach to neural networks and coined its name as extreme learning machine.

46 Although they are new, extreme learning machines and hybrid models have outperformed

back-propagation in numerous benchmarks. The difference between the two methods of

regression, back-propagation and extreme learning machines are not immediately apparent, but

the new algorithm has been shown to learn featured data quicker, with better accuracy, and

better generalization than comparative methods.

 An extreme learning machines is a type of feed-forward neural network that can be

used for regression, classification, and multi-network analysis. The structure of the neural

46 Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. "Extreme Learning Machine: Theory and Applications."

Neurocomputing 70 (1/1/2006 2006): 489-501.

36

network follows the same structure as explained within chapter three where there are three

layers: input layer, hidden layer, and output layer. Similarly, the weights and connections

between nodes are the same as in chapter 3. The difference is, extreme learning machines are

initialized with random weights within the input layer, and they are never modified. This

method creates independence between the input weights and the output weights of the neural

network and allows one to solve an equation for the output weights by linear least squares.

 The purpose of this chapter is to present the theory of extreme learning machines and

provide rigorous theory along with a nonprofessional’s interpretation of the information within

the chapter. Within section 6.2, the notation of matrices, Moore-Penrose generalized inverse,

and minimum norm least square solutions of general linear systems are provided. Section 6.3

provides a detailed description of the Extreme Learning Machine Algorithm. Section 6.4

discusses forecasting with extreme learning machines. All formulas and theorems are derived

from Guang-Bin Huang, et. al. Next, section 6.2.1 will introduce the notation used throughout

this chapter.

6.2 Essential Concepts

6.2.1 Linear Algebra Notation
This section is intended for people who know very little about the mathematical notation of

linear algebra, and this notation consists of capital letters, the transpose operator, subscripts,

and hat notation.

• A upper case letter represents a 𝑛𝑥𝑛 square matrix of the form:

𝐴 = [

𝑎1,1 … 𝑎1,𝑛

⋮ ⋱ ⋮
𝑎𝑛,1 … 𝑎𝑛,𝑛

]

• A lower case letter represents a column vector matrix of the form:

37

𝑤 = [

𝑤1,1

⋮
𝑤𝑛,1

]

• The transpose operator swaps row and column entries of a matrix and is denoted by a

superscripted T:

𝑤𝑇 = [𝑤1,1 … 𝑤1,𝑛]

• Matrices with subscripts are used to imply a necessity to iterate computations. Subscript

notation is used with the intention of avoiding row and column notation from linear

algebra. The matrices are denoted by

𝑤𝑖 = [

𝑤1

⋮
𝑤𝑛

]

• Hat notation is used to distinguish between the theoretical value and an approximated

value of the same variable. For example, 𝛽 is the theoretical (exact) value while 𝛽̂ is

an estimation of the theoretical value.

Lastly, 𝑥𝑖 denotes the ELM inputs, 𝑡𝑖 denotes the target value, 𝐻 denotes the hidden layer

matrix, 𝑤𝑖 denotes the weights between the input and hidden layers, and 𝛽𝑖 denotes the weights

between the hidden and output layers.

6.2.2 Moore-Penrose Generalized Inverse
The Extreme Learning Machine problem is posed as solving a single linear algebra

equation 𝐻𝛽 = 𝑇, where H represents the hidden layer matrix, and T is the target values for

forecasting. The goal is to find a matrix generalized inverse 𝐻† for the least squares solution

𝛽̂ = 𝑇𝐻†.

Consider the linear system

𝐴𝑥 = 𝑦

38

where 𝐴 is a 𝑚 × 𝑛 matrix and 𝑦 is in the range space of 𝐴, written 𝑦 ∈ 𝑅(𝐴). If A is a

nonsingular matrix, then 𝑥 = 𝑦𝐴−1 is the exact solution to 𝐴𝑥 = 𝑦. If 𝐴 is singular, then the

Moore-Penrose pseudoinverse is used to compute a least squares solution of the linear system;

this is the likely case within machine learning.

 Definition 6.1: A matrix 𝐺 of order 𝑛 × 𝑚 is the Moore-Penrose generalized inverse

of a matrix 𝐴 of order 𝑚 × 𝑛, if the following conditions are met

𝐴𝐺𝐴 = 𝐴

𝐺𝐴𝐺 = 𝐺

(𝐴𝐺)𝑇 = 𝐴𝐺

(𝐺𝐴)𝑇 = 𝐺𝐴

 The same methodology can be applied to the system 𝐻𝛽 = 𝑇 to receive the least

squares solution 𝛽̂ = 𝑇𝐻†. The variables 𝐴, 𝑥, and 𝑦 are used in section 6.2.2, but the reader

should note that 𝐻, 𝛽, and 𝑇 can be used without loss of generality. For simplicity, let 𝐴† denote

the pseudoinverse in section 6.2.3.

6.2.3 Minimum Norm Least Square Solution of General Linear Systems
Modeling real life phenomena with linear algebra is useful, but an exact solution to the

linear system may not exist. Also, the dimensionality of the linear system might be so large

that estimating is the only option, which requires solving a linear system for the least-squares

solution.

For a general linear system 𝐴𝑥 = 𝑦, we say that 𝑥̂ is a least-squares solution if

‖𝐴𝑥 − 𝑦‖ = min‖𝐴𝑥 − 𝑦‖

for all 𝑥, where ‖∙‖ is the Euclidean norm.

 Definition 6.2: 𝑥0 ∈ ℝ𝑛 is said to be a minimum norm least-squares solution of a linear

system 𝐴𝑥 = 𝑦 if for any 𝑦 ∈ ℝ𝑚

39

‖𝑥𝑜‖ ≤ ‖𝑥‖, ∀𝑥 ∈ {𝑥: ‖𝐴𝑥 − 𝑦‖ ≤ ‖𝐴𝑧 − 𝑦‖, ∀𝑧 ∈ ℝ𝑛}

 The above definition is a mathematical way of saying 𝑥0 is the minimum norm least-

squares solution of a linear system 𝐴𝑥 = 𝑦 if 𝑥0 has the smallest Euclidian norm among all the

least-squares solutions.

 The significance of this definition is not intuitive, but in simply put, having a minimum

norm least-squares solution 𝛽̂ will improve the generalization of a neural network. Recall, this

was like the regularization term 𝛼‖𝑤‖2
2 included within the stochastic gradient descent

algorithm. The purpose of the regularization term is to penalize the size of the weights, which

is very similar to solving for the minimum norm least-squares solution 𝛽̂.

 Theorem 6.1: Let there exist a matrix 𝐺 such that 𝐺𝑦 is a minimum norm least-squares

solution of a linear system 𝐴𝑥 = 𝑦. Then it is necessary and sufficient that 𝐺 = 𝐴†, the Moore-

Penrose generalized inverse of a matrix 𝐴.47

 The minimum norm solution and generalized inverse along with the notation presented

previously, are used to develop the theory and algorithms for creating an extreme learning

machine in section 6.3.

6.3 Extreme Learning Machine: Approximation Problem
Extreme learning machines take advantage of the independent weight matrices separated

by the hidden layer so that a minimum least-squares solution 𝛽̂ is found between the hidden

and output layers. The solution is deterministic, results in a fast training algorithm, and the

number of hidden layer nodes 𝑁 ≤ 𝑁, the number of training samples.

47 Serre, D. "Matrices Theory and Applications." Graduate Texts in Mathematics - New York, no. 216 (// 2002): ALL.

http://ezproxy.gardner-

webb.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edsbl&AN=RN120721940&site=eds-live.

40

For N arbitrary distinct samples (𝑥𝑖 , 𝑡𝑖) where 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛] ∈ ℝ𝑛 and 𝑡𝑖 =

[𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚] ∈ ℝ𝑚, extreme learning machines with 𝑁 hidden neurons and activation

function 𝑔(𝑥) are mathematically modeled as

∑ 𝛽𝑖𝑔(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖) = 𝑜𝑗 𝑓𝑜𝑟 𝑗 = 1, … , 𝑁.

𝑁̃

𝑖=1

where 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑛]𝑇 is the weight vector connecting the 𝑖𝑡ℎ hidden neuron and the

input neurons, 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖𝑚]𝑇 is the weight vector connecting the 𝑖𝑡ℎ hidden neuron

and the output neurons, 𝑏𝑖 is the threshold of the 𝑖𝑡ℎ hidden neuron, and 𝑤𝑖 ∙ 𝑥𝑗 denotes the

inner product of 𝑤𝑖 and 𝑥𝑗. As mentioned earlier in chapter 3, the activation function for the

output layer is the linear function 𝑓(𝑥) = 𝑥. The bias has not been previously introduced, but

in a two-dimensional space, the bias is the option to offset the y-intercept of a decision

boundary.

 A single hidden-layer feed-forward neural network with 𝑁 hidden neurons and

activation function 𝑔(𝑥) can approximate these 𝑁 samples with zero error, implying

∑ ‖𝑜𝑗 − 𝑡𝑗‖𝑁
𝑖=𝑗 = 0. There exist 𝛽𝑖, 𝑤𝑖 , and 𝑏𝑖 such that

∑ 𝛽𝑖𝑔(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖) = 𝑡𝑗 𝑓𝑜𝑟 𝑗 = 1, … , 𝑁

𝑁̃

𝑖=1

.

The above 𝑁 equations are written compactly as

𝐻𝛽 = 𝑇

where 𝐻 is called the hidden layer output matrix of the neural network. The 𝑖𝑡ℎ column of 𝐻

is the 𝑖𝑡ℎ hidden neuron’s output vector with respect to the inputs 𝑥1, 𝑥2, … , 𝑥𝑁.

𝐻(𝑤𝑁̃ , 𝑏𝑁̃ , 𝑥𝑁) = [
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥1 + 𝑏𝑁̃)

⋮ ⋱ ⋮
𝑔(𝑤1 ∙ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑤𝑁̃ ∙ 𝑥𝑁 + 𝑏𝑁̃)

]

𝑁×𝑁̃

41

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝑁̃

𝑇
]

𝑁̃×𝑚

𝑇 = [
𝑡1

𝑇

⋮
𝑡𝑁̃

𝑇
]

𝑁×𝑚

 From the previously stated theorem 6.1, the minimum norm least-squares solution of

the above linear system is

𝛽̂ = 𝐻†𝑇

 As a result, Huang, et al. claim that the following properties hold:

1. Minimum training error. The special solution 𝛽̂ satisfies the equation

‖𝐻𝛽̂ − 𝑇‖ = ‖𝐻𝐻†𝑇 − 𝑇‖ = min
𝛽

‖𝐻𝛽 − 𝑇‖

2. Smallest norm of weights and best generalization performance.

3. The minimum norm least-squares solution of 𝐻𝛽 = 𝑇 is unique, which is 𝛽̂ = 𝐻†𝑇.

6.4 Extreme Learning Machine Algorithm
The algorithm for training the extreme learning machine for forecasting is given below.

 Given a training set ℵ = {(𝑥𝑖 , 𝑡𝑖)|𝑥𝑖 ∈ ℝ𝑛, 𝑡𝑖 ∈ ℝ𝑚 , 𝑖 = 1, … , 𝑁}, activation function

𝑔(𝑥), and hidden neuron number 𝑁,

• Assign arbitrary input weight 𝑤𝑖 and bias 𝑏𝑖, 𝑖 = 1, … , 𝑁

• Calculate the hidden layer output matrix 𝐻.

• Calculate the output weight 𝛽:

𝛽 = 𝐻†𝑇

where 𝐻, 𝛽, and 𝑇 are defined as above in section 6.3.

42

 Simply speaking, 𝛽 provides the domain specific regressions by being the best solution

between the hidden-matrix 𝐻, which encodes the features of a data set, and the target values.

Within stock market forecasting, the 𝐻 matrix would encode the features, ratios, or any

relevant correlations between the high, open, low, close, volume, or any other inputs into the

model. The target matrix is the closing values of the stock offset forward one day, and the 𝛽

weights would provide the best method to transform 𝐻 into 𝑇. The implementation of stock

market forecasting with extreme learning machines and stochastic gradient descent is described

in chapter 7.

7 Methods
7.1 Introduction
 While the theory of artificial neural networks is based upon mathematics, the

application is implemented with programming languages. With computer’s rising computation

power and falling cost, the average person has access to hardware that can be applied towards

big data problems. When considering market analysis, the stock market is a big data problem

since there are decades of daily opening, high, low, closing, adjusted closing, and volume

values are taught to artificial neural networks. The market information is often used to create

any number of technical indicators. Without algorithmic efficiency, a program using this data

may never finish because of the extensive computation and underlying architecture of the

neural network. Thankfully, there are efficient implementations of the extreme learning

machine models and back-propagation algorithms within multiple different languages.

 Both packages are used to obtain results within this thesis are free, open source, and

written for the Python programming language. The first package is called hpelm which stands

for high-performance extreme learning machine, and the package is modeled after the

description of extreme learning machines from Guang-Bin Huang of Nanyang Technical

43

University. 48,49 Within hpelm there is support for graphics card accelerated training, iterative

validation, multiple transfer functions, batch processing, and file operations which are

described within the author’s academic paper. 50 Overall, the package provides a complete tool

set for neural network regression with financial time series. The second package is called

Multi-layer-Perceptron Regressor, and the package is a subset of machine learning packages

from scikit-learn. There is support for multiple different optimization methods including

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, adam, and stochastic gradient decent.

Scikit-learn provides the necessary code for predicting financial time series. 51

7.2 Combining Time Series Analysis and Artificial Neural Networks
 When using artificial neural networks for regression, the organization of the data

impacts how features are learned. This presents a common optimization question; is there a

sufficient or necessary condition for artificial neural networks to find an optimal solution? The

answer is that there is no condition which will guarantee that an artificial neural network will

perform well on a training or testing set of data, and regression using artificial neural networks

is empirical. Luckily, there are twenty years of studies which demonstrate successful methods

of financial forecasting; similar theories and methods were adapted for this thesis and are

explained in detail below.

 For a neural network to be consistently successful at forecasting, the methods of

training and testing need to be identical. Within the real world, only previous historical stock

data is available to analysts, so when training a neural network, a similar methodology should

be followed. Inputs to the artificial neural network are modeled as sequential previous days,

48 https://pypi.python.org/pypi/hpelm
49 http://www.ntu.edu.sg/home/egbhuang/
50 Akusok, A., K. M. Björk, Y. Miche, and A. Lendasse. "High-Performance Extreme Learning Machines: A Complete

Toolbox for Big Data Applications." IEEE Access 3 (2015): 1011-25. http://dx.doi.org/10.1109/ACCESS.2015.2450498.
51 http://scikit-learn.org/stable/index.html

44

and target values are the future closing prices. For example, if the inputs to the neural network

are days 1, 2, 3, 4, and 5, then the corresponding target value the network should learn to

predict is the 6th day. The next sections describe how data was structured for forecasting.

7.3 Structuring of Data
 Data structuring is an important topic within computer science and with big data

collections, correct data structuring is essential. There are many different types of data

structures like stacks, lists, queues, linked-lists, dictionaries, and more which are chosen

depending on the process to be modeled. The list data structure is a continuous sequence of

elements stored within the memory of a computer like shown below.

𝑙𝑖𝑠𝑡 = [𝑒1, 𝑒2, … , 𝑒𝑀]

 The list above is the form of an individual training, validation, or testing sample. The

training, validation, and testing sets must follow a two dimensional list with the first dimension

representing the whole structure and the second dimension representing the specific training,

validation, or testing sample. When applied to an artificial neural network with 𝑀 input nodes,

a set of 𝑆 samples and arbitrary elements 𝑒 is represented as:

𝑖𝑛𝑝𝑢𝑡 = [[𝑒1, … , 𝑒𝑀]1, [𝑒1, … , 𝑒𝑀]2, … , [𝑒1, … , 𝑒𝑀]𝑆]

While this list consists of 𝑀 features and 𝑆 samples, financial forecasting logically

requires the neural network to have an output dimension of 1; this is the next day’s closing

price. Using a similar naming convention, let the dimensionality of the output layer be 1. Then

the target set is represented as:

𝑡𝑎𝑟𝑔𝑒𝑡 = [[𝑒1]1 , [𝑒1]2, … , [𝑒1]𝑆]

 The historical values are structured this way so that an iterative training method is

possible. The first element of the input list corresponds to the first element of the target list,

and the training, validating, and testing of neural networks are iteratively computed using these

45

lists. The mathematics term “set” will be used instead of the programming term “list,” but

within the context of this paper, they refer to the same objects. Within the next section, the

methods of acquiring, scaling the historical data, and formatting are explained.

7.4 Acquiring, Preprocessing, and Formatting Data
 A significant part of regression with neural networks involves the creation or acquiring

of specially formatted data sets for training, validating, and testing. There are well known sets

like the MNIST Handwriting and Digit database, which is applied for classification within

images with handwritten words. Within financial forecasting, there are no such extensive

databases because of the variability of features which can be used for regression. The training,

validation, and testing sets must be acquired, formatted, and scaled by the individual.

 Historical stock data can be downloaded from the finance sections of popular websites

like yahoo.com in the form of .csv files, which stands for comma separated values. The .csv

file’s date range can be specified prior to downloading, and the file contains the date, open,

high, low, close, volume, and adjusted close in columns. To perform one testing cycle, .csv

files for training, validation, and testing need to be downloaded and must be temporally

independent. Within this paper, the training set represents all available data from the stock’s

start to about four years ago. The next two years are used for the validation set, which is a set

for optimizing the parameter selection process. Finally, the test set is taken to be the last two

years available. The open, high, low, close, and volume are parsed into their own lists. Before

the five lists are transformed into a training set, the individual lists are linearly scaled.

 Min-Max Scaling takes a feature’s interval, [𝑚𝑖𝑛, 𝑚𝑎𝑥], and scales it into a new

interval, [𝑛𝑒𝑤𝑀𝑖𝑛, 𝑛𝑒𝑤𝑀𝑎𝑥]. The sigmoidal and hyperbolic tangent functions have specific

ranges, and typically, a feature is scaled so that it lies within [0, 1] or [−1, 1]. The minimum

46

and maximum values used for linear scaling come from the training .csv. Let 𝑥′ represent the

scaled value and 𝑥 represent a value of the stock; the equation for Min-Max Scaling is

𝑥′ =
𝑥 − 𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

 Scaling the features of the stocks helps to reduce the interference of large inputs when

compared to smaller inputs and provides faster convergence of the back propagation algorithm.

Empirically, scaling the features results in more accurate predictions because the neural

network tends to be less sensitive to sharp changes, reducing the frequency of over forecasting.

 Once scaled, the lists are allocated in a special order to represent training, validating,

or testing sets. For the neural network to be able to learn the method of prediction, each

corresponding value between the input and target lists must be offset. Let “e” be element, “s”

be sample, “o” be open, “h” be high, “l” be low, “v” be volume, “c” be close, and let 25 and 1

be the dimensionality of the input and target layer respectively.

Sample Input List Target List

1 [𝑜1, ℎ1, 𝑙1, 𝑣1, 𝑐1 … , 𝑜5, ℎ5, 𝑙5, 𝑣5, 𝑐5] [𝑐6]

2 [𝑜2, ℎ2, 𝑙2, 𝑣2, 𝑐2 … , 𝑜6, ℎ6, 𝑙6, 𝑣6, 𝑐6] [𝑐7]

3 [𝑜3, ℎ3, 𝑙3, 𝑣3, 𝑐3 … , 𝑜7, ℎ7, 𝑙7, 𝑣7, 𝑐7] [𝑐8]

.

.

.

.

.

.

.

.

.

𝑚 [𝑜𝑚−4, ℎ𝑚−4, 𝑙𝑚−4, 𝑣𝑚−4, … , 𝑜𝑚 , ℎ𝑚 , 𝑙𝑚 , 𝑣𝑚 , 𝑐𝑚] [𝑐𝑚+1]

47

Table 1: A software representation of training and testing a model

7.5 Extreme Learning Machine Algorithms

7.5.1 Model Selection
To forecast stock data, a model must be created, trained, and validated. The first step

is to initialize an extreme learning machine object and add hyperbolic tangent nodes too the

model. The training set created by the method presented in section 7.4 is added to a queue for

training. The model is then trained and validated by first solving the 𝐻𝛽 = 𝑇 equation, and

then the actual error is iteratively computed for many models at different node step sizes; the

most accurate amount of nodes is chosen for the testing model. This process takes about two

seconds to complete.

7.5.2 Testing
 Testing the Extreme Learning Machine model involves loading the testing sets and

calling the predict method. The prediction is done in a scaled form, so the known training set

Figure 7.1: A visual representation of table 1, which is

the financial forecasting model

48

max and min along with the scaling interval boundaries are used to finish the forecasting

process.

7.6 Stochastic Gradient Descent Algorithms

7.6.1 Model Selection
 For consistency, the exact same data sets that were created for the Extreme Learning

Machine models are used for the Back Propagation models, and the .hdf5 files are simply

copied to the local directory of the Back Propagation scripts. Scikit-learn does not support

reading in .hdf5 files, so they have to be loaded in memory using the h5py package. There are

four parts of data (training input and target, validation input and target), and they are

concatenated together into one input and one target array. After initializing a multi-layer

perceptron model, those array are used for training and validating the model.

 Because of the numerous adjustable parameters and excessive training time, selecting

a model trained with back-propagation is time consuming. Researchers have resorted to

experimenting with different learning rates, iterations, momentums, hidden layer sizes, and

more to find an acceptable model. The parameters listed within the next section were obtained

by running a script hundreds of times and observing the changes while varying parameters. In

comparison, a researcher only has to optimize the hidden layer nodes and regularization

constant 𝛼 for an extreme learning machine.

7.6.2 Testing
 Testing a neural network trained with back-propagation follows a similar form to

testing of an extreme learning machine. The testing input set is used to receive a prediction

array 𝑦, and it’s rescaled using the knowledge of the max, min, and scaling interval from the

training set. Following the prediction, the error and graphs can be computed for analysis, which

is explained further within chapter eight.

49

7.6.3 Scripts
The four scripts that were written for stock market forecasting are listed in full at the end

of the appendix. The scripts are called “elm_model.py,” “mlp_model.py,”

“train_set_generator.py,” and “test_set_generator.py.” The first two files create, train, test, and

compute error for their respective models. The last two of the files are used to create the data

sets which the first two files use.

8 Results
8.1 Design of Training, Validation, and Testing Sets

Table 2: The date rages and samples for the training, validation, and testing sets

 The training, validation, and testing sets have their own role in developing accurate

predictions. The neural network learns the training set, and by modifying the weights between

different layers teaches the underlying features of the process. Part of the training set is

reserved for validation, and the validation set allows for model selection by computing the

actual error post-training and exhaustively searching for the optimal set of parameters. Extreme

learning machines use the validation set for optimizing the number of nodes in the hidden layer,

while stochastic gradient descent uses the validation set to determine when to stop training the

neural network. The testing set assesses the neural network's ability to forecast data the model

has never seen before. These three sets are required to be disjoint to receive credible results.

For example, a professor would not give his student all the questions and answers to a test prior

to the actual test.

 Usually, the total amount of available data is divided into 80% for training and 20% for

testing, where the training set is further divided into 80% for training and 20% for validation.

Set Number of Samples Start Date End Date

Training ~6000-12000

(varies)

Earliest available

day

2/14/2013

Validation 498 2/15/2013 2/14/2015

Testing 498 2/15/2015 2/13/2017

50

In contrast, the training set is composed of all available data before the last four years. The

validation and testing sets are composed of the most recent four years of data divided into two

year blocks. Data for neural networks is usually scarce or has to be created from scratch. This

experiment is designed to take advantage of the publicly available information. The table below

summarizes the calendar ranges and sample sizes of the training, validation, and testing sets.

8.2 Error Metrics
 The only way to measure the success of a neural network is to compare results to

previous experiments. Previous experiments are useful for estimating parameters and realizing

the current ceiling of success. Researchers measure important components of neural networks

to decide which model is better suited for its domain. The error measurements that were used

include the number of nodes, training time, mean square error, and two “hit or miss” ratios.

The number of nodes corresponds to nodes within the hidden layer. The training time is the

amount of time the script takes between beginning and ending the training phase. Mean squared

error is the average of squared deviation from the real value of the stock. For 𝑛 testing samples,

real values 𝑦𝑖, and forecasted values 𝑦𝑖̂, mean-squared error is expressed as

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑛

𝑖=1

 While mean squared error is useful for comparisons between different models, MSE

does not measure the daily direction of change for a stock, so two other “hit or miss” methods

were adopted for the purpose of better defining a successful daily forecast; this is discussed

further in section 9.2.

51

8.3 Tabled Results
The exact parameters and results from training, validating, and testing are listed below.

The graphs of the real stock values plotted against the running daily forecasts are within the

appendix.

Single layer Perceptron
Optimization: Stochastic Gradient
Descent

Nodes 40

Activation

Function
𝑡𝑎𝑛ℎ(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Learning rate 𝜂 = 0.001

Momentum 𝜔 = 0.9

L2

Regularization

term

𝛼 = 0.001

Extreme Learning Machine
Optimization: Least Squares

Nodes Dependent on

Validation

Activation

Function
𝑡𝑎𝑛ℎ(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

L2

Regularization

term

𝛼 = 1

Back-propagation with Stochastic Gradient Descent Results: 25 input nodes, 1 output node

Stock Nodes

(tanh 𝑥)

Training Time

(sec)

Mean Squared

Error

Hits/Misses

(Type 1)

Hits/Misses

(Type 2)

APPL 40 17.7 4.47 283/214 57/82

WMT 40 23.6 0.339 349/148 123/69

BAC 40 61.8 0.06 312/185 91/78

F 40 35.3 0.036 324/173 71/93

KO 40 34.2 0.07 327/170 82/83

Average 40 35.5 .995 64.2% 50.4%

Extreme Learning Machine Results: 25 input nodes, 1 output node

Stock Nodes

(tanh 𝑥)

Training Time

(sec)

Mean Squared

Error

Hits/Misses

(Type 1)

Hit/Misses

(Type 2)

APPL 497 1.44 1.454 372/125 124/69

WMT 890 1.63 0.267 370/127 146/51

BAC 440 1.5 0.039 356/141 116/77

F 276 1.38 0.027 366/131 128/58

KO 590 1.91 0.063 363/134 134/45

Average 538.6 1.57 0.37 73.5% 68.4%

52

9 Discussion
9.1 Nodes, Training Time, Mean-Squared Error

Model Type Nodes

(tanh 𝑥)

Training Time

(sec)

Mean-Squared

Error (MSE)

Hits/Misses

(Type 1)

Hits/Misses

(Type 2)

BP-NN 40 35.5 .995 64.2% 50.4%

ELM 538.6 1.57 0.37 73.5% 68.4%

As seen from the table, extreme learning machines used significantly more nodes than

the back-propagation with an average of 13 times more nodes used. The number of nodes for

the back-propagation model was chosen based upon the general rule of using 2𝑛 + 1 hidden-

layer nodes for 𝑛 input nodes. Following this guideline, the number of nodes should have been

51, but better generalization was observed at 40 nodes. When a node number similar to the

amount extreme learning machines use (100+) was chosen for stochastic gradient descent, the

model performed worse than having fewer nodes even when the other parameters like learning

rate, momentum, and more were adjusted to account for the increase. In addition to worse

accuracy, the training time increased rapidly when the number of nodes increased in the hidden

layer.

Because of the few number of parameters and fast training, extreme learning machine

models can iteratively compute the error on a validation set for a given step size; the model

which has the lowest validation error is chosen for testing. Although the extreme learning

machines used more nodes, their training time and mean-squared error were significantly lower

when compared to the back-propagation model. Mean-squared error is a common

measurement among machine learning models, but it is not very informative for stock market

forecasting. For forecasting daily closing prices, many people only care about knowing the

sign of change for the next day.

53

9.2 Directional Change
Since mean-squared error does not accurately represent the interactions between the

stock’s features and the accuracy of forecasting the next day’s closing price, two different error

metric were proposed to measure the sign of change. For the first type, a hit signifies that the

stock and prediction have the same sign of change between any two adjacent points, while a

miss would be the complement of that situation. For the second type, given any three points, if

the model is predicting the correct sign of change between points 1 and 2, and the sign of

change differs for the real closing price from 1 to 2 and from 2 to 3, then a hit is signified by

the model predicting the sign of change between points 2 and 3 correctly. Simply speaking,

the second type of hit or miss ratio measures whether a model can accurately forecast a local-

min or local-max. The second type of hit or miss ratio was created because the first type might

reflect positive results even though the model is projecting data forward (see section below).

The averaged results in the table within section 9.1 show that extreme learning machine

could forecast both types of hit or miss ratios for stocks better than the back-propagation model.

For the first type, the extreme learning machines forecasted an average of 73.5% and 68.4%

while the back-propagation model forecasted an average of 64.2% and 50.4% of the time for

types 1 and 2 respectively. As explained within chapter 4, researchers have achieved

forecasting accuracies between 60-70%; the Efficient Market Hypothesis implies the

maximum accuracy for any daily prediction would be 50%.

54

9.3 Projecting Data

Both models were observed to project data forward when the previous days’ value were

forecasted. In this situation, the predicted closing prices (red) look like the forward

“projection” of the real closing prices (blue). The instances of these “projections” are outlined

with green boxes, and the green arrows point in the direction of projection from the blue line

towards the red line. In these situations, the models found a very simple method of producing

a close approximation and lowering the training error or finding a least-squares solutions. A

model which projects data forward does not learn the underlying nonlinear relationships which

lead to accurate classification or level estimation; the model is reacting to the changes of the

stock instead of reacting with the changes of the stock. The graph above was an arbitrary

choice, and these patterns are seen infrequently within the graphed results.

 The projecting of data might not be a problem as one might conclude. Even though

both of these models’ weights were optimized with different methods, they exhibit projecting

previous closing prices forward, which may indicate that the issue is a consequence of the

training process or noisy data. Both models correct their forecasting error and recover to

Figure 9.1: Instances of projected time series data.

55

accurately forecast inflection points as shown by the black circles. From the previous section,

the extreme learning machine model showed that it predicted the sign of change and inflection

points with high accuracy, so on average, the model performs very well. The back-propagation

model was less successful with forecasting the sign of change and inflection points, and

projecting data forward may be the reason why it was not comparatively accurate.

9.4 Threshold Responses

Artificial neural networks have the advantage of recognizing nonlinear patterns. Humans

are not able to recognize these patterns, but neural networks learn nonlinear patterns when

training the model with a training set. The type of nonlinear pattern that’s easy for anyone to

see are threshold responses, which is outlined by the figure above. Consider the value of a

stock to be 𝑥1 = 4.8, and as that stock starts to increase or decrease incrementally: 𝑥2 =

4.85, 𝑥3 = 4.9, 𝑥4 = 5.0. All of the sudden, the value of the stock jumps to 𝑥5 = 6.0; this is a

threshold response. It’s like the “three easy payments of $19.99” methodology used for selling

products. To humans, statistically speaking, $19.99 and $20.00 prompt different responses.

Figure 9.2: Threshold responses in Green boxes:

56

More generally, these threshold values create volatile stock markets and are sourced from

computer algorithms or humans. By observation, both models accurately forecasted these rapid

price changes well within the five testing stocks. The extreme learning machines forecasted

these changes better than the back-propagation model. The extreme learning machine model

also tended to over predict and under predict these changes less than the back-propagation

model. Both models became more proficient at forecasting threshold responses after the

training data was preprocessed using min-max linear scaling.

10 Conclusion
The comprehensive mathematical theory of training neural networks was presented within

this thesis, but it’s necessary to evaluate previous literature along with the results from

forecasting. A few questions were posed at the beginning of this thesis including is a stock

market predictable? and what’s a sufficient method for optimizing a neural network for

forecasting these markets?

While the results of others and this thesis have very positive results on independent data,

the academic playground mentality might not transfer well to an actual financial market. There

are people who profit utilizing mathematical concepts like artificial neural networks, but they

are more than likely using methods in addition to a nonlinear classifier. Also, there’s the

problem of authors modifying the testing parameters to perform well on the testing set, and

therefore the testing parameters were held constant for the neural networks with the hopes of

finding a general model that forecasts daily closing prices. In the real world, there is no testing

set, and a financial analyst would not be able to compute the actual error of forecasts and

choose the appropriate parameters for profiting. It is known that machine learning models

scrape news articles, tag parts of speech, and factor that information into their forecasting

57

models; this has been recognized from the speed a stock reacts to news within oil markets,

which is fast enough that a human could not have read the article and reacted by the time the

stock changed drastically. To conclude, an artificial neural network model represents an

important component of a system for financial forecasting daily stock change.

Extreme Learning Machines and Back-propagation with stochastic gradient descent were

presented and evaluated against each other. Of the five different stocks both networks were

tested on, the extreme learning machine model had better results, and these results are

consistent with the research community’s findings. The extreme learning machine model had

better forecasting speed, less memory usage, and significantly better accuracy. The hit or miss

ratio provided within this paper implies that extreme learning machines would perform well

with forecasting the direction of change in a market, which is an important factor of successful

daily forecasts.

Extreme learning machines are a new method for optimizing neural networks and finding

solutions to domain specific problems. While the results of this thesis are positive and

interesting, a more important question to ask is whether extreme learning machines are able to

outperform deep learning methods like deep reinforcement learning. Hopefully, more research

will be published in the future that show case the ability of this recently developed and highly

capable method of regression.

58

11 Appendix

11.1 Graphs (below)

F
ig

u
re 1

1
.1

: F
o
reca

stin
g
 A

p
p
le in

c. w
ith

 S
to

ch
a
stic

G
ra

d
ien

t D
escen

t

59

F
ig

u
re 1

1
.2

: F
o
reca

stin
g
 B

a
n
k o

f A
m

erica
. w

ith
 S

to
c
h
a
stic

G
ra

d
ien

t D
escen

t

60

F
ig

u
re 1

1
.3

: F
o
reca

stin
g
 F

o
rd

 M
o
to

r C
o
m

p
a
n
y. w

ith
 S

to
ch

a
stic

G
ra

d
ien

t D
escen

t

61

F
ig

u
re 1

1
.4

: F
o
reca

stin
g
 C

o
ca

-C
o
la

 w
ith

 S
to

ch
a
stic

 G
ra

d
ien

t

D
escen

t

62

F
ig

u
re 1

1
.5

: F
o
reca

stin
g
 W

a
lm

a
rt w

ith
 S

to
ch

a
stic G

ra
d

ien
t D

escen
t

63

F
ig

u
re 1

1
.6

: F
o
reca

stin
g
 A

p
p
le in

c. w
ith

 E
xtrem

e L
e
a
rn

in
g

M
a
ch

in
es

64

F
ig

u
re 1

1
.7

: F
o
reca

stin
g
 B

a
n
k o

f A
m

erica
 w

ith
 E

x
trem

e L
ea

rn
in

g

M
a
ch

in
es

65

F
ig

u
re 1

1
.8

: F
o
reca

stin
g

 F
o
rd

 M
o
to

r C
o
m

p
a
n
y w

ith
 E

xtrem
e

L
ea

rn
in

g
 M

a
ch

in
es

66

F
ig

u
re 1

1
.9

: F
o
reca

stin
g
 C

o
ca

-C
o
la

 w
ith

 E
xtrem

e L
ea

rn
in

g

M
a
ch

in
es

67

F
ig

u
re 1

1
.1

0
: F

o
reca

stin
g
 W

a
lm

a
rt w

ith
 E

xtrem
e L

e
a
rn

in
g

M
a
ch

in
es

68

11.2 Source Code

11.2.1 Extreme Learning Machine Script
##################################
#File: elm_model.py
#Author: Andrew Linzie
#Advisor: Dr. Mirek Mystkowski
#Thesis: Financial Analysis with Artificial Neural Networks
#Date: April 7, 2017
##################################
Packages
##################################
import matplotlib.pyplot as plt
from hpelm import HPELM
import numpy as np
import math
import csv
import time
##################################
Parameters
##################################
i = 5
o = 1
w = 0
testing_csv = "Bac_test.csv"
close_min = 3.14
close_max = 124.0
range_min = -1
range_max = 1
##################################
Reading in Real Stock Values (.hdf5)
##################################
close_tmp = []

with open(testing_csv, 'rb') as f:
 reader = csv.reader(f)
 reader.next()
 for row in reader:
 close_tmp.append(row[4]) #row[4] = closing values
f.close()
close = map(float, close_tmp)
close_o = np.asarray(close[i + w:(len(close))])

##################################
Creating the ELM Model
##################################
elm_model = HPELM(i*5, o, '', w=None, batch=1000, accelerator='none',
precision='double', norm=1)
elm_model.add_neurons(1000, 'tanh')

##################################
Training the ELM model
##################################
start_time = time.time()

69

elm_model.add_data("BAC_training_input_i5o1w0_s8299.hdf5","BAC_training_output_i5
o1w0_s8299.hdf5", fHH="HH.hdf5", fHT="HT.hdf5")
elm_model.validation_corr("HH.hdf5", "HT.hdf5",
"BAC_Validate_input_i5o1w0_s498.hdf5","BAC_Validate_output_i5o1w0_s498.hdf5",
steps=100)
end_time = time.time()

##################################
Testing the ELM model
##################################
y = elm_model.predict("BAC_Testing_input_i5o1w0_s498.hdf5")

#reverse Min Max scaling
close_std = (y - range_min)/(range_max - range_min)
prediction = close_std*(close_max - close_min) + close_min

##################################
Quantifying Error
##################################
#Mean-Squared Error
mse = elm_model.error(close_o, prediction)

#Type 1 Hit/Miss ratio
count = 0
hit_1 = 0
miss_1 = 0
while(count < len(close_o) - 1):
 if(math.copysign(1, prediction[count] - prediction[count+1]) ==
math.copysign(1, close_o[count] - close_o[count + 1])):
 hit_1 += 1
 else:
 miss_1 += 1
 count += 1

#Type 2 Hit/Miss ratio
count = 0
hit_2 = 0
miss_2 = 0
while(count < len(close_o) - 2):
 if(math.copysign(1, close_o[count] - close_o[count + 1]) != math.copysign(1,
close_o[count + 1] - close_o[count + 2])):
 if(math.copysign(1, close_o[count] - close_o[count + 1]) ==
math.copysign(1, prediction[count] - prediction[count + 1])):
 if(math.copysign(1, close_o[count + 1] - close_o[count + 2]) ==
math.copysign(1, prediction[count + 1] - prediction[count + 2])):
 hit_2 += 1
 else:
 miss_2 += 1
 count += 1

##################################
Terminal Output
##################################
print "Training time: " + str(end_time - start_time)
print 'MSE: ' + str(mse)

70

print "Hit/Miss (type 1): " + str(hit_1) + "/" + str(miss_1)
print "Hit/Miss (type 2):" + str(hit_2) + "/" + str(miss_2)

##################################
Graphing Real vs Forecasted
##################################
x_axis = np.array(range(len(y)))
plt.plot(x_axis, prediction, 'r')
plt.plot(x_axis, close_o, 'b')
plt.ylabel('Bank of America Company: Real(blue) and Forecasted Prices(red)')
plt.xlabel('Observation number (Extreme Learning Machine)')
plt.grid()
plt.show()

11.2.2 Back-Propagation with Stochastic Gradient Descent Script
##################################
#File: mlp_stock_regressor.py
#Author: Andrew Linzie
#Advisor: Dr. Mirek Mystkowski
#Thesis: Financial Analysis with Artificial Neural Networks
#Date: April 7, 2017
##################################
Packages
##################################
import numpy as np
import h5py
import csv
import time
import sklearn.metrics as metric
import math
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
##################################
Parameters
##################################
X = []
T = []
i= 5
o= 1
w= 0
testing_csv = "Apple_test.csv"
close_min = 11.0
close_max = 702.100021
range_min = -1
range_max = 1
###########################
Reading Training Arrays (.hdf5)
###########################
with h5py.File('Apple_training_input_i5o1w0_s8110.hdf5', 'r') as hf:
 #print('List of arrays in this file: \n', hf.keys())
 data = hf.get('data')
 APPL_1X = np.array(data)

with h5py.File('Apple_training_output_i5o1w0_s8110.hdf5', 'r') as hf:

71

 #print('List of arrays in this file: \n', hf.keys())
 data = hf.get('data')
 APPL_1T = np.array(data)

with h5py.File('Apple_Validate_input_i5o1w0_s498.hdf5', 'r') as hf:
 #print('List of arrays in this file: \n', hf.keys())
 data = hf.get('data')
 APPL_2X = np.array(data)

with h5py.File('Apple_Validate_output_i5o1w0_s498.hdf5', 'r') as hf:
 #print('List of arrays in this file: \n', hf.keys())
 data = hf.get('data')
 APPL_2T = np.array(data)

###########################
Reading Testing Arrays (.hdf5)
###########################
with h5py.File('Apple_Testing_input_i5o1w0_s498.hdf5', 'r') as hf:
 data = hf.get('data')
 close_i_s = np.array(data)

with h5py.File('Apple_Testing_output_i5o1w0_s498.hdf5', 'r') as hf:
 data = hf.get('data')
 close_o_s = np.array(data)

close_tmp = []
with open(testing_csv, 'rb') as f:
 reader = csv.reader(f)
 reader.next()
 for row in reader:
 close_tmp.append(row[4]) #row[4] = closing values
f.close()
close = map(float, close_tmp)
close_o = np.asarray(close[i + w:(len(close))])

X.extend(APPL_1X)
X.extend(APPL_2X)
T.extend(APPL_1T)
T.extend(APPL_2T)

###########################
Creating the MLP Model
###########################

reg = MLPRegressor(hidden_layer_sizes=(40),
 activation='tanh',
 solver='sgd',
 alpha=0.001,
 batch_size=10,
 learning_rate='constant',
 learning_rate_init=0.001,
 power_t=0.5,
 max_iter=5000,
 shuffle=True,
 random_state=None,

72

 tol=0.000001,
 verbose=True,
 warm_start=False,
 momentum=0.9,
 nesterovs_momentum=True,
 early_stopping=True,
 validation_fraction=0.05)

###########################
Training the MLP Model
###########################
start_time = time.time()
reg.fit(X,T)
end_time = time.time()

###########################
Testing the MLP Model
###########################
y = reg.predict(close_i_s)

#reverse Min Max scaling
close_std = (y - range_min)/(range_max - range_min)
prediction = close_std*(close_max - close_min) + close_min

##################################
Quantifying Error
##################################
#Mean squared Error
mse = metric.mean_squared_error(close_o, prediction)

#Type 1 Hit/Miss Ratio
count = 0
hit_1 = 0
miss_1 = 0
while(count < len(close_o) - 1):
 if(math.copysign(1, prediction[count] - prediction[count+1]) ==
math.copysign(1, close_o[count] - close_o[count + 1])):
 hit_1 += 1
 else:
 miss_1 += 1
 count += 1

#Type 2 Hit/Miss Ratio
count = 0
hit_2 = 0
miss_2 = 0
while(count < len(close_o) - 2):
 if(math.copysign(1, close_o[count] - close_o[count + 1]) != math.copysign(1,
close_o[count + 1] - close_o[count + 2])):
 if(math.copysign(1, close_o[count] - close_o[count + 1]) ==
math.copysign(1, prediction[count] - prediction[count + 1])):
 if(math.copysign(1, close_o[count + 1] - close_o[count + 2]) ==
math.copysign(1, prediction[count + 1] - prediction[count + 2])):
 hit_2 += 1
 else:

73

 miss_2 += 1
 count += 1

##################################
Terminal Output
##################################
print "Training time: " + str(end_time - start_time)
print 'MSE: ' + str(mse)
print "Hit/Miss (type 1) " + str(hit_1) + "/" + str(miss_1)
print "Hit/Miss (type 2): " + str(hit_2) + "/" + str(miss_2)

##################################
Graphing Real vs Forecasted
##################################
x_axis = np.array(range(len(y)))
plt.plot(x_axis, prediction, 'r')
plt.plot(x_axis, close_o, 'b')
plt.ylabel('Apple Inc. Real(blue) and Predicted Prices(red)')
plt.xlabel('Observation number (SGD Method)')
plt.grid()
plt.show()

11.2.3 Script for Creating Training/Validation Sets
##################################
#File: train_set_generator.py
#Author: Andrew Linzie
#Advisor: Dr. Mirek Mystkowski
#Thesis: Financial Analysis with Artificial Neural Networks
#Date: April 7, 2017
##################################
Packages
##################################
import csv
import numpy as np
import hpelm as modules
from sklearn import preprocessing

##################################
Parameters
##################################
stock_csv = "Apple_Validate.csv"
stock_name = "Apple"
array_purpose = "Validate"
i = 5
o = 1
w = 0

##################################
Reading in Daily Stock Data
##################################
open_tmp = []
high_tmp = []
low_tmp = []
close_tmp = []

74

volume_tmp = []

with open(stock_csv, 'rb') as f:
 reader = csv.reader(f)
 reader.next()
 for row in reader:
 open_tmp.append(row[1]) #row[1] = Open
 high_tmp.append(row[2]) #row[2] = high
 low_tmp.append(row[3]) #row[3] = low
 close_tmp.append(row[4]) #row[4] = close
 volume_tmp.append(row[5]) #row[5] = volume
f.close()

open = map(float, open_tmp)
high = map(float, high_tmp)
low = map(float, low_tmp)
close = map(float, close_tmp)
volume = map(float, volume_tmp)

##################################
Scaling Training/Validation data
##################################
#Min max Scaling
open_s = preprocessing.minmax_scale(open, feature_range=(-1,1))
high_s = preprocessing.minmax_scale(high, feature_range=(-1,1))
low_s = preprocessing.minmax_scale(low, feature_range=(-1,1))
close_s = preprocessing.minmax_scale(close, feature_range=(-1,1))
volume_s = preprocessing.minmax_scale(volume, feature_range=(-1,1))

#Truncating into training/validation arrays
open_i = open_s[0:(len(open) - o - w)]
open_o = open_s[i + w:(len(open))]
high_i = high_s[0:(len(high) - o - w)]
high_o = high_s[i + w:(len(high))]
low_i = low_s[0:(len(low) - o - w)]
low_o = low_s[i + w:(len(low))]
close_i = close_s[0:(len(close) - o - w)]
close_o = close_s[i + w:(len(close))]
volume_i = volume_s[0:(len(volume) - o - w)]
volume_o = volume_s[i + w:(len(volume))]

##################################
Formatting Scaled Values into
Ordered Training Arrays
##################################
#Input
input = []
count = 0
comp_index = 0
while (count < len(open_i) and len(open_i) - count >= i):
 X_i = []
 while (comp_index < i):
 X_i.append(open_i[count+comp_index])
 X_i.append(high_i[count+comp_index])
 X_i.append(low_i[count+comp_index])

75

 X_i.append(close_i[count+comp_index])
 X_i.append(volume_i[count+comp_index])
 comp_index = comp_index + 1
 input.append(X_i)
 comp_index = 0
 count = count + 1
X = np.array(input)

#Target
output = []
count = 0
comp_index = 0
while (count < len(open_o) and len(open_o) - count >= o):
 T_i = []
 while (comp_index < o):
 T_i.append(close_o[count+comp_index])
 comp_index = comp_index + 1
 output.append(T_i)
 comp_index = 0
 count = count + 1
T = np.array(output)

##################################
Naming Training/Validation Arrays
##################################
#Input Name
i_name = stock_name + '_' + array_purpose + '_input_i' + str(i) + 'o' + str(o) +
'w' + str(w) + '_s' + str(len(input)) + '.hdf5'

#Target Name
o_name = stock_name + '_' + array_purpose + '_output_i' + str(i) + 'o' + str(o) +
'w' + str(w) + '_s' + str(len(output)) + '.hdf5'

##################################
Saving to .hdf5 File Format
##################################
try:
 mode = int(raw_input('Would you like to save these HDF5 files to disk?
(yes=1, no=0): '))
except ValueError:
 print 'Not a number'
if (mode == 1):
 modules.make_hdf5(X, i_name)
 modules.make_hdf5(T, o_name)
 print 'The files were written to the disk.'
else:
 print 'The files were not written to the disk.'

11.2.4 Script for Creating Testing Sets
##################################
#File: test_set_generator.py
#Author: Andrew Linzie
#Advisor: Dr. Mirek Mystkowski
#Thesis: Financial Analysis with Artificial Neural Networks

76

#Date: April 7, 2017
##################################
Packages
##################################
import hpelm as modules
import numpy as np
import csv

##################################
Parameters
##################################
historical_csv = 'Apple_Training.csv'
stock_csv = 'Apple_test.csv'
array_purpose = "Testing"
stock_name = "Apple"
i = 5
o = 1
w = 0

##################################
Reading in Daily Stock Data
##################################
open_tmp = []
high_tmp = []
low_tmp = []
close_tmp = []
volume_tmp = []

open_recent = []
high_recent = []
low_recent = []
close_recent = []
volume_recent = []

with open(stock_csv, 'rb') as f:
 reader = csv.reader(f)
 reader.next()
 for row in reader:
 open_tmp.append(row[1]) #row[1] = Open
 high_tmp.append(row[2]) #row[2] = high
 low_tmp.append(row[3]) #row[3] = low
 close_tmp.append(row[4]) #row[4] = close
 volume_tmp.append(row[5]) #row[5] = volume
f.close()

with open(historical_csv, 'rb') as g:
 reader = csv.reader(g)
 reader.next()
 for row in reader:
 open_recent.append(row[1]) #row[1] = Open
 high_recent.append(row[2]) #row[2] = high
 low_recent.append(row[3]) #row[3] = low
 close_recent.append(row[4]) #row[4] = close
 volume_recent.append(row[5]) #row[5] = volume
g.close()

77

open = map(float, open_tmp)
high = map(float, high_tmp)
low = map(float, low_tmp)
close = map(float, close_tmp)
volume = map(float, volume_tmp)

e_open = map(float, open_recent)
e_high = map(float, high_recent)
e_low = map(float, low_recent)
e_close = map(float, close_recent)
e_volume = map(float, volume_recent)

##################################
Scaling Testing data
##################################
#Getting Min/Max for each feature
open_min = np.amin(e_open)
open_max = np.amax(e_open)
high_min = np.amin(e_high)
high_max = np.amax(e_high)
low_min = np.amin(e_low)
low_max = np.amax(e_low)
close_min = np.amin(e_close)
close_max = np.amax(e_close)
volume_min = np.amin(e_volume)
volume_max = np.amax(e_volume)

#Need to know close_min and close_max for reverse scaling
print "Close_min: " + str(close_min) + ", Close_max: " + str(close_max)

#Min max Scaling
open_std = (open - open_min) / (open_max - open_min)
open_s = open_std * (1 - (-1)) + (-1)
high_std = (high - high_min) / (high_max - high_min)
high_s = high_std * (1 - (-1)) + (-1)
low_std = (low - low_min) / (low_max - low_min)
low_s = low_std * (1 - (-1)) + (-1)
close_std = (close - close_min) / (close_max - close_min)
close_s = close_std * (1 - (-1)) + (-1)
volume_std = (volume - volume_min) / (volume_max - volume_min)
volume_s = volume_std * (1 - (-1)) + (-1)

#Truncating into testing arrays
open_i = open_s[0:(len(open) - o - w)]
open_o = open_s[i + w:(len(open))]
high_i = high_s[0:(len(high) - o - w)]
high_o = high_s[i + w:(len(high))]
low_i = low_s[0:(len(low) - o - w)]
low_o = low_s[i + w:(len(low))]
close_i = close_s[0:(len(close) - o - w)]
close_o = close_s[i + w:(len(close))]
volume_i = volume_s[0:(len(volume) - o - w)]
volume_o = volume_s[i + w:(len(volume))]

78

##################################
Formatting Scaled Values into
Ordered Testing Arrays
##################################
#Input
input = []
count = 0
comp_index = 0
while (count < len(open_i) and len(open_i) - count >= i):
 X_i = []
 while (comp_index < i):
 X_i.append(open_i[count+comp_index])
 X_i.append(high_i[count+comp_index])
 X_i.append(low_i[count+comp_index])
 X_i.append(close_i[count+comp_index])
 X_i.append(volume_i[count+comp_index])
 comp_index = comp_index + 1
 input.append(X_i)
 comp_index = 0
 count = count + 1
X = np.array(input)

#Target
output = []
count = 0
comp_index = 0
while (count < len(open_o) and len(open_o) - count >= o):
 T_i = []
 while (comp_index < o):
 T_i.append(close_o[count+comp_index])
 comp_index = comp_index + 1
 output.append(T_i)
 comp_index = 0
 count = count + 1
T = np.array(output)

##################################
Naming Testing Arrays
##################################
##Input Name
i_name = stock_name + '_' + array_purpose + '_input_i' + str(i) + 'o' + str(o) +
'w' + str(w) + '_s' + str(len(input)) + '.hdf5'

#Target Name
o_name = stock_name + '_' + array_purpose + '_output_i' + str(i) + 'o' + str(o) +
'w' + str(w) + '_s' + str(len(output)) + '.hdf5'

##################################
Saving to .hdf5 File Format
##################################
try:
 mode = int(raw_input('Would you like to save these HDF5 files to disk?
(yes=1, no=0): '))
except ValueError:
 print 'Not a number'

79

if (mode == 1):
 modules.make_hdf5(X, i_name)
 modules.make_hdf5(T, o_name)
 print 'The files were written to the disk.'
else:
 print 'The files were not written to the disk.'

	Gardner-Webb University
	Digital Commons @ Gardner-Webb University
	2017

	Financial Analysis with Artificial Neural Networks Short-term Stock Market Forecasting
	Andrew Linzie
	Recommended Citation

	1 Introduction
	2 Time Series Analysis
	2.1 Introduction
	2.2 History of Time Series Analysis
	2.3 Time Series Definitions
	2.3.1 Continuous and Discrete Time Series
	2.3.2 Stationary versus Non-Stationary
	2.3.3 Noisy Processes

	2.4 Linear and Nonlinear Forecasting Models
	2.4.1 Introduction
	2.4.2 Linear Regression
	2.4.3 Generalized Autoregressive Conditional Heteroskedasticity

	3 Artificial Neural Networks
	3.1 Introduction
	3.2 Layers
	3.3 Nodes
	3.4 Weights
	3.5 The Activation Function
	3.6 Performance of a Neural Network

	4 Review of Literature
	5 Error Back-Propagation with Stochastic Gradient Descent
	5.1 Introduction
	5.2 Gradient Descent
	5.3 Hidden Layer Stage and the Delta Rule
	5.4 Optimizing Learning
	5.5 Algorithm

	6 Extreme Learning Machines
	6.1 Introduction
	6.2 Essential Concepts
	6.2.1 Linear Algebra Notation
	6.2.2 Moore-Penrose Generalized Inverse
	6.2.3 Minimum Norm Least Square Solution of General Linear Systems

	6.3 Extreme Learning Machine: Approximation Problem
	6.4 Extreme Learning Machine Algorithm

	7 Methods
	7.1 Introduction
	7.2 Combining Time Series Analysis and Artificial Neural Networks
	7.3 Structuring of Data
	7.4 Acquiring, Preprocessing, and Formatting Data
	7.5 Extreme Learning Machine Algorithms
	7.5.1 Model Selection
	7.5.2 Testing

	7.6 Stochastic Gradient Descent Algorithms
	7.6.1 Model Selection
	7.6.2 Testing
	7.6.3 Scripts

	8 Results
	8.1 Design of Training, Validation, and Testing Sets
	8.2 Error Metrics
	8.3 Tabled Results

	9 Discussion
	9.1 Nodes, Training Time, Mean-Squared Error
	9.2 Directional Change
	9.3 Projecting Data
	9.4 Threshold Responses

	10 Conclusion
	11 Appendix
	11.1 Graphs (below)
	11.2 Source Code
	11.2.1 Extreme Learning Machine Script
	11.2.2 Back-Propagation with Stochastic Gradient Descent Script
	11.2.3 Script for Creating Training/Validation Sets
	11.2.4 Script for Creating Testing Sets

