210,259 research outputs found

    An Experimental Investigation of Preference Misrepresentation in the Residency Match

    Full text link
    The development and deployment of matching procedures that incentivize truthful preference reporting is considered one of the major successes of market design research. In this study, we test the degree to which these procedures succeed in eliminating preference misrepresentation. We administered an online experiment to 1,714 medical students immediately after their participation in the medical residency match--a leading field application of strategy-proof market design. When placed in an analogous, incentivized matching task, we find that 23% of participants misrepresent their preferences. We explore the factors that predict preference misrepresentation, including cognitive ability, strategic positioning, overconfidence, expectations, advice, and trust. We discuss the implications of this behavior for the design of allocation mechanisms and the social welfare in markets that use them

    Matterport3D: Learning from RGB-D Data in Indoor Environments

    Full text link
    Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and region classification

    Automatic learning framework for pharmaceutical record matching

    Get PDF
    Pharmaceutical manufacturers need to analyse a vast number of products in their daily activities. Many times, the same product can be registered several times by different systems using different attributes, and these companies require accurate and quality information regarding their products since these products are drugs. The central hypothesis of this research work is that machine learning can be applied to this domain to efficiently merge different data sources and match the records related to the same product. No human is able to do this in a reasonable way because the number of records to be matched is extremely high. This article presents a framework for pharmaceutical record matching based on machine learning techniques in a big data environment. The proposed framework aims to explode the well-known rules for the matching of records from different databases for training machine learning models. Then the trained models are evaluated by predicting matches with records that do not follow these known rules. Finally, the production environment is simulated by generating a huge amount of combinations of records and predicting the matches. The obtained results show that, despite the good results obtained with the training datasets, in the production environment, the average accuracy of the best model is around 85%. That shows that matches which do not follow the known rules can be predicted and, considering that there is not a human way to process this amount of data, the results are promising.This work was supported by the Research Program of the Ministry of Economy and competitiveness, Government of Spain, through the DeepEMR Project, under Grant TIN2017-87548-C2-1-

    Evaluating the provision of school performance information for school choice

    Get PDF
    We develop and implement a framework for determining the optimal performance metrics to help parents choose a school. This approach combines the three major critiques of the usefulness of performance tables into a natural metric. We implement this for 500,000 students in England for a range of performance measures. Using performance tables is strongly better than choosing at random: a child who attends the highest ex ante performing school within their choice set will ex post do better than the average outcome in their choice set twice as often as they will do worse
    corecore